Supplemental Information for:

Title: Uncovering the biosynthetic potential of rare metagenomic DNA using co-occurrence network analysis of targeted sequences

Authors: Vincent Libis¹, Niv Antonovsky¹, Mengyin Zhang, Zhuo Shang, Daniel Montiel, Jeffrey Maniko, Melinda A. Ternei, Paula Y. Calle, Christophe Lemetre, Jeremy G. Owen and Sean F. Brady*

Author affiliation:

Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, NY 10065.

¹ These authors contributed equally to this work.

 *Corresponding Author: Sean F. Brady
Contact: Laboratory of Genetically Encoded Small Molecules The Rockefeller University 1230 York Avenue New York, NY 10065
Phone: 212-327-8280
Fax: 212-327-8281
Email: sbrady@rockefeller.edu

Supplementary Table 1: Soil samples and metagenomic libraries information

Library		clones per subpool	library clones	avg. insert size [kbp]	total library size [Gbp]	amplicon sequencing [M reads]				
name	subpools					adenylation (NRPS)	ketosynthase (PKS)	enduracididine	АНВА	capreomycidine
Arizona	2304	5000	1E+07	40	400	24	11*	0.2	0.1	15
Oregon	768	25000	2E+07	40	800	11	10	0.2	N/A	N/A
New Mexico	768	25000	2E+07	40	800	12	11	N/A	0.05	N/A
Hawaii	768	25000	2E+07	40	800	11	N/A	N/A	N/A	N/A

*Due to low sequencing coverage of one 384 plate, only 1920 subpools were processed for Arizona ketosynthase domains

Target domain	Annealing T°	Forward binding sequence	Reverse binding sequence	Primer _{len} /Total _{len}
AD1 (Arizona)	65	5'-GCSTACSYSATSTACACSTCSGG	5'-SASGTCVCCSGTSCGGTA	23 / 210
AD2 (Oregon, Hawaii, New Mexico)	56.3	5'-SATBTAYACSTCVGGHWCSAC	5'-CCANRTCNCCBGTSYKGTACA	21 / 210
KS (Arizona, Oregon, Hawaii, New Mexico)	56.3	5'-GCNATGGAYCCNCARCARMGNVT	5'-GTNCNNGTNCCRTGNSCYTCNAC	23 / 210
END. (Arizona, Oregon)	64.5	5'-CCNCCRCCSTGGCACTTCKCSG	5'-CSAACTGCTTGGGCATSCCCTG	22 / 110
AHBA (Arizona, New Mexico)	61	5'-CAGAACGGCAAGCTGATGACSG	5'-GGAMCATSGCCATGTAGYKSG	22 / 110
CAP. (Arizona)	55	5'-SGACRTSWSCWSSWSCGGYGT	5'-CRSTNGGRTTRTGSGGRAAGT	21 / 210

