Supplementary Information

CSL controls telomere maintenance and genome stability in human dermal

fibroblasts.

Bottoni et al.
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SUPPLEMENTARY FIGURE 1, related to FIGURE 2.

Analysis of CSL and leukocyte infiltration in the stroma of AK and SCC lesions; CSL overexpression rescues the
DNA damage in CAFs.

a, CD45 / CSL (magenta) and VIMENTIN (green) immunostaining in the stroma of AKs and flanking unaffected skin.
Same fields from consecutive sections as in Fig. 2a are shown. Scale bar, 10 um. >102 VIMENTIN positive cells were
counted per sample. n(AK/Skin)=6, ***p<0.001, two-tailed paired t-test. b, CD45 (magenta) and VIMENTIN (green) immu-
nostaining in the stroma of SCCs versus matched flanking skin showing limited overlap of signals. Same fields from con-
secutive sections as in Fig. 2b are shown. Scale bar, 30 um. >85 cells were counted per sample. n(SCC)=6, n(matched
Skin)=6. ¢, y-H2AX immunostaining in CAFs infected with an inducible CSL over-expressing lentivirus versus empty
vector control and treated with Doxycycline (500 ng ml") for 6 days. Scale bar, 10 um. >149 cells were counted per
sample. n(CAF strain)=3, n(matched HDF strain)=3, *p<0.05, two-tailed paired t-test. Bars represent mean + SD.
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SUPPLEMENTARY FIGURE 2, related to FIGURE 3.

DNA damage induction and telomere loss in HDFs with CSL silencing.

a, Telomeric DNA-FISH (magenta) and y-H2AX immunostaining (green) images of HDFs plus/minus CSL silencing as in
Fig. 3b. b, Analysis of telomere length by Q-FISH in the same HDF strains plus/minus CSL silencing as in Fig. 3e. Histo-
grams show the distribution of relative telomere lengths in 3 HDF strains plus/minus CSL silencing expressed as fluores-
cence intensity (AU) as in 58. A minimum of 100 TFU was set as the cut-off. Average values are shown on the right.
>3000 telomeres were quantified per sample. n(strain)=3. ¢, Telomeric DNA Q-FISH showing chromosomal ends aberra-
tions in HDF's plus/minus CSL silencing as in Fig. 3f,g. Arrowheads, triangles, arrows and stars point to OTL, SCF, TD and
EJ, respectively.
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SUPPLEMENTARY FIGURE 3.

DNA damage induction and telomere loss in HDFs with CSL KD plus/minus TP53 gene silencing.

a, y-H2AX (magenta) immunostaining in HDFs plus/minus CSL and TP53 silencing individually and in combination. Scale
bar, 15 pm. >175 cells were counted per sample. n(strain)=2. b, Comet assays of HDFs plus/minus CSL and TP53 silenc-
ing individually and in combination. Scale bar, 50 pm. >120 cells were analyzed per sample. n(strain)=2. ¢, Telomeric DNA
Q-FISH (magenta) and y-H2AX immunostaining (green) co-localization signals in metaphase chromosome spreads
(Meta-TIF) from HDFs plus/minus CSL and TP53 silencing individually and in combination. >30 spreads per sample were
scored. n(strain)=2. d, Quantification of the percentage of chromosomes carrying OTLs, TDs and SCFs per metaphase in
HDFs plus/minus CSL and TP53 silencing individually and in combination. Mean + SD, n(spread)=45, n(strain)=2, *p<0.05,
one-way ANOVA. Bars represent mean + SD.
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SUPPLEMENTARY FIGURE 4, related to FIGURE 4.

CAFs display telomere loss; hTERT is reactivated by concomitant CSL and TP53 silencing.

a, Telomeric DNA Q-FISH (magenta) and y-H2AX immunostaining (green) co-localization foci (Meta-TIF) in metaphase
spreads of 3 CAF and matched HDF strains. n(spread)=50, n(CAF strain)=3, n(matched HDF strain)=3, ***p<0.001, two-
tailed unpaired t-test. b, Analysis of telomere length by Q-FISH in the same CAF and matched HDF strains as in a. Histo-
grams show the distribution of relative telomere lengths in 3 CAF and matched HDF strains expressed as fluorescence in-
tensity (AU) as in 8. A minimum of 100 TFU was set as the cut-off. Average values are shown on the right. >3000 telo-
meres were quantified per sample. n(CAF strain)=3, n(matched HDF strain)=3. ¢, RT-qPCR of hTERT expression, nor-
malized to RPLPO, in HDFs plus/minus CSL and TP53 silencing individually and in combination. n(strain)=2. d, Telomer-
ase activity measured in HDFs plus/minus CSL and TP53 silencing individually and in combination. Positive and negative
controls were performed as explained in the Methods section. n(strain)=2. Bars represent mean * SD.
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SUPPLEMENTARY FIGURE 5, related to FIGURE 5.

UPF1 direct binding to CSL and Ku70; MST specificity controls.

a-b, Binding of recombinant UPF1 to CSL (a) or Ku70 (b) proteins as measured by MST. Inset: thermophoretic movement
of fluorescently-labeled CSL or UPF1. ¢, MST analysis of positive controls for high binding affinity. Each recombinant pro-
tein labeled with RED-NHS was admixed (1 uM) with 2-fold serial dilutions of the corresponding antibodies (from 9 uM to
0.27 nM). d, MST analysis of negative controls. Purified proteins labeled with RED-NHS were admixed with 2-fold serial di-
lutions of bovine serum albumin (from 72uM to 2.19 nM). Results are expressed as normalized thermophoresis-dependent
fluorescence units (F-Norm) as a function of unlabeled ligand concentrations as in Fig. 5e.
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SUPPLEMENTARY FIGURE 6, related to FIGURE 5.

