Supplementary Online Content

Javed AA, Mayhew AJ, Shea AK, Raina P. Association between hormone therapy and muscle mass in postmenopausal women: a systematic review and meta-analysis. *JAMA Netw Open*. 2019;2(8):e1910154. doi:10.1001/jamanetworkopen.2019.10154

eTable 1. Electronic Search Strategies for Databases MEDLINE, Embase, AgeLine, CINAHL, and SportDiscus

eTable 2. Estrogen Dose Equivalence Calculations

eTable 3. Study Characteristics (Part 1)

eTable 4. Study Characteristics (Part 2)

eTable 5. Study Characteristics (Part 3)

eTable 6. Risk of Bias Assessment

eTable 7. Summary Meta-analysis of the Association Between Less Than 0.625 mg Estrogen-Only Treatment and Muscle Mass Outcomes

eTable 8. Summary Meta-analysis of the Association Between 0.625 mg or More Estrogen-Only Treatment and Muscle Mass Outcomes

eTable 9. Summary Meta-analysis of the Association Between Less than 0.625 mg Estrogen + Any Dose Progesterone Treatment and Muscle Mass Outcomes

eTable 10. Summary Meta-analysis of the Association Between 0.625 mg or More Estrogen + Any Dose Progesterone Treatment and Muscle Mass Outcomes

eTable 11. Summary Meta-analysis of the Association Between Shorter Follow-up Lengths and Muscle Mass Outcomes

eTable 12. Summary Meta-analysis of the Association Between Longer Follow-up Lengths and Muscle Mass Outcomes

eTable 13. Summary Meta-analysis of Studies With <10 Years of Time Since Menopause

eTable 14. Summary Meta-analysis of the Association Between Shorter Times Since Menopause and Muscle Mass Outcomes

eTable 15. Summary Meta-analysis of the Association Between Longer Times Since Menopause and Muscle Mass Outcomes

eTable 16. Summary Meta-analysis of the Association Between Fair/Good Study Quality and Muscle Mass Outcomes

eTable 17. Summary Meta-analysis of the Association Between Poor Study Quality and Muscle Mass Outcomes

eTable 18. Summary Meta-analysis of the Association Between DEXA Measurement and Muscle Mass Outcomes

eTable 19. Summary Meta-analysis of the Association Between Other Measurement and Muscle Mass Outcomes

eTable 20. GRADE Assessment

eFigure. Funnel Plot for Assessment of Publication Bias

This supplementary material has been provided by the authors to give readers additional information about their work.

Database	Sear	ch strategy	
	#	Search term	Results (n)
MEDLINE	1	exp Hormone Replacement Therapy/ or hormon* replacement therap*.mp.	30785
	2	(hormon* adj2 therap*).mp.	45612
	3	(hormon* adj2 replac*).mp.	23721
	4	HRT.mp.	9782
	5	(hormon* adj2 supplement*).mp.	1344
	6	exp Estrogen Replacement Therapy/ or estrogen replacement therap*.mp.	17068
	7	(estrogen adj2 therap*).mp.	20357
	8	estrogen.mp. or exp Estrogens/	244557
	9	progestin.mp. or exp Progestins/	75022
	10	estrogen-progestin.mp.	1246
	11	exp Body Composition/ or body compos*.mp.	613379
	12	1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10	313714
	13	exp Muscle, Skeletal/ or muscle mass.mp.	263546
	14	11 or 13	318151
	15	12 and 14	4026
Embase	1	exp Hormone Replacement Therapy/ or hormon* replacement therap*.mp.	58601
	2	(hormon* adj2 therap*).mp.	83063
	3	(hormon* adj2 replac*).mp.	23065
	4	HRT.mp.	12942
	5	(hormon* adj2 supplement*).mp.	1503
	6	exp Estrogen Replacement Therapy/ or estrogen replacement therap*.mp.	24309
	7	(estrogen adj2 therap*).mp.	26872
	8	estrogen.mp. or exp Estrogens/	338741
	9	progestin.mp. or exp Progestins/	166652
	10	estrogen-progestin.mp.	1325
	11	exp Body Composition/ or body compos*.mp.	88524
	12	1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10	476514
	13	exp Muscle, Skeletal/ or muscle mass.mp.	295471
	14		373975
	15		7475
AgeLine	1	(MH "Hormone Replacement Therapy+") OR "hormon* replacement therap*"	454
	2	"hrt"	158
	3		50
	4	"estrogen replacement therap*"	72
	5	"hormon* n2 therap*"	0
	6		0
	7	(MH "Estrogens+") OR "estrogen"	452

eTable 1. Electronic Search Strategies for Databases MEDLINE, Embase, AgeLine, CINAHL, and SportDiscus

