Supplementary information

Profiling surface proteins on individual exosomes using a proximity barcoding assay

Di Wu^{1, 2, 3*}, Junhong Yan¹, Xia Shen^{4,5,6}, Yu Sun⁷, Måns Thulin⁸, Yanling Cai⁹, Lotta Wik¹, Qiujin Shen¹, Johan Oelrich³, Xiaoyan Qian², K. Louise Dubois¹⁰, K. Göran Ronquist¹⁰, Mats Nilsson², Ulf Landegren¹, Masood Kamali-Moghaddam¹

- 1. Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, SE-75 185 Uppsala, Sweden.
- 2. Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, SE-17 165, Solna, Sweden.
- 3. Vesicode AB, Uppsala, Sweden.
- 4. Center for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
- 5. Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- 6. Biostatistics Group, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- 7. Department of Molecular Evolution, Uppsala University, SE-751 24, Uppsala, Sweden.
- 8. Department of Statistics, Uppsala University, SE- 75 120 Uppsala, Sweden
- 9. Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
- 10. Department of Medical Sciences, Clinical Chemistry, Uppsala University, SE-75 185 Uppsala, Sweden.

* Correspondence should be addressed to: di.wu@scilifelab.se

Keywords: prostasomes, exosomes, protein profiling, barcoding, rolling circle amplification, next generation sequencing

Supplementary note 1

Theoretical calculation and experimental analysis of erroneous identification of single complexes in PBA

In PBA, the risk to erroneously identify two or more individual complexes as a single complex lies in oligonucleotide design, assay procedure and data analysis. Here, we will address this problem by theoretical calculations and experimental investigations (the sample with complexes of STV-biooligonucleotides incubated separately at the molar ratio of 10:1 streptavidin to biotinylated oligonucleotides, with 32,525 identified complexes). If no false identification is present, all the identified complexes should carry a single proteinTag. In experimental data, we calculated the single complex percentage (Single %) as the number of complexes identified with one proteinTag among the total number of identified complexes to assess the level of false identification.

For oligonucleotide design, the number of nucleotides in complexTag (n) is crucial as it decides the diversity of the complexTags (4^n) . As the probability of any given complexTag being used (k) by a total number of complexes (N) follows a Poisson distribution, P (k events) = $\lambda^k e^{-\lambda}/k!$ or $F(x, \lambda) = \sum_{k=0}^{x} \lambda^k e^{-\lambda} / k!$, where $\lambda = N/4^n$. If we assume that the total number complexes is close to the experimentally obtained number (32,525), then we can calculate the percentage of complexTags used by one complex as the Single %=(F(1, λ)- F(0, λ))/ (1-F(0, λ)). We found that complexTags comprised of 12 random nucleotides would give a 99% of Single % in the calculation. In our experiment, we analyzed our results by using only the first 1 to 15 nucleotides as complexTag and the measured Single % fits closely the calculated values. (Supplementary figure 3).

Another circumstance leading to erroneous identification of separate complexes as single ones is when the density of complexes immobilized on the surface is too high so that some RCA products (RCP) might reach and hybridize to two or more complexes. For any circular area on the surface with the diameter of a RCP, the number of complexes located in this area follows a Poisson distribution $F(x,\lambda) = \sum_{k=0}^{x} \lambda^k e^{-\lambda} / k!$ where $\lambda = N / (S_{total} / S_{RCP})$. The total capturing surface Stotal≈ 25mm². S_{RCP} =0.25× πD^2 , where D is the diameter of the RCP. By using different D values and numbers of complexes (N) we calculated the expected percentage of RCPs covering only one complex (Supplementary figure 4). The experimental data showed 99.27% of the 32,525 complexes carried only a single type of oligonucleotides when an excess of single species of oligonucleotides had been incubated separately with STV before combining complexes with four different oligonucleotides for analysis by PBA. From this we estimate that each RCP has a diameter of approximately 4 µm. This contribution to the risk of erroneous identification of separate complexes as single ones might be improved by decreasing RCP dimensions by shortening the time of RCA to generate the RCPs, optimizing the buffer composition to reduce the RCP size, or simply further diluting the RCPs and complexes.

It is also possible that some antibody and complex barcodes become artificially associated during PCR amplification. To reduce this risk, we incorporated dUTP during the RCA to generate the RCPs, and we then used UNG to cleave the RCPs before PCR to prevent them from serving as templates. Also, the use of T4 DNA polymerase with strong 3' exonuclease activity that degrade oligonucleotides on antibodies that have failed to be extended serves to prevent them from extending on other barcodes during PCR. However, it is still possible that a process of 'jumping' PCR may connect templates that were not linked before PCR. We expect that this risk mainly occurs towards the end of PCR, when PCR products reach higher concentrations. Therefore, the number of erroneously-joined barcoded products should be smaller than that of correctly barcoded products. The risk can be minimized by applying 'cutoff' values of sequencing reads to remove such low occurrence reads. We found that a cut-off of 2 amplicons sufficiently avoided this source of erroneous identification of members of two complexes as being part of one. Since a higher cut-off would require a greater sequencing depth, we applied a cutoff of 2 reads for all the analyses (Supplementary figure 5).

Supplementary Figure 1. Real-time PCR analysis of extension products of PBA in the presence or absence of CTB for capture. Prostasomes were incubated with PBA probes, then captured in STV-coated PCR tubes either with or without immobilized biotin-CTB. A buffer solution was also included as a negative control. After the extension of PBA probes on the RCA products, a pair of primers was used to amplify the extension products in real-time PCR. Cycle of threshold (Ct) values were plotted as bars. Duplicate measurements are shown as yellow or blue adjacent bars.

Supplementary Figure 2. Nanoparticle tracking analysis. (a) exosomes or (b) RCPs. were analyzed by nanoparticle tracking analysis. Averaged concentration vs sizes were plotted for each sample. Error bars indicate +/< standard deviation of the mean.

Supplementary Figure 3. Contribution to the risk of mistaking several clusters as one by failing to distinguish RCPs via their complexTags. (a) By analyzing from 1 to 15 nucleotides of the complexTags from the experimental data, the number of complexTags associated with one or more proteinTags was plotted against the number of nucleotides in the complexTag used for analysis. (b) The percentage of complexTags associated with a single proteinTag *versus* all complexes using experimental data from Figure 3a (red) is compared with theoretical calculation of the expected single percentage by using different length of complexTag (blue).

Supplementary Figure 4. The estimated risk of mistakenly identifying two or more complexes as one depending on the size of RCPs and the number of complexes. Using different sizes of RCPs and different numbers of complexes, theoretical percentage of RCPs covering only one complex was calculated using Poisson distribution.

Supplementary Figure 5. Risk of mistakenly identifying two or more complexes as one during data analysis. Different cutoff values (numbers of reads for a given antibody-complex combination required for a positive identification) were applied to analyze the samples of STV-oligonucleotides experiments. The number of complexes with different (a) proteinTags or (b) moleculeTags are summarized.

Supplementary Figure 6. Reproducibility of PBA for profiling exosome surface proteins. Numbers of exosomes identified with different combination of proteins in two independent runs are plotted as scatter plots.

Supplementary Figure 7. Detection of a dilution series of prostasomes in 10% human plasma by SP-PLA, using CTB as capturing agent and a pair of PLA probes targeting CD26 and CD59

Supplementary Table 1. Oligonucleotides used in this study

*The sequences with * are used only for the streptavidin experiment. The sampleTag and proteinTag were underlined*

Supplementary Table 2. Antibodies used in this study