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Appendix A. Algorithm for Solving Estimating Equations (8) and

(9) in Section 2.2.

Given a landmark time s, for tij in the neighbourhood of s , we let Xij = Xi − tij be the

observed residual failure times and 0 < u1 < · · · < uKs be the Ks uncensored residual failure

times among Xij’s. Then the resulting estimate of H(u; s) is a step function with jumps

only at u1, . . . , uKs . The iterative algorithm is summarised as follows.

Step 1: Suppose we have an initial value of θ(s) as θ0(s) and denote Λε{θ′0(s)Z̃pi (tij − s) + H(uk; s)} by

Λε{H(uk; s)|θ0(s)} and let wij(s) = Kh(tij − s). Note that Λε(t) =
∫ t
−∞ λε(u)du is the cumulative

hazard function of εs in model (5), e.g., Λε(t) = exp(t) for the Cox models and Λε(t) = log{1+exp(t)}

for PO models, i.e., Λε(t) is a known function given by the link function g(·) in (4). Then, Ĥ(uk; s),

k = 1, . . . ,Ks, can be obtained by numerically solving the following estimating equations one by one∑n
i=1

∑mi

j=1 wij(s)[dNi(u1; tij)− Yi(u1; tij)Λε{H(u1; s)|θ0(s)}] = 0∑n
i=1

∑mi

j=1 wij(s)[dNi(u2; tij)− Yi(u2; tij)(Λε{H(u2; s)|θ0(s)} − Λε{H(u1; s)|θ0(s)})] = 0
...∑n

i=1

∑mi

j=1 wij(s)[dNi(uKs ; tij)− Yi(uKs ; tij)(Λε{H(uKs ; s)|θ0(s)} − Λε{H(uKs−1; s)|θ0(s)})] = 0 .

(A1)

Step 2: As we obtain Ĥ(uk; s), k = 1, . . . ,Ks, from Step 1, we can estimate θ̂(s) by solving

n∑
i=1

mi∑
j=1

Ks∑
k=1

wij(s)Z̃
p
i (tij − s)[dNi(uk; tij)−Yi(uk; tij)(Λε{Ĥ(uk; s)|θ(s)}−Λε{Ĥ(uk−1; s)|θ(s)})] = 0 ,

(A2)
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where we assume Λε{Ĥ(u0; s)|θ(s)} = 0.

Then, we substitute θ0(s) with the new estimate of θ̂(s) obtained in Step 2 and repeat Steps 1 & 2 until the

specified convergence criteria are met.

For computational simplicity and efficiency, this algorithm can be simplified by the following linear

approximation to avoid numerically solving the equations in (A1)

Λε{H(uk; s)|θ0(s)} − Λε{H(uk−1; s)|θ0(s)} ≈ λε{H(uk−1; s)|θ0(s)}∆H(uk; s) ,

where ∆H(uk; s) = H(uk; s) − H(uk−1; s). Details are referred to Chen et al. (2002). In addition, if a

landmark PH or PO model is desired, standard software for the Cox model or proportional odds model can

be employed to solve the pooled score functions at tij weighted by kernel weights wij(s) = Kh(tij − s).

Appendix B. General Data Generation Method for Simulations in

Section 3.

Let ψi(s) = Z ′i(s)β(s) and write the landmark linear transformation model as

P (Tis > u|ψi(s)) = g−1{H(u; s) + ψi(s)} . (A3)

First, we generate failure time Ti at baseline s = 0. Given the marginal distribution of ψi(s)

for s = 0 and the function H(t; 0), we can generate Ti from the marginal distribution of the

failure times, which we obtain by taking the expectation with respect to ψi(0), i.e.,

P (Ti > t) = Eψ(0)[g
−1{H(t; 0) + ψi(0)}] . (A4)

Second, it is known that for an individual who is at risk at s > 0, P (Ti > s+ u)/P (Ti >

s) = P (Ti > s+ u|Ti > s) = P (Tis > u) for all u ≥ 0. Then, by (A3) and (A4), we can solve

H(u; s) from

Eψ(0){g−1[H(s+ u; 0) + ψi(0)]}
Eψ(0){g−1[H(s; 0) + ψi(0)]}

= Eψ(s)[g
−1{H(u; s) + ψi(s)}] , (A5)

provided that all the expectations involved in (A5) are finite.

Third, as we obtain H(u; s) and Tis = Ti − s, we define a variable transformation as

Wi(s) = H(Tis; s). It can be shown that the distribution of Wi(s) conditional on ψi(s) as

f{Wi(s)|ψi(s)} = −∂g−1{ψi(s)+Wi(s)}
∂Wi(s)

, based on the distribution f{Tis|ψi(s)} given in model

(A3). Then, the conditional distribution of ψi(s) given Wi(s) is derived by Bayes’ formula

f{ψi(s)|Wi(s)} =
f{Wi(s)|ψi(s)}f{ψi(s)}∫∞

−∞ f{Wi(s)|ψi(s)}f{ψi(s)}dψi(s)
. (A6)

2



Next, we generate ψi(s) from the distribution given in (A6), which depends on Tis. This

data-generating procedure is applicable to any transformation model. Specifically, we de-

scribe below about proportional hazards (PH) models and proportional odds models (PO)

as examples.