1	8	"estrogen n2 therap*"	26
	9	(MH "Progestational Hormones+") OR "progestin"	32
	10		14
	11		422
	12	"muscle mass" OR (MH "Muscle, Skeletal+")	234
	13	S1 or S2 or S3 or S4 or S5 or S6 or S7 or S8 or S9 or S10	749
	14		605
	15	\$13 and \$14	16
CINAHL	1	(MH "Hormone Replacement Therapy+") OR "hormon* replacement therap*"	7332
	2	"hrt"	1363
	3	"hormon* n2 supplement*"	0
	4	"estrogen replacement therap*"	315
	5	"hormon* n2 therap*"	0
	6		0
	7	(MH "Estrogens+") OR "estrogen"	11378
	8		0
	9	(MH "Progestational Hormones+") OR "progestin"	3178
	10		211
	11	(MH "Body Composition+") OR "body compos*"	12555
	12	"muscle mass" OR (MH "Muscle, Skeletal+")	24568
	13	S1 or S2 or S3 or S4 or S5 or S6 or S7 or S8 or S9 or S10	16947
	14	S11 or S12	35787
	15	S13 and S14	400
SportDiscus	1	(MH "Hormone Replacement Therapy+") OR "hormon* replacement therap*"	388
	2	"hrt"	261
	3	"hormon* n2 supplement*"	1
	4		60
	5		0
	6	"hormon* n2 replac*"	1
	7	(MH "Estrogens+") OR "estrogen"	1856
	8		0
	9	(83
	10	"estrogen-progestin"	19
	11		11308
	12		2740
	13	S1 or S2 or S3 or S4 or S5 or S6 or S7 or S8 or S9 or S10	2441
	14	S11 or S12	13527
	15	S13 and S14	102

eTable 2. Estrogen Dose Equivalence Calculations **Reference values**^{1–3}:

Estrogen dose for bone endpoints								
Estrogen	Ultra-Low	Low	Standard	High				
Conjugated equine estrogens (mg)	0.15	0.3	0.625	1.25				
Micronized 17β-estradiol (mg)	0.5		14	4				
Estradiol valerate (mg)		1	2					
Transdermal 17 β -estradiol (Estraderm) (mg) ^{5,6}			0.05					

Calculations:

Study	Estrogen type	Name	Dose	Standardized to CEE's
Type 1: Conju	igated equine esti	rogens (CEE) (mg)		
Aloia et al.	E-P ^a	Conjugated equine estrogens and	E ^b : 0.625 mg	E: 0.625 mg
		Medroxyprogesterone	P ^c : 10 mg	
Bea et al.	1) E	1) Conjugated equine estrogens (Premarin)	E: 0.625 mg/d	E: 0.625 mg/d
	2) E-P	2) Conjugated equine estrogens and	E: 0.625 mg/d	E: 0.625 mg/d
		Medroxyprogesterone	P: 2.5 mg/d	_
Chen et al.	E-P	Conjugated equine estrogens and	E: 0.625 mg/d	E: 0.625 mg/d
		Medroxyprogesterone	P: 2.5 mg/d	
Evans et al.	E-P	Conjugated equine estrogens and	E: 0.625 mg/d	E: 0.625 mg/d
		Medroxyprogesterone	P: 5 mg/d	
Thorneycroft	1) E	1) Conjugated estrogens	a) E: 0.625 mg/d	a) E: 0.625 mg/d
et al.			b) E: 0.45 mg/d	b) E: 0.45 mg/d
			c) E: 0.3 mg/d	c) E: 0.3 mg/d
	2) E-P	2) Conjugated equine estrogens and	a) E: 0.625 mg/d	a) E: 0.625 mg/d
		Medroxyprogesterone	P: 2.5 mg/d	b) E: 0.45 mg/d
			b) E: 0.45 mg/d	c) E: 0.45 mg/d
			P: 2.5 mg/d	d) E: 0.3 mg/d
			c) E: 0.45 mg/d	
			P: 1.5 mg/d	
			d) E: 0.3 mg/d	