Supplementary Table 2: Primers table

Supplementary Table 3: BGCs similarity analysis of 60 metagenomic clones

Recovered BGC #	Highest median identity to a reference BGC (%)	BiG-SCAPE Raw distance	Closest relative (BiG-SCAPE)	Source organism
29:Genbank MN161611	95.6	0.36	GCF_001886595_NZ_CP018074.1.cluster027	Streptomyces venezuelae NRRL B-65442
9:Genbank MN161603	95.6	0.36	GCF_000023245_NC_013093.1.cluster022	Actinosynnema mirum DSM 43827
28:Genbank MN161610	83.5	0.43	GCF_001302585_NZ_CP012752.1.cluster008	Kibdelosporangium phytohabitans
38:Genbank MN161613	79.7	0.43	GCF_001579845_NZ_CP007440.1.cluster002	Rhodoplanes sp. Z2-YC6860
25:Genbank MN161608	89.8	0.43	GCF_001443625_NZ_CP013129.1.cluster026	Streptomyces venezuelae
73:Genbank MN161622	89.7	0.44	GCF_002796545_NZ_CP024894.1.cluster009	Amycolatopsis sp. AA4
355:Genbank MN161648	94.2	0.45	GCF_000282715_NC_018266.1.cluster017	Amycolatopsis mediterranei S699
46:Genbank MN161620	89.8	0.45	GCF_001302585_NZ_CP012752.1.cluster017	Kibdelosporangium phytohabitans
900:Genbank MN161659	88.4	0.47	GCF_000282715_NC_018266.1.cluster017	Amycolatopsis mediterranei S699
16:Genbank MN161605	92.7	0.48	GCF_000739085_NZ_CP009110.1.cluster003	Amycolatopsis methanolica 239
41:Genbank MN161615	97.1	0.49	GCF_001650215_NZ_CP015726.1.cluster030	Streptomyces sp. RTd22
40:Genbank MN161614	85.5	>0.5	NA	NA
47:Genbank MN161621	84	>0.5	NA	NA
96:Genbank MN161625	76.8	>0.5	NA	NA
683:Genbank MN161657	75.7	>0.5	NA	NA
917:Genbank MN161660	75.3	>0.5	NA	NA
All remaining BGCs (44)	<75	>0.5	NA	NA

Supplementary Table 4: Omnipeptin biosynthetic gene analysis

Gene	Proposed function	NCBI similarity	Species	%ID
omn1		flavin reductase	Kibdelosporangium sp. MJ126-NF4	71
omn2		cation/H(+) antiporter	Amycolatopsis antarctica	45
omn3	Halogenation of tryptophan	tryptophan 7-halogenase	Streptomyces sp. NRRL S-146	76
omn4	fatty acyl-AMP ligase	fatty acyl-AMP ligase	Streptomyces formicae	65
omn5	Attachment of acyl chain	acyl carrier protein	Streptomyces caeruleatus	49
omn6	NRPS	non-ribosomal peptide synthetase	Sciscionella sp. SE31	53
omn7	NRPS	non-ribosomal peptide synthetase	Actinoplanes friuliensis	50
omn8	NRPS	non-ribosomal peptide synthetase	Streptomyces sp. LUP47B	57
omn9		protein mbtH	Saccharomonospora viridis	68
omn10	Deacylation	Cyclic lipopeptide acylase	Streptomyces canus	55
omn11		alpha/beta hydrolase	Streptomyces sp. M1013	67
omn12		hypothetical protein	Streptomyces sp. LUP47B	61
omn13		hypothetical protein	Sciscionella sp. SE31	38
omn14	Transport	ABC transporter permease	Herbihabitans rhizosphaerae	66
omn15	Transport	daunorubicin resistance protein DrrA family ABC transporter ATP-binding protein	Saccharothrix espanaensis	65
omn16		glutamate synthase	Amycolatopsis mediterranei	70
omn17		asparagine ligase	Saccharothrix syringae	75
omn18		methylaspartate mutase E	Streptomyces pratensis ATCC 33331	64
omn19		methylaspartate mutase S	Streptomyces erythrochromogenes	59
omn20	Regulation	ArsR family transcriptional regulator	Actinoplanes utahensis	43
omn21		hypothetical protein	Streptomyces canus	62
omn22	Transport	ABC transporter permease	Streptomyces sp. LUP47B	59
omn23	Transport	ABC transporter ATP-binding protein	Streptomyces sp. LUP47B	76
omn24	Regulation	signal transduction histidine kinase	Actinokineospora cianjurensis	60
omn25	Regulation	response regulator transcription factor	Actinokineospora cianjurensis	80
omn26	Hydroxylation of tyrosine	cytochrome P450	Streptomyces sp. NRRL B-24051	64
omn27	Hydroxylation of proline	proline hydroxylase	Streptomyces malaysiensis	53
omn28		phytanoyl-CoA dioxygenase	Streptomyces sp. H23	66
omn29		alcohol dehydrogenase	Streptomyces sp. LUP47B	73
omn30		myo-inositol-1-phosphate synthase	Kibdelosporangium aridum	64
omn31		4-hydroxybenzoate polyprenyltransferase	Actinocrispum wychmicini	57
omn32		sugar phosphate isomerase/epimerase	Actinosynnema sp. ALI-1.44	70
omn33		TatD family hydrolase	Amycolatopsis nigrescens	79
omn34		xylose isomerase	Kibdelosporangium aridum	67
omn35		alkaline phosphatase family protein	Prauserella shujinwangii	72
omn36	Regulation	AfsR/SARP family transcriptional regulator	Kibdelosporangium phytohabitans	60
omn37	Regulation	TetR family transcriptional regulator	Actinophytocola oryzae	47
omn38	Regulation	TetR/AcrR family transcriptional regulator	Kibdelosporangium aridum	66
omn39		gamma-butyrolactone biosynthesis protein	Streptomyces sp. RP5T	49
omn40		NAD-dependent epimerase/dehydratase family protein	Herbihabitans rhizosphaerae	56

