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1 Cutoff for serological assay
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Figure 1: Distributions of observed seroconversion and seroreversion times by MFI cutoff used to differentiate
seropositive and seronegative individuals by Luminex assay.

2 Additional methods

We added a simple age structure into our SEIR model, including some individuals born with maternal
immunity (if born to immune mothers). The (deterministic version of the) full model including age structure
is represented by the following differential equations, where parameters are used as in Table 1 in the main
text and M, F, J, and N represent adult male, adult female, juvenile, and newborn individuals, respectively
(although the Ma compartment itself represents maternally immune newborns):
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2.1 Captive colony likelihood

Likelihoods for the captive colony account for individual, longitudinal data as well as population-level, cross-
sectional data. We therefore considered the likelihood that each observed time to seroconversion (e.g., S→I
or E for the EIR+ assumption) and seroreversion (e.g., I or E→S for the EIR+ assumption, or the expected
immune waning time for the R+ assumption), accounting for 1) the probability of an individual following
a certain infection pathway and 2) the probability of a given conversion/reversion time given that pathway.
The probabilities of any pathway, including for convenience the probabilities of exiting any cycle between
states that are both seronegative or both seropositive, are below. These are the adult transition probabilities,
but we use them for the likelihood for all age classes, assuming the chances of following any given path to
seroconversion/reversion (and the time taken to do so) is in reality the same for an individual of any age.
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Our likelihood function differs based on the serological assumption used (i.e., only immune individuals
are seropositive, R+, or all non-susceptible individuals are seropositive, EIR+). Some expected serocon-
version/reversion times are the combination of many individual state transition times (e.g., under the R+
assumption, an individual may undergo many cycles of acute and latent infection before seroconverting).
The full likelihood function for such times is the convolution of the relevant probability density functions.
However, due to computational constraints we made the simplifying assumption of merging these individual
state transitions into a single, exponentially-distributed transition with the same expected time.

2.1.1 Assumption: only R seropositive (R+)

Seroreversion probabilities are simple under the assumption that R is the only seropositive compartment.
Where t is a single seroreversion time:

with θ = {σ1, σ2, ε, ρ, γ1, γ2, ω,m}
L(θ|t) = Pr(R→ S)ωe−ωt

Seroreversion probabilities under this assumption are somewhat more complicated, because an individual
can undergo infinite pathways through the three seronegative states (S, E, and I) by undertaking any number
of three different possible cycles (between the S and E states, between S and I, and between I and E). Due to
the complexity of this function, we consider only the discrete number of cycles i ∈ (0,M) for S-E or S-I cycles

and j ∈ (0, Q) for E-I cycles. M = round( β1I
∗σ1

m(β1I∗+σ1) ) in models with S-E cycles and M = round( β2I
∗γ1

m(β2I∗+γ1) )

in models with S-I cycles. No models have both S-E and S-I cycles due to the specification of either β1 or
β2; Q = round( ρε

m(ρ+ε) ).
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If S-E cycles are possible (i.e., if β1 is specified), the probability of any seroconversion time t, where
r(path) is the expected time to complete a pathway inclusive of any cycles within seronegative states, is:

with θ = {σ1, σ2, ε, ρ, γ1, γ2, ω,m}
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If instead β2 is specified, the probability of any seroconversion time t is:

with θ = {σ1, σ2, ε, ρ, γ1, γ2, ω,m}
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2.1.2 Assumption: E and R seropositive (ER+)

Seroreversion under the ER+ assumption includes both R to S transitions and E to I or S transitions. The
probability of any seroreversion time t given either specification of β is:

with θ = {σ1, σ2, ε, ρ, γ1, γ2, ω,m}
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Pr(S → E)S∗ + Pr(I → E)I∗

Pr(S → E)S∗ + Pr(I → E)I∗ + Pr(I → R)I∗
(

Pr(E → R)Pr(R→ S)(
σ2ω

σ2 + ω
)e−

σ2ω
σ2+ω t

+ Pr(E → I)εe−εt

+ Pr(E → S)γ1e
−γ1t)

+
Pr(I → R)I∗

Pr(S → E)S∗ + Pr(I → E)I∗ + Pr(I → R)I∗
Pr(R→ S)ωe−ωt

Seroconversion under the ER+ assumption includes both S to E transitions and I to E or R transitions
and may include cycles between the seronegative states S and I:
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2.1.3 Assumption: E, I, and R seropositive (EIR+)

In a model with transmission from S to E, the likelihood of a seroreversion time t is:

with θ = {σ1, σ2, ε, ρ, γ1, γ2, ω,m}
L(θ|t) = Pr(E → S)σ1e
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where, given i cycles
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In a model with transmission from S to I, the likelihood of a seroreversion time t is:
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For both models with S to E and S to I transmission, the likelihood associated with a seroconversion time
t is simply the expected transmission time. However because measurements of captive colony serology were
collected at inconsistent intervals, on two occasions more than a year apart, we assigned each seroconversion
time and seroreversion time a minimum and maximum value (based on the earliest and latest times in the
preceding and following sampling periods) and assumed a uniform distribution between the two. The true
likelihood of a seroconversion/seroreversion time t with a maximum time tmax and minimum time tmin, if
the calculated seroconversion/seroreversion rate is r, is actually

re−rt = e−rtmin − e−rtmax(
1

tmax − tmin
)

. For example, the full likelihood of a seroconversion time under the EIR+ assumption is:

L(θ|t) =
βĪ

βĪ +m
βĪe−βĪt

where Ī is the mean number of infecteds over the past period t

L(θ|T ∼ U(tmin, tmax)) =

∫ tmax

tmin

Pr(t ∼ T )
βĪ

βĪ +m
βĪe−βĪtdt

L(θ|T ∼ U(tmin, tmax)) =
βĪ

βĪ +m
(e−βĪtmin − e−βĪtmax)