^a Estrogen-progesterone ^b Estrogen

^c Progesterone

			P: 1.5 mg/d	
Type 2: Micror	nized 17 beta estr	radiol (mg)		
Hassager & Christiansen	2) E (Percutaneous)	2) 17 beta-estradiol (estrogel cream)	E: 0.6 mg	E: 0.375 mg (1 mg 17b = 0.625 mg CEE à 0.6 mg 17b = 0.375 mg CEE)
Jensen et al.	1) E	1) Oral continuous estradiol (Estrofem)	E: 2 mg/d	E: 1.25 mg/d (1 mg 17b = 0.625 mg CEE à 2 mg 17b = 1.25 mg CEE)
	2) E-P	2) Sequential oral estrogen and progestogen (Trisequens)	E: 2 mg/d P: 1 mg/d	E: 1.25 mg/d (1 mg 17b = 0.625 mg CEE à 2 mg 17b = 1.25 mg CEE)
Kenny et al.	E	17-beta estradiol	E: 0.25 mg/d	E: 0.16 mg (1 mg 17b = 0.625 mg CEE $à$ 0.25 mg 17b = 0.16 mg CEE)
Pöllänen et al.	E-P	Combined estradiol + noretisterone acetate (synthetic progesterone)	E: 2 mg/d P: 1 mg/d	E: 1.25 mg/d (1 mg 17b = 0.625 mg CEE à 2 mg 17b = 1.25 mg CEE)
Sipilä et al.	E-P	Oestradiol and noretisterone acetate (synthetic progesterone) (Kliogest)*this is 17 beta estradiol	E: 2 mg/d P: 1 mg/d	E: 1.25 mg/d (1 mg 17b = 0.625 mg CEE à 2 mg 17b = 1.25 mg CEE)
Sørensen et al.	E-P	17 beta-estradiol and cyclic norethisterone acetate (Trisequens Forte)	E: 4 mg/d P: 1 mg/d	E: 2.5 mg/d (1 mg 17b = 0.625 mg CEE à 4 mg 17b = 2.5 mg CEE)
	iol valerate (mg)		1	
Haarbo et al.	1) E-P	1) Estradiol valerate + cyproterone acetate (CPA)	E: 2 mg/d P: 1 mg/d	E: 0.625 mg/d
	2) E-P	2) Estradiol valerate + levonorgestrel (LNG)	E: 2 mg/d	E: 0.625 mg/d

Hassager & Christiansen	1) E-P (Oral)	1) Estradiol valerate + cyproterone acetate	P: 75 μg/d E: 2 mg/d P: 1 mg	E: 0.625 mg/d
Type 4: Trans Blackman et al.	dermal estradiol E-P	Estradiol transdermal patches (Estraderm) +medroxyprogesterone acetate (Provera)	E: 100 μg/d à (0.1 mg) P: 10 mg/d	E: 1.25 mg/d (0.05 mg = 0.625 mg CEE à 0.1 mg = 1.25 mg CEE)

References

- 1. Gambacciani M, Genazzani AR. Hormone replacement therapy: The benefits in tailoring the regimen and dose. *Maturitas*. 2001;40(3):195-201. doi:10.1016/S0378-5122(01)00281-X
- 2. Lindsay R, Hart DM, Clark DM. The minimum effective dose of estrogen for prevention of postmenopausal bone loss. *Obstet Gynecol*. 1984;63(6):759-763.
- 3. Panay N, Ylikorkala O, Archer DF, Gut R, Lang E. Ultra-low-dose estradiol and norethisterone acetate: Effective menopausal symptom relief. *Climacteric*. 2007;10(2):120-131. doi:10.1080/13697130701298107
- 4. Archer DF. Estrace® vs Premarin® for treatment of menopausal symptoms: Dosage comparison study. Adv Ther. 1992;9:21-31.
- 5. Anderson PO, Knoben JE, Troutman WG. Handbook of Clinical Drug Data.; 2002. doi:10.7326/0003-4819-110-11-948_2
- 6. Kenigsberg L, Balachandar S, Prasad K, Shah B. Exogenous Pubertal Induction by Oral versus Transdermal Estrogen Therapy. J Pediatr Adolesc Gynecol. 2013;26(2):71-79. doi:10.1016/j.jpag.2011.09.012

