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Compiling the databases. A list of viruses and associated mammalian hosts was obtained 
from an extensive database of virus-mammal associations published by Olival et al. (1).  
The Olival et al. (1) databases represent the most comprehensive meta-analysis of trait 
predictors of zoonotic potential to date, analyzing both host and viral traits associated with 
zoonosis across phylogenetic groups. Using the information provided in their databases, we 
extracted associations corresponding to directly transmitted viruses previously PCR-
identified or isolated in both mammals and humans, and with evidence of animal-to-human 
spillover. We excluded viruses classified as zoonotic based on exclusively serological data, 
and viruses with vector-borne transmission or “spillback” from humans to animals. Viruses 
such as HIV that have zoonotic origins, but now maintain separate, genetically distinct 
animal and human transmission cycles (2) were also not included. We supplemented our 
initial list of virus-mammal associations by cross-referencing other existing virus databases 
(3–5) and conducting literature searches. For each virus, we confirmed the accuracy, 
detection quality, and completeness of the mammal associations, resolving any 
inconsistencies between the referenced database and scientific literature. Through our 
searches, we additionally identified virus and mammal associations that were missing from 
our list and added those that met the criteria we outlined above. We compiled a list of 420 
virus-mammal associations, which included 278 unique host species and 67 unique zoonotic 
viruses (SI Data and Results, Table S1). 

For each virus-mammal association in our database, we conducted a series of 
literature searches to collect two metrics of zoonotic risk: viruses’ human case fatality rates 
(CFRs) and capacities for human-to-human transmission. We collected CFRs as a proxy for 
virulence, reporting the mean of the maximum and minimum recorded CFR per zoonosis in 
the literature. When different CFRs for a given virus could be linked to spillover events from 
different host species, we reported these distinct host-CFR associations as separate entries in 
our database. This distinction occurred in the case of two viruses only, Nipah virus, which 
spills over to humans from both pigs (6) and bats (7), and Marburg virus, which spills over to 
humans from both primates (8,9) and bats (10). We additionally collected information on 
each zoonosis’ capacity for human-to-human transmission according to a four-point scale, 
adapted from previously defined classification schemes (5,11–13). We assigned a human 
transmissibility level of “1” to viruses for which human-to-human transmission had not been 
recorded; “2” to viruses for which human-to-human transmission had been recorded, but was 
described as atypical; “3” to viruses for which human-to-human transmission had occurred 
regularly, but was restricted to self-limiting outbreaks; and “4” to viruses for which endemic 
human transmission had been reported. We constructed this ranking system based on 
literature that has defined epidemic outcomes for different levels of human-to-human 
transmission (12–14). Previous meta-analyses have relied on binary categorization (i.e., 
pathogens are either capable or incapable of human-to-human transmission) which fails to 
capture critical nuance. Slight variations in viral capacity for between-human transmission 
can have a large impact on the outcomes of human epidemics (13). In capturing the full 
extent of variation in viruses’ capacity to transmit between humans, our classification system 
provides a better foundation for identifying viruses that pose the greatest threat to human 
populations. 

In addition to collecting our targeted metrics of virulence and transmissibility, we 
classified each virus-mammal association according to the mammal’s role in the transmission 
of the virus. First, we used a binary code to distinguish between reservoir and secondary 
hosts (“reservoir status”), assigning “1” to mammal species that maintain viruses endemically 
(reservoir hosts) and “2” to species that harbor the virus but are not implicated in zoonotic 



maintenance (secondary hosts). Thus, the “reservoir status” variable identifies the primary 
selective environment (i.e., reservoir) of viruses in zoonotic transmission cycles. We assigned 
a second binary code to define each host’s role in zoonotic spillover to humans (“spillover 
capacity”), assigning “1” to mammal species that serve as a source of human infection and 
“0” to species that have no record of transmission to humans. Thus, the “spillover capacity” 
variable identifies host species implicated in infecting humans. Combining these two codes, 
we defined a third “spillover type” code to distinguish between “primary” spillover from a 
reservoir host species (reservoir status = 1, spillover capacity = 1) and “secondary” spillover 
from a secondary (bridge) host species (reservoir status = 2, spillover capacity = 1). 