Finally, the likelihood function includes a term for measured seroprevalences over time. This is the same
as the seroprevalence likelihood for the cross-sectional data on wild-caught bats, but for multiple time points
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at one location and with all age classes pooled due to incomplete age information for the captive bats. Where
Px is the simulated seroprevalence at sampling timepoint x; nx and px are the observed numbers of all bats
and seropositive bats at time x, respectively; and T̄R and T̄C are the sets of all observed seroreversion times
and seroconversion times, respectively, the final function is:

L(θ|T̄R, T̄C , n, p) = L(θ|T̄R)) ∗ L(θ|T̄C)) ∗
22∏
x=1

(
nx
px

)
P pxx (1− Px)nx−px

2.2 Captive colony fitting

We fit the captive colony likelihood in two steps:

1. Fitting the deterministic variant of the model by maximising the product of the seroconversion and
seroreversion likelihoods described in Section 2.1. We selected initial parameter values based on a
random Latin hypercube sample (n = 100) and optimised each using the Nelder-Mead algorithm as
implemented by optim() in R [7]. For both initial parameter values and throughout optimisation, we
constrained parameters within the bounds listed in Table 1 in the main text.

2. With starting parameters set to those returned by step 1, fit the stochastic variant of the model
(simulated via adaptive tau-leaping, see Section 2.3) via particle filtering as outlined below.

Particle filtering algorithm. We followed a similar algorithm to [3], although instead of iterating across
time points and taking the likelihoods of observed cross-sections, we iterated across individual seroconversion
and seroreversion times and took the likelihood of each. We also fixed the initial state sizes (at 5 each initial
infected adult males and adult females, with other compartments fixed to their values after 300 years of the
best-fitting deterministic model) and allowed the simulations to run for 8 years to assess persistence; we
assumed the final year represented equilibrium and calculated seroconversion likelihoods based on the mean
number of infecteds across the final year of simulation. The standard deviation of the random walk for each
parameter was set to 50% of its initial estimate, with a cooling factor of 1% per iteration.

We calculated AIC independently for each particle. We calculated a vector of model weights (W ) for any
one assumptions set as the mean of weights across 1000 quantiles:

W =
1

1000

1000∑
i=1

w(∆[i/1000]),

where ∆ for any model represents ∆AIC, w is the vector of Akaike weights for all models m (with M = 46

models) wm = e−∆m/2∑M
n e−∆n/2 , and i/1000 is the relevant quantile.

2.3 Stochastic simulation algorithm

We implemented adaptive tau-leaping [4] using the Rcpp package [1]. We set maximum and minimum time
steps (10−3 days ≤ τ ≤ 0.5 days) for tau leaping. By default, time is incremented by the maximum τ = 0.5
days unless there are fewer than 10 individuals in any compartment; in these cases, τ is set to the min( 1

{r−} )

where {r−} is the set of rates causing depletion in the compartment.
Once a time step τ is chosen, events occur based on random events ∼ Pois({r}τ). If these events cause

any compartment to go negative, τ is repeatedly halved until it falls below the minimum threshold, at which
point we took a single step with the Gillespie stochastic simulation algorithm.

2.4 Feature definitions

Various parameters and combinations of parameters create mechanistic features in our submodels. We refer
to the following parametric definitions in the main text, where OR is an inclusive or (i.e., at least one of the
conditions is met):
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• Recurring infection: ρ > 0 AND ε > 0

• Lifelong immunity: (γ2 > 0 OR σ2 > 0) AND ω = 0

• Temporary immunity: (γ2 > 0 OR σ2 > 0) AND ω > 0

• No immunity: γ2 > 0 AND σ2 > 0

• Clearance from I: γ1 > 0 OR γ2 > 0

• Clearance from E: σ1 > 0 OR σ2 > 0

• Reinfection: σ1 > 0 OR γ1 > 0 OR ((γ2 > 0 OR σ2 > 0) AND ω > 0)

• Non-infectious infections: β1 > 0 AND (σ1 > 0 OR (σ2 > 0 AND ω > 0))

3 Supplementary results
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Figure 2: Distributions of predicted parameter values under the EIR+ serological assumption. R0 values
(A), time to clearance from E (1/σ, B), and immune waning durations (1/ω, C) are weighted by particle
likelihood in last ten iterations of stochastic captive colony fitting procedure. Models are ordered according
to decreasing weight.
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Figure 3: Distributions of predicted parameter values under the EIR+ serological assumption (continued).
Time to clearance from I (1/σ, D), incubation time or time to recurrence (1/ρ, E), and time to revert to
latency (1/ε, F) are weighted by particle likelihood in last ten iterations of stochastic captive colony fitting
procedure. Models are ordered according to decreasing weight.
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Figure 4: Distributions of predicted parameter values under the R+ serological assumption. R0 values
(A), time to clearance from E (1/σ, B), and immune waning durations (1/ω, C) are weighted by particle
likelihood in last ten iterations of stochastic captive colony fitting procedure. Models are ordered according
to decreasing weight.
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Figure 5: Distributions of predicted parameter values under the R+ serological assumption (continued).
Time to clearance from I (1/σ, D), incubation time or time to recurrence (1/ρ, E), and time to revert to
latency (1/ε, F) are weighted by particle likelihood in last ten iterations of stochastic captive colony fitting
procedure. Models are ordered according to decreasing weight.
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Figure 6: Flow diagram of top model (S[E(S)I]) under EIR+ assumption, with line weights corresponding
to the square root of fit parameter estimates.
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Figure 7: Flow diagram of top model (S[E(S)I]RS) under R+ assumption, with line weights corresponding
to the square root of fit parameter estimates.

15