Reference	Publication Date	Study Date	Country	Total recruited participants	Total participants included in analysis	Age (years)	Ethnicity	
Aloia et al.	1995	N/A	USA	118	77	52.162 ± 0.654	Caucasian	
Bea et al.	2001	1993- 2004	USA	1) 927 2) 1014	1) 927 2) 1014	1) 63.35 ± 7.6 2) 63.29 ± 7.2	N/A	
Blackman et al.	2002	1992- 1998	USA	28	28	71.5 ± 1.12	N/A	
Chen et al.	2005	1993- 2001	USA	835	835 Sensitivity analysis: 511 (256 placebo, 255 treatment)	63.1 ± 7.2	Caucasian 82.4% Black 10.4% Hispanic 5.3% American Indian 1.07% Asian or Pacific Islander 0.35% Other or unknown 0.48%	
Evans et al.	2001	N/A	USA	68	68 (But only 34 in HT and placebo groups)	67.7 ± 5.2	N/A	
Haarbo et al.	1991	N/A	Denmark	75	1) 43 (19 treatment, 24 placebo) 2) 43 (19 treatment, 24 placebo)	45-55 years	N/A	
Hassager & Christiansen	1989	1983- 1985	Denmark	133	1) 65 (32 treatment, 33 control) 2) 45 (20 treatment, 25 control)	1) 49.91 ± 2.36 2) 50.41 ± 2.29	N/A	
Jensen et al.	2003	1990- 1993	Denmark	1006 (502 treatment, 504 placebo)	621 (268 treatment, 353 placebo)	50.1 ± 2.8	N/A	
Kenny et al.	2005	N/A	USA	167	107 (At follow up 58 - treatment, 49 - placebo)	74.3 ± 0.6	N/A	
Pöllänen et al.	2007	N/A	Finland	20	15	53.6 ± 1.85	N/A	
Sipilä et al.	2001	N/A	Finland	80	52 (But only 30 in HT and placebo groups)	50-55	N/A	
Sørensen et al.	2001	N/A	Denmark	16	14	55.5 ± 2.6	N/A	
Thorneycroft et al.	2007	N/A	USA	822	502	51.6 ± 3.7	Caucasian 90% Other 10%	

eTable 3. Study Characteristics (Part 1)