In addition to the virus-mammal association database, we compiled a database of all 
directly-transmitted mammalian viruses, including both zoonotic and non-zoonotic viruses. 
We extracted directly-transmitted viruses from the extensive database of mammalian viruses 
published by Olival et al. (1), again excluding viruses with vector-borne transmission, 
“spillback” from humans to animals, or exclusively human transmission. We collected 7 
additional viruses from Geoghegan et al. (3), compiling a total of 345 unique viruses (SI Data 
and Results, Table S2). 
 Using previously published databases (1,3–5,15–18), we collected a series of host and 
viral predictor variables that based on the literature, we hypothesized might explain observed 
variation in zoonotic virus dynamics in human hosts. The literature has identified a suite of 
life history, ecological, immunological, and biological host factors that can influence host-
pathogen coevolution (19–22). In this study, we focused on four life history traits that could 
be quantified across mammal species: body mass, litter size, gestation period duration, and 
lifespan. The literature has linked host body mass with the rate of disease progression (23), 
reservoir competence (24), and pathogen replication rate (25,26). Host reproductive effort 
trades off with investment in immunity and shapes the demography of the susceptible host 
population (27,28). Long-lived hosts are associated with heightened transmission in a 
population (29,30). Our analysis builds off previous work by Luis et al. (31), which 
considered host life history traits such as body mass, lifespan, and litters per year in a meta-
analysis of zoonotic burden across bats and rodents. For viral traits, we first focused on traits 
previously linked to zoonotic infectivity by Olival et al. (1). In particular, we considered 
viruses’ host ranges, collecting viruses’ host phylogenetic breadths from Olival et al. (1), as a 
pathogen’s degree of generalism has been posited to influence the evolution of virulence 
(32). However, we also included the position of a virus’ host breadth relative to humans by 
considering the maximum host phylogenetic distance from humans across a virus’ host range. 
We collected additional viral traits from the International Committee on Taxonomy of 
Viruses (ICTV) database (33), tracking genome and DNA/RNA composition, as different 
viral groups have been associated with different viral outcomes in humans (34). 

We obtained these host traits primarily from the PanTHERIA database (16), 
supplementing missing trait information with the Animal Diversity Web (18), The 
Encyclopedia of Life (15), AnAge database of animal ageing and longevity (17), and 
literature searches (SI Data and Results, Table S3). We proxied unavailable trait data by 
averaging across other host species in the same genus, or borrowing data from species in the 
same family that had similar body masses. We obtained virus taxonomic classification and 
genome composition from the ICTV database (33). All additional host and viral traits were 
collected from Olival et al. (1). Viral trait data were unavailable for a small subset of viruses, 
particularly lesser known viruses; we did not proxy this missing viral data, instead 
representing unavailable information with NA values. All datasets with metadata and 
references are available in the SI Data and Results, Tables S1–4. Table 2 describes all 
predictor and response variables used in our analysis. 



Olival et al. calculated hosts’ phylogenetic distance from humans and viruses’ host 
phylogenetic breadths from a matrix of phylogenetic distances between mammal species. The 
authors derived the distance values in this matrix from a maximum likelihood phylogenetic 
tree of mammalian cytochrome b sequences using the ape package in R (35,36). Cytochrome 
b is a mitochondrial protein with high sequence variability and availability across mammal 
species, and as a result, is commonly used to determine phylogenetic relationships between 
mammals (37). Cytochrome b has also been demonstrated to be the most effective 
mitochondrial genetic marker for reconstructing mammalian phylogenies (38). Many 
previous studies of parasite sharing between animals and plant species have quantified the 
degree of phylogenetic difference between host species as the number of years since species 
diverged in evolutionary history (39–42). Using time since divergence in this context implies 
that host species share pathogens due to mutual ancestry. However, spillover occurs when a 
pathogen overcomes genetic barriers to infect a novel host – it does not arise due to shared 
ancestry between two host species (43). Host genetic factors also determine how the host will 
respond to infection, which will influence the pathogen’s virulence and capacity for 
transmission in a novel host population (44). Given the lack of a universally identified and 
available genetic loci for host immune traits, studies of cross-species pathogen emergence 
have often relied on mitochondrial genetic markers to measure the degree of phylogenetic 
difference between host species (45,46). Although cytochrome b sequences are available for 
the majority of mammal species, some species in our dataset lacked sufficient sequence data 
and thus, were excluded from the Olival et al. (1) matrix of phylogenetic distances. We 
calculated phylogenetic distance values for these missing species by averaging across other 
host species in the same genus or order. 
 
Statistical analysis. We used generalized additive models (GAMs) in the mgcv package in R 
(47) to assess host and viral predictors of zoonotic risk because we expected to observe 
nonlinear relationships. GAMs are a class of flexible generalized linear models that use 
smooth functions to capture nonlinear relationships between a response and predictor 
variables as opposed to manually specifying higher order polynomial functions. We fit two 
sets of GAMs, assessing host predictors of zoonotic risk in one group of models and viral 
predictors in the other. In all cases, as recommended by the package author, we fixed the 
number of smoothing knots (k) at 7, which partitioned our nonlinear host and viral trait 
predictors into different regions for model fitting (47), and fit the GAM via restricted 
maximum likelihood (REML) estimation.  

Our global models included all trait predictors outlined in Table 2, including a citation 
predictor to control for any potential publication bias—7 host traits for our host models and 8 
viral traits for our viral models. We used automated term selection by double penalty 
smoothing for variable selection by setting select=TRUE within the gam function of mgcv. 
This method constructs an additional penalty for each GAM smooth function, effectively 
removing terms without predictive power, and has been recognized as superior or comparable 
to alternative approaches (48). We set an effective degree of freedom cutoff of 0.001 to 
identify which terms had been penalized and effectively removed from the model (1). 
 