For A Proportional Hazards Model in Sections 3.1.

The data generation algorithm described above is numerical in general, except for landmark

PH models. For a landmark PH model, parametric distribution of f{ψi(s)|Wi(s)} in (A6)

can be found by using a Gamma conjugate prior. We consider a landmark Cox PH model for

failure times conditional on one baseline variable and three time-dependent variables, i.e.,

g(x) = log{− log(x)} and Zi(s) = (Z1(s), Z2, Z3(s), Z4(s)). Covariate coefficients are set to

be β1(s) = 0.1 + 0.2
√
s, β2(s) = −0.6 + 0.005s, β3(s) = 0.4 + 0.01s, and β4(s) = −0.3.

We let ψi(s) = exp{Z ′i(s)β(s)} and assume that the marginal distribution of ψi(s) is

a Gamma distribution with shape parameter of α(s) = 1 − 0.05
√
s and rate parameter of

η(s) = 1.5 + 0.05s for any given s. In addition, we assume that the baseline cumulative

hazard function Λ0(u; 0) = (0.2u)3 (i.e., Weibull distribution) for failure times at s = 0. As

a conjugate distribution, it can be shown that the distribution of ψi(s) conditional on Tis is

also a Gamma distribution with parameters α(s) + 1 and η(s) + Λ0{Ti(s); s}. The idea is to

find the marginal distribution of Ti and generate failure times first, and then generate ψi(s)

by a conditional distribution given Tis. To incorporate intra-subject correlation among the

longitudinal measurements, the values of ψi(s) at different landmark times s are generated

from a Gaussian copula with an exchangeable correlation structure, where the correlation

coefficient is given by ρ = 0.3. Additionally, we let Zi2 ∼ Bernoulli(p = 0.5) and Zi3(s) ∼
N(2Zi2− 1, 1) with independent serial correlation. Finally, we assume that Zi4(s) ∼ N(0, 1)

from a Gaussian copula with exchangeable serial correlation and set ρ = 0.3 as well. Then,

Zi1 is obtained by solving the equation ψi(s) = exp{Z ′i(s)β(s)}.

For A Proportional Odds Model in Sections 3.2.

For a proportional odds model, i.e. g(x) = log{(1 − x)/x}. We let ψi(s) = Z ′i(s)β(s)

and assume that ψi(s) ∼ Uniform(−3, 3) for any s. We also define H(u; 0) = log{(1 −
S0(u))/S0(u)}, where S0(u) = exp{−(0.12u)3} is the baseline survival function of a Weibull

distribution. Failure time Ti is generated first and ψi(s) is simulated from its distribution

conditional on Tis. Subsequently, we generate the trajectories, Zi2 ∼ Bernoulli(0.5), Zi3(s) ∼
Uniform(−3 + Zi2, 3 − Zi2), and Zi4(s) ∼ Uniform(−3, 3), and Zi1(s) can be solved from
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Table A1: Summary of the estimates of regression coefficients in the simulation for a land-

mark PH model. True value, bias, bias percentage (bias.perc), and mean squared error

(MSE) are presented. Sample size of the training dataset is n = 200; number of simulation

replicates is 100.

n=200 proposed method LVCF method

coef s True bias bias.perc (%) MSE bias bias.perc (%) MSE

β1 2 0.383 0.019 4.908 0.003 -0.095 24.792 0.011

β2 2 -0.590 -0.036 6.012 0.115 0.031 5.284 0.066

β3 2 0.420 0.029 7.009 0.018 -0.030 7.091 0.013

β4 2 -0.300 0.017 5.523 0.013 0.040 13.454 0.010

β1 4 0.500 0.032 6.330 0.006 -0.071 14.230 0.008

β2 4 -0.580 -0.002 0.295 0.153 0.057 9.902 0.084

β3 4 0.440 0.032 7.327 0.017 -0.030 6.891 0.014

β4 4 -0.300 -0.013 4.197 0.017 0.042 13.905 0.012

β1 6 0.590 0.046 7.748 0.013 -0.063 10.596 0.014

β2 6 -0.570 0.024 4.266 0.298 0.103 18.140 0.198

β3 6 0.460 -0.003 0.602 0.031 -0.045 9.839 0.037

β4 6 -0.300 -0.021 6.831 0.041 0.011 3.569 0.023

ψi(s) = Z ′i(s)β(s), where β(s) is specified the same as before. We employ a Gaussian

copula to incorporate serial correlations of ψi(s) and Xi4(s) with an exchangeable correlation

structure and set the coefficient at ρ = 0.3.