CSL and UPF1 play overlapping roles in telomere binding and protection.

a, RT-qPCR of CSL/UPF1/Ku70/Ku80 mRNA expression, normalized to RPLPO, in HDFs plus/minus their respective
genes silencing for 6 days. n(strain)=3. b, y-H2AX immunostaining in HDFs plus/minus infection with two UPF1 silencing
lentiviruses versus empty vector control for 5 days. Scale bar, 5 um. >124 cells were counted per sample. n(strain)=3,
****p=0.0001, one-way ANOVA. ¢, Comet assays of HDFs plus/minus shRNA-mediated UPF1 silencing for 6 days. Scale
bar, 50 ym. >150 cells were analyzed per sample. n(strain)=3, ***p<0.001, one-way ANOVA. d, Telomeric DNA Q-FISH
(green) and y-H2AX immunostaining (magenta) co-localization foci in HDFs plus/minus UPF1 silencing (5 days). Scale
bar, 2 ym. >50 cells per sample were scored. n(strain)=3, ****p=0.0001, one-way ANOVA. e, Telomeric DNA Q-FISH
(magenta) and y-H2AX immunostaining (green) co-localization signals in metaphase chromosome spreads (Meta-TIF)
from HDFs plus/minus UPF1 silencing as in ¢. >40 spreads per sample were scored. n(strain)=3, **p<0.01, one-way
ANOVA. f, Quantification of the percentage of chromosomes carrying chromosomal aberrations per metaphase (OTL,
TD, SCF and EJ, as defined in Fig. 3f,g) in 3 HDF strains plus/minus UPF1 silencing for 6 days. Mean + SD,
n(spread)=35, n(strain)=3, **p<0.01, one-way ANOVA. Bars represent mean + SD.
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SUPPLEMENTARY FIGURE 7, related to FIGURE 6.
CSL binds to telomeres.
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a, Densitometric quantification of ChIP assays with antibodies against the indicated proteins, in parallel with non-immune IgG, followed by DNA dot blot
hybridization with probes detecting telomeric (Telo) or Alu repeats in HDFs. n(strain)=2. b, ChIP with antibodies against FLAG-tag followed by gPCR
with telomere-specific primers in HEK293T cells expressing CSL full length (FL), CSL BTD, CSL CTD, or CSL NTD FLAG-tagged domains. Non-immune
IgGs were used for normalization. c-d, Binding of recombinant CSL protein and telomeric sequence (TELO) or CSL motif as measured by MST. Inset:
thermophoretic movement of fluorescently-labeled TELO or CSL. e, Binding of recombinant TRF2 protein and telomeric sequence (TELO) as measured
by MST. Inset: thermophoretic movement of fluorescently-labeled TELO. MST analysis used as a positive control of Fig. 6e. f, Binding of recombinant
CSL protein and scrambled DNA sequence as measured by MST. Inset: thermophoretic movement of fluorescently-labeled CSL. MST analysis used as
a negative control of Fig. 6e. g-h, Binding of recombinant UPF1 (g) or Ku70 (h) proteins and telomeric sequence (TELO) as measured by MST. Inset:

thermophoretic movement of fluorescently-labeled TELO.
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SUPPLEMENTARY FIGURE 8, related to FIGURE 7.

CSL is an essential element of a telomere binding complex.

a, gPCR analysis of telomeric and alu repeats, normalized to ALBUMIN, in HDFs plus/minus CSL silencing (3 days). b,
Telomere binding assays by ChIP/qPCR with antibodies against the indicated proteins or non-immune IgG in HDFs
plus/minus siRNA (GB3) or shRNA (GB4) mediated CSL silencing (3 days), and with CSL silencing and concomitant lenti-
virally induced CSL overexpression (OE). n(strain)=2. ¢, Telomere binding assays by ChIP/qPCR analysis of the same
cells as in b with antibodies against TRF1/TRF2. n(strain)=2. d, Telomere binding assays by ChIP/qPCR with antibodies
against the indicated proteins in HDFs (GB3 and GB4) plus/minus lentivirally induced CSL overexpression(OE) for 3 days.
n(strain)=2. e, Telomere binding assays by ChIP/qPCR with antibodies against FLAG-TAG, in parallel with non-immune
1gG, in HEK293T cells expressing increasing amounts (0, 250 ng, 500 ng, 2 ug) of CSL FL FLAG-tagged together with
Ku70 FL (2 pg). f, UPF1/Ku70/Ku80 (magenta) and VIMENTIN (green) immunostaining in the stroma of SCCs versus
matched flanking skin. Same samples as in Fig. 2b are shown. Scale bar, 15 ym. >85 cells were counted per sample.
n(SCC)=3, n(matched Skin)=3. Quantification of double CSL/y-H2AX and VIMENTIN positive cells in the same samples
are in Fig. 2b. Bars represent mean + SD.
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SUPPLEMENTARY FIGURE 9, related to FIGURE 8.

Mapping of CSL/Ku70/UPF1 interaction.

a, Co-IP analysis of HEK293T cells expressing CSL full length (FL) and CSL BTD FLAG-tagged domain with anti-FLAG magnetic beads followed by im-
munoblotting with antibodies against the indicated proteins. b, Overview of CSL-BTD domain mutants and their effects on CSL interacting partners. -,
protein interaction affected by the mutation. +, protein interaction not affected by the mutation. #, CSL mutant known for its deficient DNA binding capac-
ity. (+'), Reference.
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SUPPLEMENTARY FIGURE 11
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