Host models 

We restricted our analysis of host predictors of zoonotic risk to known reservoir host 
species with demonstrated evidence of animal-to-human spillover (reservoir status = 1, 
spillover capacity = 1). Thus, our host models only considered species implicated as both the 
primary selective environment and source of human infection for a given virus. However, 
because the specific host species responsible for a spillover event is not always identified, we 
were frequently unable to collect human case fatality rate and transmissibility data that varied 



depending on the virus’ mammal species of origin. Thus, to avoid pseudoreplication, we 
further restricted our analysis to include only unique entries for each host order per virus in a 
simplified dataset. In this simplified dataset, we summarized information across hosts 
encapsulated in each unique entry by taking the maximum value for each host trait metric. 
This simplified host order dataset thus included 63 unique viruses (4 of the original 67 
viruses were excluded because their reservoir host species is unknown) and 78 unique host 
order-virus associations for analysis. 

Using this simplified dataset, we first asked what host variables best predict case 
fatality rates in human hosts following spillover? We addressed this question using a GAM in 
the gaussian family. Specifically, we queried the predictive capacity of the host-specific traits 
outlined in Table 2 (but summarized at the order level) on the response variable of mean case 
fatality rate in a human host. Typically, case fatality rate response variables were the same 
across multiple entries for order-level predictors (with the exception of Nipah virus in bats vs. 
pigs and Marburg virus in bats vs. primates). 

We next asked, what host variables best predict the extent of human-to-human 
transmission of a given virus following spillover? Using the same simplified, order-level 
database adopted for the above question, we addressed this host question with a GAM in the 
‘ocat’ (‘ordered categorical data’) family. In this case, we queried the predictive capacity of 
the same host traits outlined in Table 2 on the response variable of human transmissibility on 
a four-point scale (see ‘Compiling the virus-mammal association database’). We defined the 
vector of categorical cut points, q, to match our four-point scale for transmissibility (q = 
1,2,3,4). 
 In addition to the GAMs described above, we explored the relationship between host 
phylogenetic distance from humans and both case fatality rate and transmissibility as a 
function of ‘spillover type’ (“primary” vs. “secondary”). While our previous GAMs only 
included reservoir host species, here we considered both reservoir and secondary hosts with 
evidence of spillover to humans. Thus, this analysis considered all 67 viruses (i.e., included 
viruses for which only secondary host species are known) and 80 unique host order-virus 
associations. As outlined above in ‘compiling the virus-mammal association database’, 
spillover from reservoir hosts was defined as “primary” and spillover from secondary 
(bridge) hosts was defined as “secondary”. To assess differences in the effect of spillover 
type on the relationship between host phylogenetic distance from humans and case fatality / 
human transmissibility, we fit a separate GAM for each response variable to this data subset. 
We queried the response variable of CFR / human transmissibility (respectively, in the 
gaussian and ‘ocat’ families), against the predictor variable of host phylogenetic distance, 
modeled as two distinct smoothers separated by spillover type (using the “by” term in mgcv) 
(47).  
 
Virus models 

For our analysis of viral predictors of zoonotic risk, we first asked what viral traits 
best predict the probability that a virus is zoonotic? Here, we recapitulated previous meta-
analyses of viruses’ zoonotic potential (i.e., whether an animal virus has the capacity to infect 
humans). However, unlike most previous work, we included two viral traits that required 
consideration of mammalian host associations: (i) phylogenetic host breadth, which 
encapsulates the maximum phylogenetic distance between the two most distantly related 
known hosts for a given virus and (ii) maximum host phylogenetic distance from humans, 
which corresponds to the phylogenetic distance from humans of the most distantly related 
known host for a given virus (thus serving as an anchor point for (i)). Olival et al. (1) 
likewise considered phylogenetic host breadth in their analysis of viral predictors, but to our 
knowledge, this is the first analysis of zoonoses to also consider the position of host breadth 



relative to humans (i.e., our metric for maximum host phylogenetic distance from humans). 
For this analysis, we limited the virus database extracted from Olival et al. (1) (SI Data and 
Results, Table S2, N=345) to consider directly-transmitted mammal-infecting viruses only. 
We then constructed a binomial GAM, testing the predictive capacity of viral traits outlined 
in Table 2 against the response variable of zoonotic status (0-1, is versus is not). 

Our analysis of viral predictors of case fatality and human transmissibility largely 
mirrored that of our host analysis. We again only considered unique entries to avoid 
pseudoreplication. Distinct from our host predictor models, which considered unique 
response values for each host order-virus association, we here grouped by discrete response 
variables per virus. The subsequent simplified virus dataset thus included 69 unique 
associations between discrete CFR / transmissibility values across 67 unique zoonotic 
viruses. Distinct CFRs resulting from distinct spillover events in different regions meant that 
both Nipah and Marburg virus were represented twice in the dataset (though note that viral 
traits were not unique within each paired entry). Distinct from our host predictor models, 
phylogenetic metrics were calculated without exclusion of secondary hosts with no recorded 
transmission to humans (spillover capacity = 0), since we assumed that viral infection of 
these hosts constituted an important component of a virus’s evolutionary history.  

As with host models, we then used this simplified viral dataset to ask, what viral traits 
best predict case mortality rates in human hosts following spillover? and what viral traits 
best predict the extent of human-to-human transmission of a given virus following spillover? 
We addressed these questions using, respectively, GAMs in the gaussian and ocat families.  
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