Residue	Pos.	δc	δ _H , mult. (<i>J</i> in Hz)*	Residue	Pos.	δc	δ _H , mult. (<i>J</i> in Hz)*
isoAsp-1	1	170.9, C	-		5-CONH ₂	-	6.90, brs; 7.32
	2	50.9, CH	3.57		2-NH	-	7.87, br s
	3	36.4, CH ₂	2.19, 2.75	Cl-Trp-8	1	170.7, C	-
	4-CONH	169.1, C	-		2	53.4, CH	4.55
hyTyr-2	1	170.4, C	-		3	27.7, CH ₂	2.85, 3.13
	2	59.9, CH	4.28, d (7.4)		4	110.3, C	-
	3	72.4, CH	4.66, d (7.4)		4a	126.0, C	-
	4	132.1, C	-		5	119.8, C	7.58, d (8.4)
	5/9	128.0, CH	7.22		6	118.6, CH	6.97, d (8.4)
	6/8	114.5, CH	6.65, d (7.9)		7	125.6, C	-
	7	156.7, C	-		8	110.8, CH	7.34, s
	2-NH	-	8.52, br s		8a	136.5, C	-
Ser-3	1	169.1, C	-		9	125.0, CH	7.19
	2	52.0, CH	4.58		2-NH	-	7.64
	3	64.0, CH ₂	4.34, d (9.9); 4.40		9-NH	-	11.0, s
	2-NH	-	8.23, d (6.6)	Val-9	1	170.2, C	-
Glu-4	1	171.5, C	-		2	57.6, CH	4.05
	2	52.5, CH	4.47		3	30.3, CH	1.66, m
	3	27.1, CH ₂	1.81, m; 2.02, m		4	18.8, CH ₃	0.39, d (6.5)
	4	30.6, CH ₂	2.14, 2.23		5	17.8, CH₃	0.47, d (5.9)
	5-COOH	174.5, C	-		NH	-	7.70, br s
	2-NH	-	8.13, br s	Phe-10	1	170.6, C	-
Thr-5	1	170.4, C	-		2	51.1, CH	4.74, br s
	2	57.9, CH	4.43		3	36.5, CH ₂	2.76; 2.98, d (11.8)
	3	66.7, CH	4.05		4	137.5, C	-
	4	19.6, CH ₃	1.01, d (6.1)		5/9	129.4, CH	7.31, d (7.7)
	2-NH	-	7.67		6/8	128.0, CH	7.23
Ser-6	1	170.8, C	-		7	126.3, CH	7.16
	2	54.7, CH	4.46		NH	-	8.37
	3	61.5, CH ₂	3.51, br s; 3.69, dd (10.1, 5.7)	MehyPro -11	1	169.5, C	-
	2-NH	-	8.36		2	62.3, CH	4.37, d (7.8)
MeAsn-7	1	169.6, C	-		3	74.9, CH	4.21, br s
	2	55.2, CH	4.47		4	37.5, CH	2.21
	3	40.1, CH	2.68, m		5	50.6, CH ₂	3.20, 3.81, br s
	4	11.8, CH ₃	0.66, br s		6	14.3, CH ₃	1.04, d (6.1)
	5- <u>CO</u> NH ₂	175.0, C	-				

Supplementary Table 5. ¹H and ¹³C NMR (600 MHz, DMSO-*d*₆) data for omnipeptin (1)

* The assignments of overlapping ¹H NMR signals were supported by HSQC, HMBC, TOCSY and HSQC-TOCSY. The peak multiplicity and coupling constants are presented for non-overlapping signals only.

