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SUPPLEMENTARY NOTE 1 – THERMAL CONDUCTIVITY IN THE CLASSICAL QHGK

In order to establish Eqs. (3-5), we start from the expression for the harmonic heat flux, Jα, Eq. (6), and
Hamiltonian, H, in terms of the normal-mode complex amplitudes defined in the text:
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where the Cartesian index of the flux in the second line of Supplementary Equation (1) has been overlooked not to
mess with the notation of the complex amplitudes. The time evolution of the α amplitudes is:

αn(t) = αneiωnt, (2)

where αn = αn(0) is the initial condition. The product of the two fluxes appearing in Eq. (1) is a fourth-order
polynomial in the α’s and α∗’s with time-dependent coefficients:
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The canonical average of the above polynomial with respect to the harmonic Hamiltonian in Supplementary Equations
(1) is a Gaussian integral that can be evaluated using the Wick’s theorem [1], stating that the canonical average of a
fourth-order monomial is equal to the sum of all the possible contractions:

〈ABCD〉 = 〈AB〉〈CD〉+ 〈AC〉〈BD〉+ 〈AD〉〈BC〉, (4)

where any of the capital letters above indicate any complex amplitude, αn or α∗n. The relevant contractions are:

〈αnαm〉 = 0; 〈α∗n(t)αm〉 = δmngn(t), (5)

where we define a single-mode classical Green’s function gn(t) = kBT
ωn

eiωnt. Hence, out of 16 terms in Supplementary
Equation (3) only 6 are non vanishing. One such non-vanishing term is 〈αn(t)αm(t)α∗pα

∗
q〉, and the others are obtained

by keeping two of the complex amplitudes conjugated. Making use of Wick’s theorem this fourth-order correlator is
reduced to the sum of the two terms:
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Working out the rest of the canonical averages in Supplementary Equation (3), we may obtain the following relation
for the left-hand side of the Supplementary Equation (3) in terms of single-mode classical Green’s functions gn(t) and
gm(t):
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Introducing anharmonicity into our quasi-harmonic treatment through the linewidths, γn, of the vibrational normal
modes results in the decay of the single-mode Green’s functions gn(t) as:

gn(t) =
kBT

ωn
ei(ωn+iγn)t. (8)

By performing the time integrations and symmetrizing the final results, one obtains the heat conductivity tensor,
represented in term of matrices vnm as
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and matrix τnm given by the sum of two Lorentzian functions:
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In the quasi-harmonic regime, linewidths are much smaller than normal-mode frequencies: ε = γ
ω � 1. In this regime,

the second “antiresonant” term in Supplementary Equations (10) can be neglected with respect to the first. To the

same order in ε, one has: (ωn+ωm)2

4ωnωm
≈ 1 +

(
ωn−ωm

ωn+ωm

)2
. By substituting this expression into Supplementary Equations

(10), one gets: τnm = τ◦nm +O
(
ε2
)
, cfr. Eq. (5).

SUPPLEMENTARY NOTE 2 – THERMAL CONDUCTIVITY IN THE QUANTUM QHGK

The derivation of the quantum QHGK expression for the heat conductivity follows the same path as in the classical
case. To complete this derivation, we first introduce the quantum propagators Gn(t) and G̃n(t) by promoting the
classical complex amplitudes αn, α

∗
m to the quantum ladder operators αn →

√
~an, α∗m →

√
~a†m satisfying the

Bose-Einstein commutation rule [an, a
†
m] = δnm:

Gn(t) = ~〈a†n(t)an(0)〉 = ~nkeiωnt, G̃n(t) = ~〈an(t)a†n(0)〉 = ~(nk + 1)e−iωnt. (11)

We note that in the high-temperature limit the quantum single-mode Green’s functions reduce to the classical one
lim~→0Gn(t) = lim~→0 G̃

∗
n(t) = gn(t). Next, in analogy with the classical case, we write the quantum canonical

average 〈Ĵ(t)Ĵ(0)〉:
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where τ = t + i~λ is the complex argument of the quantum GK formula, Eq. (7). By introducing finite mode
linewidths and performing the double time integration in Eq. (7), we arrive at the following lengthy relation for the
thermal conductivity tensor:
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The second, antiresonant, term in Supplementary Equation (13) can be neglected in the quasi-harmonic regime(
γ
ω → 0

)
, while the first one can be cast into a BTE-like form by introducing the matrix cnm = ~ωnωm
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SUPPLEMENTARY NOTE 3 – COMPUTATIONAL DETAILS

A liquid model prepared at 3000 K is quenched and then equilibrated to 2000 K for 10 ns at constant pressure.
It is then further quenched to 300 K at constant volume in 10 ns, and equilibrated at the same temperature for 1
ns. This procedure produces a-Si models of good quality with a very low concentration of coordination defects [2].
The model is a cubic simulation box with a density of 2.3 g/cm3. The resulting radial and bond-angle distribution
functions are reported in Supplementary Figure 4. The average coordination is 4.06 neighbours per atom, indicating
that the system can be considered as a random tetrahedral network.

For this model we calculate κ at several temperatures between 100 K and 1200 K by equilibrium MD simulations
implementing Eq.(1) according to GK theory. Starting from the model at 300 K, the system is equilibrated at the
target temperatures for 1 ns at fixed volume before each production run. The latter is carried out integrating the
equations of motion in the microcanonical ensemble (NVE) with a timestep of 0.5 fs for a total of 25 ns. All MD
simulations are performed using the GPUMD open-source code [3], calculating the heat flux J every 4 fs [4].

