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Figure S1. Dicer1 Indel Analysis. A high number of insertion and deletions (indels) were noted in the
analysis of Dicer1 across the four cell lines. A significantly higher number of indels were detected in M1,
M2, and M3 when compared to wild-type strains. A higher number of base insertions was detected when
compared to deletions. Positions of both insertions and deletions (compared across reads) were detected.
An analysis showing the ratio of insertions and deletions at the same indel site has not been performed at
this time.
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Figure S2. NanoCulture vs. ultra low adherence (ULA) plates. a) Representative bright field
images of tumor spheroids in ULA or NanoCulture plates over a 7 day culture period. b) Graph quantifies
doubling rate of NSCLC cells over the course of 11 days. c) Histogram quantifies the % of cells observed
growing as flat 2-D culture vs. the number of cells growing in 3-D over the course of 7 days in NanoCulture
plates.
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General modelling framework

We begin with a homogenous model where cells divide with rate b and die with a constant rate d. The
death rate d is partly related to the apoptosis rate of individual cells and has a component that is strongly
dependent on microenvironmental conditions. At higher frequencies/populations, the reproduction rate
is reduced and kept constant at the carrying capacity K̃. During treatment, cytotoxic chemo-drugs
significantly increase the value of d, with its exact value depending on the dose, the drug-specific dose-
response, as well as other microenvironmental parameters (including nutrient availability). The ordinary
differential equation that describes such dynamics is the usual logistic equation written as
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This model can be re-parametrized in terms of a linear fitness term defined as the effective rate of birth
minus death (b− d) and a new carrying capacity value K
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where the new carrying capacity K is defined as K = K̃(1−d/b). If the death rate is larger than the birth
rate, fitness decreases, i.e. the overall growth rate is negative. The value of effective carrying capacity K
is also changed (however, the quantitative change in the value of K does not have a direct consequence
within the framework of our model). The value b − d can then be reinterpreted as a (linear) fitness or
growth rate l.

Consider now heterogeneous growth dynamics where more than one genotype grows, and types can in-
teract with one another. We denote parameters for each type with a subscript i. Cross-terms, representing
genotype-genotype interactions, further contribute to the quadratic terms above as
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where i =(WT,Mut). Upon re-parameterization, we obtain the cross-term coefficients (payoffs) as well as
carrying capacity:
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Similar to the effective carrying capacity, the new payoff value (aij) is defined as m̃ij = aij(bi − di). Since
we did not assume that payoff values are symmetric, (i.e. aij ∕= aji), the new parametrization in terms of
li = bi−di, Ki, and aij is general and equivalent to the model in Eq. (S1) (or Eq. (S2) for two genotypes).

CAT model of adaptive resistance

Each genotype (WT or Dicer1 mutant) was considered to have two phenotypically distinct variants: a
sensitive type that is abundant in the absence of the treatment and a drug tolerant type. In the presence of
environmental stresses (like chemotherapeutic drugs), sensitive cells can phenotypically switch and become
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drug tolerant. To model the differences in population dynamics in mono- and co-culture we adapted the
evolutionary game theoretic framework of replicator dynamics, where the game interaction payoffs describe
the fitness gain or loss of sensitive/tolerant cell phenotypes in the presence of phenotype/phenotype or
genotype/genotype interactions. Let xWT be the number of wild-type cells and xMi be the number of
mutant cells of type i (i = 1, 2). Assuming that WT and mutants initially grow exponentially to eventual
saturations and that the dynamics in the presence of drugs are regulated by phenotypic transitions to a
tolerant subtype, the monoculture model is described by
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where the superscript sens describes the drug-sensitive phenotype, and tol the drug-tolerant phenotype,
Ktype denotes the carrying capacity, and νtype measures the intra-species switching rate. Note that no
backwards switching from tolerant to sensitive is considered.

To model co-cultures between WT and either M1, M2, or M3 mutant cells (in 10:90, 50:50, and
90:10 WT:mutant proportions), we assumed that intra-species interactions are dominated by inter-species
relationships, that is that the adaptive behaviors of cells in co-culture are dictated by CAT dynamics.
Accordingly, as in the monoculture case, let l1 and l2 be the constant fitnesses, and KWTco and KMico be
the carrying capacities of the wild-type and mutant populations, respectively. We modified Eq. (S3) by
assuming the growth rates of each population are adjusted through their interactions with the other via
the cross-terms a12 and a21 that represent the interactions between wild-type and mutants, respectively.
Note that we do not restrict the model to be fully competitive a priori, so a12, a21 ∈ R. The co-culture
dynamics are then given as
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The mono- and co-culture model structures are schematically represented in Figure S3.