CONKAT-seq workflow

Supplementary Fig. 1 - CONKAT-seq workflow. CONKAT is based on the statistical analysis of amplicon co-occurrence in a partitioned library of large insert metagenomic clones. High molecular weight DNA from soil samples are extracted and cloned to construct large insert metagenomic library which preserves the linkage between co-clustered genes. Library clones are randomly partitioned into hundreds of wells (subpools), and DNA sequence encoding for biosynthetic domains of interest are amplified using barcoded primers. Amplicon de-barcoding identifies the positioning of each biosynthetic domain within the array of subpools and enables the statistical analysis of domain co-occurrence. Domains encoded within a BGC are expected to show high level of co-occurrence across subpools due to their physical linkage. Significantly associated domains are grouped into networks, that can be guide the recovery of novel BGCs based on their similarity scores to known BGCs. The domain variant sequences and the subpool localization information that are associated with networks of interest can guide the physical recovery of metagenomic clones encoding for novel BGCs from the library using serial dilution PCR strategy with domain variant specific primers. Isolated metagenomic clones can be sequenced and assembled to obtain the full BGC sequence encoded within the clone, or heterologously expressed in a suitable host to attempt and obtain the molecular product. Scripts for domain clustering prediction from amplicon data (highlighted in blue) are available at https://github.com/brady-lab-rockefeller/conkat_seq.

adenylation domain amplicons per subpool

ketoacyl synthase domain amplicons per subpool

Supplementary Fig. 2 - Adenylation and ketoacyl-synthase domain variants in the Arizona library subpools. Scatter plot of amplicons reads and domain variant clusters (95% identity threshold) in subpools of the Arizona metagenomic library. Each subpool (containing ~5000 metagenomic clones) was PCR amplified using adenylation and ketoacyl-synthase subpool-barcoed domain primers. Approximately 3000 reads per subpool were required to saturate the diversity of domain variants amplified by these primers in each subpool. On average, we identified 60 adenylation domain variants and 55 ketoacyl-synthase domain variants per subpool and a total of 10⁵ unique domain variants across the library. Colors represent 384-subpools PCR reaction plates that have been pooled and sequenced as an indexed sample.

Arizona

Product of the second s あるかど ダンの ちんちょう *** And Store and a water the A. R. M. S. 一日前四人日間一下的市场市场的市场中的一日 成要於戶前,一帶行,一,一,各然身成或中,一,之,之,,如,如後,而,四, ·海外·哈哈·西·洛姆·斯·海南·大南·城南、华、卢尔的·丹·卢南·加西南部 等一部尚留御所, 是在海南西西南部一下出部的人子, 下大百万分 "碧光华风歌戏歌的""宋""赵武秀响家家的爱望我来在来点小云雨 when the state of the strate of the rest was a strate when a state of the strate of the state of ·从数据放金上的关关 化不必必必要产用品的分布等等以合于 ""下去当时,即在那些外自由的人民的女子在我们的人。""你不知道," 的产品加于各洲人产产品的合物人的分别了有法式分配的合金的分子的 #R##b+\$/h-##4\$###\$##X#XXX7##\$P+P+P445 mranebeerter/fetereesester vo----baakvaavo-bo--vo-vordibrodivbodi asarraha.urunarai yorurusanasala badasada sarar raddun badruadd hab barnad faluad breed handineard dan receivade na eastern ha ۲۰۰۵ کو می در در در در در در در از می هو هو کر کر موجو کر در وی کر می کر کر می وی هو کر کر کر در در در در می م ajjjaajjaaajan, naajan, naajjaaan jjaaa najan ja ومحاطرها الأمير الأحجاري المراجع بالأطري في المحاج المراح محاطر المراحم المحاط المحاج في محاطر المراح المراحم ال میں ہی ہے کہ میں میں ہے کہ کہ کہ میں کہ ایک کہ میں میں ہے کہ میں ہے کہ ایک کو سے کہ کہ کہ کہ کہ کہ کہ ایک کہ میں کہ ک ما ما او دو امار او ما ما او دار دو دو دو دو دو دو بار در امر دو با ما ما ما با ما دو دو دو دو دو ادر دو دو دو د צי מעידים מעידים מעידים אלי אייי ביום ביו מעידים אל אייי אל אל מעידים אל אייי אל bjbburbrobbjrorobjjbrobbbbbbbbbrojbjroburroro aarraaa faaaaa fa faaaaarra ahaaa arra hiraa ahaa fa