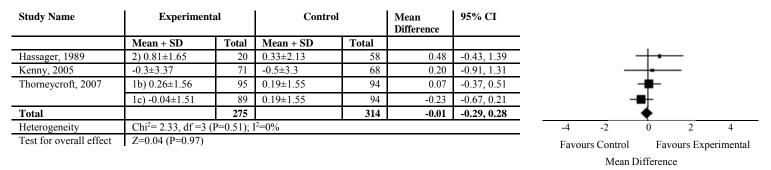
Reference (continued)	Type of Menopause	Mean time since menopause + SE	НТ		
Aloia et al.	Natural	2.27±0.33 years	E-P	E: 0.625 mg P: 10 mg	E: 25 days out of a month P: 9 days (days 16 - 25)
Bea et al.	Both (Baseline -	1) 22.21 ± 8.4 years	1) E	0.625 mg/d	7.7±1.8 years
	47.7% were induced, 52.2% natural)	2) 13.53 ± 8.5 years	2) E-P	E: 0.625 mg/d P: 2.5 mg/d	6.3±1.5 years
Blackman et al.	N/A	N/A	E-P	E: 100 µg/d for 6 months P: 10 mg/d for	E: 6 months P: Last 10 days of each 28-day cycle for 6 months (~60-65 days)
Chen et al.	Natural	13.8 ± 8.9 years	E-P	E: 0.625 mg/d P: 2.5 mg/d	3 years
Evans et al.	N/A	Mean age at menopause: 49 ± 5 , Current mean age: 67.8 ± 5	E-P	E: 0.625 mg/d P: 5 mg/d	13 days every 3rd month
Haarbo et al.	Natural	20.08 ± 8.97 months	1) E-P	E: 2 mg/d P: 1 mg/d	2 years
			2) E-P	E: 2 mg/d P: 75 μg/d	2 years
Hassager & Christiansen	Natural	Inclusion criteria: menopause within the last 0.5-3 years	1) E-P (Oral)	E: 2 mg/d P: 1 mg	In a 28-day cycle: E: days 1-11 E-P: days 12-21 None: days 22-28
			2) E (Percutaneous)	E: 0.6 mg	In a 28-day cycle, E: days 1-24, 5 g None: days 25-28
Jensen et al.	Both (Baseline - 41% were induced, 59% natural)	0.7 ± 0.6 years	1) E 2) E-P	2 mg/d E: 2 mg P: 1 mg	5 years In a 28 day cycle: E: days 1-12 E-P: days 13-22 E: days 23-28
Kenny et al.	N/A	Mean age: 74.3 ± 0.6 (older postmenopausal)	Е	0.25 mg/d (ultra-low dose)	36 months
Pöllänen et al.	N/A	2.8 ± 3.6 years	E-P	E: 2 mg/d P: 1 mg/d	1 year
Sipilä et al.	N/A	Inclusion criteria: menopause within the last 5 years	E-P	E: 2 mg/d P: 1 mg/d	1 year
Sørensen et al.	Natural	5.9 ± 3.9 years	E-P	E: 4 mg P: 1 mg	In a 28 day cycle: E: 4 mg for 22 days and 1 mg for 6 days, P: 10 days. Total 12 weeks
Thorneycroft et al.	Natural	2.3 ± 0.9 years	1) E	a) E: 0.625 mg/d b) E: 0.45 mg/d	2 years 2 years
				c) E: 0.3 mg/d	2 years
			2) E-P	a) E: 0.625 mg/d P: 2.5 mg/d	2 years
				b) E: 0.45 mg/d P: 2.5 mg/d	2 years
				c) E: 0.45 mg/d P: 1.5 mg/d	2 years
				d) E: 0.3 mg/d P: 1.5 mg/d	2 years

eTable 4. Study Characteristics (Part 2)

Reference (continued)	HT (continued)		Comparison Groups	Follow-up period
	Name	Cyclical or Continuous?	Placebo or Control?	
Aloia et al.	Conjugated equine estrogens and Medroxyprogesterone	Continuous	Placebo	2.9 ± 1.1 years
Bea et al.	1) Conjugated equine estrogens (Premarin)	Continuous	Placebo	6 years
	2) Conjugated equine estrogens and Medroxyprogesterone	Continuous		
Blackman et al.	Estradiol transdermal patches (Estraderm) + medroxyprogesterone acetate (Provera)	Continuous	Placebo	6 months
Chen et al.	Conjugated equine estrogens and Medroxyprogesterone	Continuous	Placebo	3 years
Evans et al.	Conjugated equine estrogens and Medroxyprogesterone	Cyclical	Control	N/A
Haarbo et al.	1) Estradiol valerate + cyproterone acetate (CPA)	Continuous	Placebo	2 years
	2) Estradiol valerate + levonorgestrel (LNG)	Continuous		-
Hassager &	1) Estradiol valerate + cyproterone acetate	Cyclical	Control	2 years
Christiansen	2) 17 beta-estradiol (estrogel cream)	Continuous		
Jensen et al.	1) Oral continuous estradiol (Estrofem)	Continuous	Control	5 years
	2) Sequential oral estrogen and progestogen (Trisequens)	Cyclical		
Kenny et al.	17-beta estradiol	Continuous	Placebo	3 years
Pöllänen et al.	Combined estradiol + noretisterone acetate (synthetic progesterone)	Continuous	Placebo	12 months
Sipilä et al.	Oestradiol and noretisterone acetate (synthetic progesterone) (Kliogest)	Continuous	Placebo	12 months
Sørensen et al.	17 beta-estradiol and cyclic norethisterone acetate (Trisequens Forte)	Cyclical	Placebo	N/A
Thorneycroft et al.	1) Conjugated estrogens	a) Continuous	Placebo	2 years
		b) Continuous]	
		c) Continuous	_	
	2) Conjugated equine estrogens and	a) Continuous	_	
	Medroxyprogesterone	b) Continuous	4	
		c) Continuous	4	
		d) Continuous		

eTable 5. Study Characteristics (Part 3)