Parameter selection and optimization

For monocultures modelled by Eq. (S3) in the absence and the presence of drugs, we began by calculating
the average of each population per cell type and per drug, if applicable. The Matlab [1] function fmincon
was used to minimize the cost function c given by conventional least squares regression:

c =
1

n

n󰁛

j=1

(yj − ŷj)
2 (S5)

where yj is a vector of predicted values, ŷj is a vector of observed values, and n is the total number of data
points. We employed a global search algorithm to estimate parameters using the MultiStart optimization
routine in Matlab [1]. 100 initial points were generated and each were optimized using the fmincon solving
routine with error measured by Eq. S5. The optimal set of parameters was then selected by minimizing
the resulting cost function values from each of the 100 runs. This methodology was selected to reduce the
influence of initial conditions on the outcome, given the rugged parameter landscape.

To estimate parameters from the co-culture experiments, we employed a similar least-squares cost
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Figure S3. Schematic of mono- and co-culture population dynamics In absence of drugs, mono-
culture dynamics were modelled as being governed by logistic growth, where the population initially grows
exponentially and eventually saturates. Given the observation of a dip and rebound in the monocul-
ture growth assays after the introduction of drugs, we assumed that phenotype/phenotype interactions
could induce a switch into a drug-tolerant subtype (modelled as intra-species competition). These pheno-
type/phenotype interactions were assumed to be dominated by genotype/genotype interactions (coopera-
tive adaptation to therapy). We hypothesized that the constant fitness of each type differs in mono- and
co-cultures due to differences in culture protocols and spatial constraints. Further, we assumed additional
frequency-dependent cross-terms representing the interaction between the two genotypes in co-cultures.
In the presence of the therapeutic stresses and other genotypes, sensitive subtypes phenotypically switch
into more drug tolerant/resistant types.

function as in Eq. (S5)
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where xWTj is the predicted number and x̂WTj is the observed number of wild-type cells at time j.
Similarly, xMi j is the predicted and x̂Mi j is the observed number of mutant i type cells at time j. As in
the monoculture case, Eq. (S6) was applied in 100 fmincon calls within the MultiStart global optimization
routine. The resulting cost functions were minimized to find the optimal set of parameters in each co-
culture case. Parameter identifiability can be a concern in systems of linear, ordinary differential equations
with fewer observations than equations. Here we have information for both the WT and mutants in each
experiment but, as noted above, the parameter landscape is rugged and it can be difficult to find a global
optimal set of parameters. To reduce concerns about structural identifiability, in addition to using the
MultiStart optimization routine to lessen the influence of the parameter landscape, we performed pairwise
fits to WT and a single mutant at a time. We further employed a step-wise approach to parameter
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estimation, summarized below. Representative fitting results for 50:50 co-cultures across all mutants
without and with drugs are provided in S4 Fig.

1. Estimate monoculture parameters lsenstype and Ksens
type (Eq. (S3)) from no drug growth assays

2. Estimate monoculture parameters lsenstype , ltoltype and νtype (Eq. (S3)) from growth assays
exposed to drugs (Ksens

type remain fixed from no drug case)

3. For each initial proportion of cells (10:90, 50:50, and 90:10 WT:mutuant), estimate
co-culture parameters l1, l2, and Ktype from Eq. (S4):

(a) for xWT, xM1 , and xM2 in the absence of drugs

(b) for xWT, xM1 , and xM2 in the presence of docetaxel, bortezomib, and afatinib

An assumption about the shifting dynamics between mono- and co-cultures, without and with drugs,
should be noted. We observed marked differences in growth between monocultures and co-cultures of wild-
types and each mutant in the absence and presence of drugs, regardless of initial proportions. This led
us to believe that the introduction of a second cell-type inhibits growth due to environmental constraints
(lack of space etc.). To test this hypothesis, we refit the constant growth rates li and added the cross-
interaction terms aij (i, j = 1, 2) from the monoculture to co-culture case. As indicated in S2 Table,
this impression was borne out. We further posited that adaptive resistance phenotypes were emerging
when co-cultures were exposed to any of the chemotherapeutic drugs. Therefore, beyond adjustments in
constant growth rates in each population from the no-drug case, cross-competition terms would be altered
in drug co-cultures. Thus all parameters in Eq. (S4) were re-estimated for every individual experiment,
allowing us to draw conclusions about how dynamics changed with changing experimental conditions.

Parameter No Drug Docetaxel Bortezomib Afatinib
l1 0.4756 0.4756 0.0699 0.5487
l2 0.3694 0.3964 0.0058 0.0132

KWT 47.62 250 14.35 1,000
KM2 250 1E6 452,693.53 28.82
a12 - 0.0015 0.2 -0.0007
a21 - -0.0004 0.0285 -0.0049

Error 0.7891 0.0031 1.519 2.1777×10−7

Table S2. Parameter estimates for M1 50:50 co-cultures in absence of and presence all drugs
(docetaxel, bortezomib, and afatinib).
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Table S3. Patient demographics for tumor samples used for CANscript
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Figure S4. Population dynamics of 50:50 co-cultures M1, M2, and M3 co-culture growth without
drug pressure, in docetaxel, in afatinib, and bortezomib.
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