As a result, trajectories of the time-varying biomarkers for 20 randomly selected indi-

viduals and the estimated Kaplan-Meier marginal survival curve based on a landmark PO

model are plotted in Figure A1.
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Table A2: Summary of the estimates of regression coefficients in the simulation for a land-

mark PH model. True value, bias, bias percentage (bias.perc), and mean squared error

(MSE) are presented. Sample size of the training dataset is n = 500; number of simulation

replicates is 100.

n=500 proposed method LVCF method

coef s True bias bias.perc (%) MSE bias bias.perc (%) MSE

β1 2 0.383 0.015 3.826 0.002 -0.111 28.947 0.013

β2 2 -0.590 -0.041 6.997 0.083 0.069 11.730 0.035

β3 2 0.420 0.018 4.156 0.008 -0.060 14.369 0.007

β4 2 -0.300 -0.008 2.625 0.012 0.029 9.485 0.005

β1 4 0.500 0.017 3.448 0.003 -0.082 16.315 0.008

β2 4 -0.580 -0.020 3.457 0.076 0.036 6.172 0.025

β3 4 0.440 0.017 3.901 0.011 -0.036 8.148 0.006

β4 4 -0.300 0.004 1.444 0.009 0.027 8.907 0.006

β1 6 0.590 0.026 4.400 0.007 -0.078 13.222 0.010

β2 6 -0.570 0.029 5.007 0.104 0.067 11.755 0.074

β3 6 0.460 0.020 4.246 0.014 -0.039 8.536 0.010

β4 6 -0.300 -0.020 6.793 0.016 0.026 8.569 0.009
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Table A3: Summary of the estimates of regression coefficients in the simulation for a land-

mark PO model. True value, bias, bias percentage, and mean squared error (MSE) are

presented. Sample size of the training dataset is n = 200; number of simulation replicates is

100.

n=200 proposed method LVCF method

coef s True bias bias.perc (%) MSE bias bias.perc (%) MSE

β1 2 0.383 0.020 5.164 0.004 -0.123 32.204 0.017

β2 2 -0.590 0.010 1.682 0.217 0.110 18.696 0.140

β3 2 0.420 0.025 6.005 0.027 -0.073 17.346 0.024

β4 2 -0.300 -0.001 0.223 0.014 0.049 16.262 0.011

β1 4 0.500 0.011 2.121 0.007 -0.123 24.625 0.020

β2 4 -0.580 -0.004 0.751 0.262 0.087 14.935 0.136

β3 4 0.440 0.007 1.678 0.022 -0.079 17.982 0.023

β4 4 -0.300 -0.010 3.273 0.018 0.051 16.984 0.014

β1 6 0.590 0.025 4.281 0.014 -0.113 19.094 0.019

β2 6 -0.570 -0.082 14.329 0.276 0.055 9.580 0.158

β3 6 0.460 0.004 0.935 0.034 -0.072 15.652 0.030

β4 6 -0.300 -0.005 1.558 0.018 0.033 10.940 0.019
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Table A4: Summary of the estimates of regression coefficients in the simulation for a land-

mark PO model. True value, bias, bias percentage, and mean squared error (MSE) are

presented. Sample size of the training dataset is n = 500; number of simulation replicates is

100.

n=500 proposed method LVCF method

coef s True bias bias.perc (%) MSE bias bias.perc (%) MSE

β1 2 0.383 0.010 2.480 0.003 -0.133 34.834 0.019

β2 2 -0.590 -0.040 6.721 0.116 0.099 16.853 0.048

β3 2 0.420 0.018 4.216 0.013 -0.087 20.751 0.014

β4 2 -0.300 -0.013 4.443 0.010 0.055 18.313 0.007

β1 4 0.500 0.009 1.741 0.003 -0.119 23.844 0.017

β2 4 -0.580 -0.022 3.824 0.093 0.081 13.970 0.050

β3 4 0.440 -0.013 2.991 0.011 -0.070 15.875 0.011

β4 4 -0.300 -0.010 3.342 0.012 0.051 17.102 0.007

β1 6 0.590 0.006 0.971 0.007 -0.097 16.516 0.013

β2 6 -0.570 -0.023 4.104 0.116 0.053 9.214 0.070

β3 6 0.460 0.005 1.078 0.014 -0.038 8.260 0.012

β4 6 -0.300 0.008 2.490 0.010 0.046 15.356 0.010
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Figure A1: Trajectories of X1(t), X3(t), and X4(t) for 20 randomly selected subjects and the

Kaplan-Meier (KM) estimate of the marginal survival curve for the whole sample of training

data based on a landmark PO model from one simulation.
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Appendix C. Additional Simulation Results in Sections 3.1 & 3.2.
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