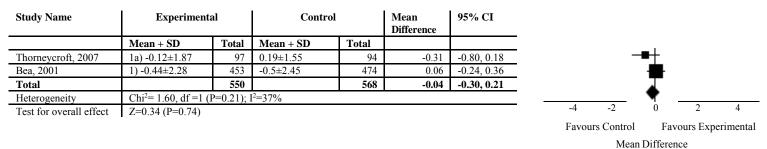
	Selection bias: Random sequence generation	Selection bias: Allocation concealment	Performance bias: Blinding of participants and personnel	Detection bias: Blinding of outcome assessment	Attrition bias: Incompl- ete outcome data	Reporting bias: Selective Reporting	Other bias: Other sources of bias	Overall Risk of Bias?
Aloia et al.	Low	Unclear ¹	Unclear ¹	Low ²	High ³	High ⁴	High ⁵	High
Bea et al.	Low	Unclear	Low	Low	Low	Low	Low	Unclear
Blackman et al.	Low	Unclear ¹	Low	Low	Low	Low	High	Unclear ⁶
Evans et al.	High	Unclear	Unclear	Unclear	Low	Low	Low	High
Haarbo et al.	Low	Unclear	Unclear	Unclear	High	Low	High ⁷	High
Hassager & Christiansen	Low	Unclear	Low ⁸	Low	Low ⁹	High ¹⁰	Low	Unclear ⁶
Jensen et al.	Low ¹¹	Low	High	High	Low ¹²	Low	Low	High
Kenny et al.	Low	Unclear	Low	Low	Low	High ¹³	High ¹⁴	High
Pöllänen et al.	Low	Unclear	Low	Low	High ¹⁵	Low	High ¹⁶	$High^7$
Sipilä et al.	Low	Low	Low	Low	Low	Low	Low	Low
Sørensen et al.	Low	Low	Low	Low	Low	Low	High ¹⁸	Unclear
Thorneycroft et al.	Low	Unclear	Low	Low	Low ¹⁹	Low	Low	Low


eTable 6. Risk of Bias Assessment

¹No information. This was never stated implicitly or explicitly.

- ² If it is double blind, we can assume that this is low risk.
- ³ Study did not explain which groups the women dropped out of, although they gave reasons.
- ⁴ The 'per year' analysis warranted a "high" assessment.
- ⁵ Control group received vitamin D, and there are potentially unbalanced baseline groups.
- ⁶ The "unclear" category is unlikely to bias the outcome.
- ⁷ Menopausal age was very different in the placebo group.
- ⁸ One treatment arm affected by unblinding, but it is reasonable.
- ⁹ Percutaneous group has higher rates of dropout due to side effects, but they did report the outcomes.

- ¹⁰ Combined placebo groups and didn't explain why, nor quantify the similarity.
- ¹¹ Only partial randomization, but we only considered the randomized groups.
- ¹² Didn't give reasons for dropout, but the numbers are balanced. Used intention to treat analysis.
- ¹³ No results of mixed model reported, although they mentioned it.
- ¹⁴ Progesterone was given to placebo women as well.
- ¹⁵ Did not address reasons for dropout, which is quite different between groups.
- ¹⁶ Very small study.
- ¹⁷ This study was not designed for our purposes.
- ¹⁸ Very short follow-up.
- ¹⁹ Small percentage of dropout.


eTable 7. Summary Meta-analysis of the Association Between Less Than 0.625 mg Estrogen-Only Treatment and Muscle Mass Outcomes

Impact of Low Dose Estrogen on Lean Body Mass by Study

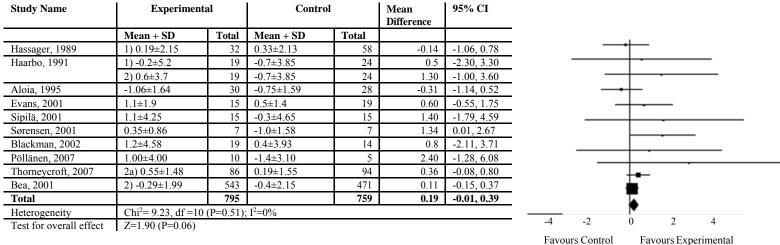
Caption: The forest plot of the meta-analyses of treatment arms utilizing less than 0.625 mg estrogen-only treatment, which presents the mean differences and 95% confidence intervals for lean body mass between women taking hormone replacement therapy and women who were not taking hormone replacement therapy (control group).