1233 networks

Supplementary Fig. 3 - Predicted domain networks (Arizona)

Recovered single clones

40Kb - 2
35Kb - 5
34Kb - 9
31Kb-16
34Kb - 25
39Kb-26
39Kb - 28
30//6-20
36KD-29 4
35KD-31 4
30Kb - 38
27Kb-41
41Kb - 42
34 Kb- 43 📢
36Kb - 44
41Kb - 45 📢
37Kb - 46
29Kb - 47
42Kb - 73
40Kb - 96
39Kb- 212
45Kb - 226
37Kb - 229
41Kb - 232
21%b 246
31KD-240
30Kb - 248
43Kb - 253
44 Kb - 264
47Kb - 284
42Kb - 291
37Kb - 309
34Kb-316
32Kb - 317
40Kb - 318
39Kb - 322
39Kb - 326
45Kb - 328
47Kb - 336
4 34Kb - 347
43Kb - 348
35Kb - 352
29Kb 255
20KD-222
38Kb-358
42Kb - 394
30Kb - 421
40Kb - 484
34Kb - 507
38Kb - 571
37Kb - 572
36Kb - 683
39Kb - 811
34Kb - 900
37Kb - 917
38Kb - 1002

PACBIO contigs

41Kb - 373
33Kb - 549
40Kb - 673
33Kb - 785
21Kb - 851
33Kb - 2677
44Kb - 3403
39Kb - 3422
27Kb - 3639
36Kb - 3815
44Kb - 4354
42Kb - 4382
27Kb - 9041
40Kb - 10399
42Kb - 12873
39Kb - 13150
37Kb - 13173
35Kb - 13251
37Kb - 15355

Recovered multiple overlapping clones

	58Kb - 11
	123Kb - 21
	65Kb - 23
	66Kb - 40
	123Kb - 75
	83Kb - 80
	77Kb - 320
	86Kb - 666
	82Kb - omnipeptin-AR
	82Kb - omnipeptin-HI
	65Kb - 1-NM
	50Kb - 1-OR
	62Kb - 1-AR
	103Kb - AHBA BGC
	49Kb - End BGC
	63Kb - Cap BGC

Supplementary Fig. 4 - NRPS and PKS genes locations in metagenomic insert sequences. NRPS and PKS genes are depicted in red. Recovered clones have been sequenced individually with short-read technology (Illumina) while PacBio contigs have been obtained from bulk sequencing of 2 subpools of ~5000 clones each with long-read technology.

