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S1 APPENDIX - MODEL BOUNDEDNESS

The basic deterministic core of the model is:

dC

dt
= r1C (1− (C + α1B))− γCP − d1C − βCB − σCM, (S1)

dB

dt
= r2B (1− (B + α2C))− d2B, (S2)

dP

dt
= ξCP (1− P )− d3P, (S3)

dM

dt
= −d4M. (S4)

We can show that C and B are bounded between 0 and 1. If C = 0, then
dC

dt
= 0. Likewise if B = 0, then

dB

dt
= 0. Hence neither variable is capable of decreasing below 0, and they are bounded below at 0.

If C = 1, then equation (19) becomes:

dC

dt
|C=1 = r1(−α1B)− (γP + d1 + βB + σM).

Since all parameters are positive, and we have shown that B > 0, we can conclude that
dC

dt
|C=1 < 0.

Therefore C cannot exceed one, and is bounded above. We can likewise show the same for B.

Likewise equation (21) shows that when P = 0,
dP

dt
= 0. When P = 1,

dP

dt
= −d3. Hence P is

also bounded between 0 and 1.

M is clearly be bounded as it is only decreasing down to 0, and we initialise it at a value less than
1.

There is however some issue in our formulation of the stochastic system, which we present again here,
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dCij =

rCj
Cij

1−

 N∑
j=1

Cij + α1Bi

− γCj
CijPi − dCj

Cij

− βCj
CijBi − σCj

CijMi + a(Ej)

]
dt

+
[
ηCj

Cij + λj(t)− ηBCj
CijBi

]
dWt, (S5)

dBi =

r2Bi

1−

Bi + α2

N∑
j=1

Cij

− d2Bi

 dt + [η2Bi] dWt, (S6)

dPi =

 N∑
j=1

ξjCijPi(1− Pi)− d3Pi

 dt + [η3Pi] dWt, (S7)

dMi = [−d4Mi] dt + [η4Mi] dWt, (S8)

dEj =

[
L∑
i=1

bCij

(
1−

Ej

Ω

)
− d5Ej

]
dt + [η5Ej ] dWt, (S9)

where λj(t) is defined by;

λj(t) =

{
0, if Cij(t) = 0.

2.873× 10−4, otherwise.

and where a(Ej) is defined by;

a(Ej) =

{
0.015, if X <

Ej

Ω for random variable X ∼ U(0, 1).

0, otherwise.

.

Having terms independent of their respective variables is necessary to ensure that the model may simulate
new infections and extinction events, however this does leave the model analytically unbounded. To fix this
issue, when the model was solved numerically we used min and max functions to ensure that the model
was fixed between 0 and 1. To express the model in a more rigid mathematical framework, we can include
the Kronecker delta function.

the Kronecker delta is defined as:

δij =

{
0, if i 6= j.

1, if i = j.
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As such we can better define the model by changing equations (S5) to (S9) to,

dCij =

[
rCj

Cij

(
1−

∑N
j=1Cij + α1Bi

K

)
− γCj

CijPi − dCj
Cij

− βCj
CijBi − σCj

CijMi + (1− δ(1)(C))a(Ej)

]
dt

+
[
(1− δ(1)(C))(1− δ(0)(C))(ηCj

Cij + λj(t)− ηBCj
CijBi)

]
dWt, (S10)

dBi =

[
r2Bi

(
1−

Bi + α2
∑N

j=1Cij

K

)
− d2Bi

]
dt +

[
(1− δ(1)(B))η2Bi

]
dWt, (S11)

dPi =

 N∑
j=1

ξjCij(1− Pi)− d3Pi

 dt +
[
(1− δ(1)(P ))η3Pi

]
dWt, (S12)

dMi = [−d4Mi] dt +
[
(1− δ(1)(M))η4Mi

]
dWt, (S13)

dEj =

[
L∑
i=1

bCij

(
1−

Ej

Ω

)
− d5Ej

]
dt +

[
(1− δ(1)(E))η5Ej

]
dWt, (S14)

where λj(t) is defined by;

λj(t) =

{
0, if Cij(t) = 0.

2.873× 10−4, otherwise.

and where a(Ej) is defined by;

a(Ej) =

{
0.015, if X <

Ej

Ω for random variable X ∼ U(0, 1).

0, otherwise.

This alteration was not included in the main manuscript for the sake of readability.

S2 APPENDIX - SIMULATED ANNEALING

Inspired by the process of annealing in metallurgy, simulated annealing is a process of finding a global
extrema (minimum or maximum value) of a function. The most common methods of hill-climb algorithms
or gradient-descent are incredibly efficient, but for cases where there are many local extrema, these methods
can become easily stuck in local extrema, and are unable to detect the “true” minimum or maximum value
of the function.

Simulated annealing tackles this problem by taking a probabilistic approach. Consider a minimisation
problem. Other methods will consider neighbouring points and move there if the output value is lower.
Simulated annealing however, will consider a neighbouring point and instead has a probability of moving
to this point. This probability is dependent on the value at the two points being considered, and a time-
dependent variable T , that slowly decreases to 0 as the algorithm proceeds. The probability of moving to a
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neighbouring position will be higher if the new position gives a desired lower value, and will also be higher
the greater the value of T , i.e. the earlier it is in the process’ runtime.

As time progresses, and T converges to 0, the probability of moving position also slowly converges to 0. By
having the possibility of moving to a “poorer choice” of neighbour, this method searches a greater amount
of the parameter space. This method was ideal for use in this project, as it was applied to minimising a
cost function with a large quantity of local minima, across a very large parameter space. The cost function
in our case was the distance between the model predictions and experimental data presented in Figure
2. As such the method was able to provide an accurate parameter set to use for the ensuing case studies.
The drawbacks of the method are its substantially longer runtimes, which increases exponentially for
multi-variate functions.
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