The thermal conductivity was extracted from the energy flux thus generated, using the recently introduced cepstral
analysis method [5, 6]. Cepstral analysis [7] is a technique, commonly used in signal analysis and speech recognition,
to process the power spectrum of a time series, leveraging its smoothness and the statistical properties of its samples.
According to Eq. (1) of the main text, the thermal conductivity is proportional to the zero-frequency value of the power
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Supplementary Figure 1. Comparison between QHGK approach and conventional BTE calculations. Thermal
conductivity of fcc Si computed for a 1728-atom supercell using our QHGK approach (blue) in comparison with the standard
BTE calculations (yellow).
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Supplementary Figure 2. Numerical calculations of normal-mode linewidths. Left: Normal-mode linewidths of 1728-
atomic model of a-Si computed for various temperatures using Fermi golden rule and the classical limit of the Bose-Einstein
occupation function, which corresponds to equipartition. Right: Partial heatmap of matrix τnm computed for T=300 K. The
structure of the matrix, i.e. non-vanishing diagonal and close-to-diagonal elements, is dictated by its analytical form given by
the Lorentzian function.
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Supplementary Figure 3. Comparison between the predictions of the QHGK in classical and quantum regimes.
Thermal conductivity computed for 1728-atomic model of a-Si is shown for both classical and fully quantum-mechanical regimes.
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Supplementary Figure 4. Structural properties of a-Si model. (a) Radial distribution function (RDF) and (b) bond angle
distribution (BAD) of the 1728 atoms model of a-Si used for the calculations of thermal conductivity.

spectrum of the energy flux: κ ∝ S(ω = 0), where S(ω) =
∫∞
−∞ eiωtC(t)dt, and C(t) = 〈J(t)J(0)〉 is the flux time

auto-correlation function. The Wiener-Kintchnine theorem [8] states that S(ω) is asymptotically proportional to the
expectation of the squared modulus of the truncated Fourier transform of the flux sample: S(ω) = limτ→∞〈 1τ |J̃τ (ω)|2〉,
where J̃τ (ω) =

∫ τ
0
J(t)eiωtdt. In the long-time limit, the squared modulus to be averaged is a stochastic process whose

values are independent for ω 6= ω′ and individually distributed as 1
τ |J̃τ (ω)|2 = S(ω)ξ(ω), where ξ(ω) ∼ 1

2χ
2
2, χ2

2 being
a chi-square variate with two degrees of freedom. The multiplicative nature of the noise affecting the sample spectrum
suggests that the power of the noise can be reduced by applying a low-pass filter to its logarithm. This is the main idea
underlying cepstral analysis, which can be leveraged to devise a consistent and asymptotically unbiased estimator
for the the zero-frequency value of the flux power spectrum, which is proportional to the transport coefficient we
are after. For more details, see Refs. 5, 9, and 6. Given the strongly harmonic nature of the system at low and
intermediate temperatures, in order to improve the sampling of the phase space at 300 K and below, we average the
results obtained by cepstral analysis over two independent simulations 25 ns long.

In order to implement the classical QHGK approach as in Eq. (4), we optimize the a-Si model structure by
steepest descent and calculate the second- and third-order force constant matrices by finite differences (frozen phonon
method) with atoms displacements of 10−4 Å. Normal modes line widths γn, necessary to evaluate Eq. (5) for τnm, are
computed using the Fermi golden rule [10] (See Supplementary Figure 2). In the disordered case, this is done explicitly
only for the smaller (1728-atom) sample. For larger samples, we interpolate the inverse linewidth, i.e. lifetimes, as a
function of frequency from the explicit results for the 1728 atoms system. Lifetimes vs. frequencies are averaged over
frequency bins and then interpolated with third-order splines, with the constraint that at low frequency τ ∝ 1/ω2

[11]. When comparing with classical MD simulations, QHGK results were obtained using the classical limit of the
normal-mode lifetimes; the full quantum expression was used otherwise.
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Khintchine, A. Korrelationstheorie der stationären stochastischen Prozesse. Math. Ann. 109, 604–615 (1934). URL
http://dx.doi.org/10.1007/BF01449156.

[9] Baroni, S., Bertossa, R., Ercole, L., Grasselli, F. & Marcolongo, A. Heat Transport in Insulators from Ab Initio
Green-Kubo Theory, 1–36 (Springer International Publishing, Cham, 2018), 2 edn. URL https://doi.org/10.1007/

978-3-319-50257-1_12-1. 1802.08006.
[10] Fabian, J. & Allen, P. B. Anharmonic decay of vibrational states in amorphous silicon. Phys. Rev. Lett. 77, 3839 (1996).

URL https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.77.3839.
[11] Asen-Palmer, M. et al. Thermal conductivity of germanium crystals with different isotopic compositions. Phys. Rev. B

56, 9431–9447 (1997). URL https://doi.org/10.1103/PhysRevB.56.9431.

http://dx.doi.org/10.1007/BF01449156
https://doi.org/10.1007/978-3-319-50257-1_12-1
https://doi.org/10.1007/978-3-319-50257-1_12-1
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.77.3839
https://doi.org/10.1103/PhysRevB.56.9431

	Modeling heat transport in crystals and glasses from a unified lattice-dynamical approach:  Supplemental Material 
	Supplementary note 1 – Thermal conductivity in the classical QHGK
	Supplementary note 2 – Thermal conductivity in the quantum QHGK
	Supplementary note 3 – Computational details
	SUPPLEMENTARY REFERENCES