Supplementary Fig. 5 - Predicted domain networks (Oregon, New Mexico, Hawaii)

御寺本、かち、あち、かくやくがど、~~~ 告ち、~~~~~~~~ 华帝的多大人的东西,自然,这一部了,一部都要是帝族 ·严告是各者专业的合品的意义的有限的人,如何有些 ¥ 我奶爸要拿了户口哈哈哈哈和小姐一个双角安宁专家产品 a Tend the second reserved to see the transfer the and suparan bullanthe shares a RAPARADARTA, ANY PARK TE MANARA -namunuhun't tunt da bing dai tama a anamaya, maandanaanaana haya da ичалалычаринныйыналынылыны жаны ча NRYR/RABINGTAN TAN TANDA DARRAN dira....daaraqdadadqaadadaadaad uthereaddreadeerberdfedediane -- Many piana manana pinina mananiaa pa такутакуларын жайарырырытырурардан арабыу жаттарарын аратарынын жатарарын жа bbbs for for born bbbb for for staffer som bb hty which he have a hand by the here of

929 networks (AD/KS)

Oregon The stand and the stand あるい 大 シークター 「我我我,如果要 白河市 我的 我的 是 金子市寺 南南部 南武市 人名加加 人名布布 不 不 要把"净险器下"气势或导动"心",喻曲的云云,要画等"小"的声声 产于气油 多级线关于于大大学家的由人女人为少于自我人的女子子 的美国爱的的那些东方的家族和小孩和那些成真的兄弟交易要求 在南方一代户前每每每书指南 江外 青春、产物品、金、小水水、小 want langeren rei ner inet and souther and services be repeared and three the s uuradanarustaaruadadaalanardaaruud XPandaruuradi Ibbuururaurirarudaayaa deleen haarabrid. Addeedd eu maarael adarard adaraya waxaaaa adaraa ada - New Ydree - New Yorker - New Yorke ANTANY LANNAA LANNAN TANÀN LANAA LAN what a have a second a second se demed also destruction and an address of the second s IV AARD ARD SHERING IND WHEN INDER 1057 networks (AD/KS) 1057 networks (AD/KS)

Hawaii And and share and a second 美安声音中的 法法 多合 终留 pro phate and burn a f en printanese dans an #}.#~~#dXF+f#L+^## A PRY COMBARY AN YOU trees and have been care and Asdus-d/drennande مل محالية فل يحا علامهم في محمد المريسة المحمد المريسة في محمد ا ammamaanamamaana Jafamamamaana panimalamlaga maaa ABB ******** ** B*** BBB &** BJBB ** aamaaddaaaahmeethmma ьььь јьь утуттутьутьь ььзььььь утуттутит 414

343 networks (AD)

New Mexico

*The stereochemistry of α-protons in amino acid residues were predicted by bioinformatics analysis.

Supplementary Fig. 6 - Chemical structure of omnipeptin (1)

Supplementary Fig. 7 - 2D NMR correlations of omnipeptin (1)

Supplementary Fig. 8 - NOE/ROE correlations of omnipeptin (1) establishing the connectivity of amino acid residues

Supplementary Fig. 11 - ¹H-¹³C HSQC NMR (600 MHz, DMSO-*d*₆) spectrum of omnipeptin (1)

Supplementary Fig. 12 - ¹H-¹³C HMBC NMR (600 MHz, DMSO-*d*₆) spectrum of omnipeptin (1)

Supplementary Fig. 13 - ¹H-¹H COSY NMR (600 MHz, DMSO-*d*₆) spectrum of omnipeptin (1)

Supplementary Fig. 14 - ¹H-¹H TOCSY NMR (600 MHz, DMSO-*d*₆) spectrum of omnipeptin (1)

Supplementary Fig. 15 - ¹H-¹³C HSQC-TOCSY NMR (600 MHz, DMSO-*d*₆) spectrum of omnipeptin (1)

Supplementary Fig. 16 - ¹H-¹H NOESY NMR (600 MHz, DMSO-*d*₆) spectrum of omnipeptin (1)

Supplementary Fig. 17 - ¹H-¹H ROESY NMR (600 MHz, DMSO-*d*₆) spectrum of omnipeptin (1)

Supplementary Fig. 18 - High-resolution mass spectrometry spectrum of omnipeptin

Supplementary Fig. 19 - Proposed biosynthesis of omnipeptin