eTable 8. Summary Meta-analysis of the Association Between 0.625 mg or More Estrogen-Only Treatment and Muscle Mass Outcomes

Impact of High Dose Estrogen on Lean Body Mass by Study

Caption: The forest plot of the meta-analyses of treatment arms utilizing 0.625 mg or more estrogen-only treatment, which presents the mean differences and 95% confidence intervals for lean body mass between women taking hormone replacement therapy and women who were not taking hormone replacement therapy (control group).

eTable 9. Summary Meta-analysis of the Association Between Less than 0.625 mg Estrogen + Any Dose Progesterone Treatment and Muscle Mass Outcomes

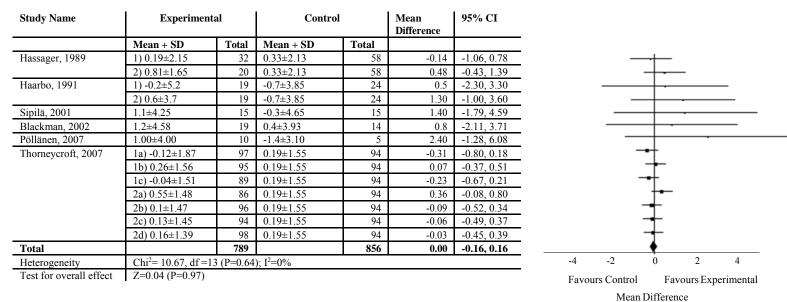

Study Name	Experiment	al	Contro	ol	Mean Difference	95% CI	
	Mean + SD	Total	Mean + SD	Total			
Thorneycroft, 2007	2b) 0.1±1.47	96	0.19±1.55	94	-0.09	-0.52, 0.34	
	2c) 0.13±1.45	94	0.19±1.55	94	-0.06	-0.49, 0.37	
	2d) 0.16±1.39	98	0.19±1.55	94	-0.03	-0.45, 0.39	
Total		288		282	-0.06	-0.30, 0.19	
Heterogeneity	$Chi^2 = 0.04, df = 2$ (P=0.98); l	² =0%				
Test for overall effect	Z=0.47 (P=0.64)						

Impact of Low Dose Estrogen-Progesterone on Lean Body Mass by Study

-4 -2 0 2 4 Favours Control Favours Experimental Mean Difference

Caption: The forest plot of the meta-analyses of treatment arms utilizing less than 0.625 mg estrogen + any dose progesterone treatment, which presents the mean differences and 95% confidence intervals for lean body mass between women taking hormone replacement therapy and women who were not taking hormone replacement therapy (control group).

eTable 10. Summary Meta-analysis of the Association Between 0.625 mg or More Estrogen + Any Dose Progesterone Treatment and Muscle Mass Outcomes



Impact of High Dose Estrogen-Progesterone on Lean Body Mass by Study

Mean Difference

Caption: The forest plot of the meta-analyses of treatment arms utilizing 0.625 mg or more estrogen + any dose progesterone treatment, which presents the mean differences and 95% confidence intervals for lean body mass between women taking hormone replacement therapy and women who were not taking hormone replacement therapy (control group).

eTable 11. Summary Meta-analysis of the Association Between Shorter Follow-up Lengths and Muscle Mass Outcomes

Impact of Shorter Follow-Ups on Lean Body Mass by Study

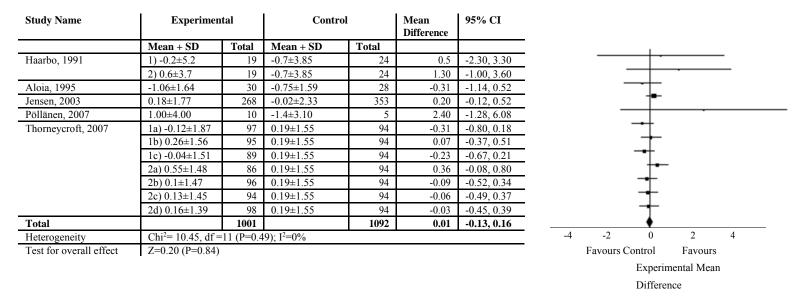
Caption: The forest plot of the meta-analyses of studies with shorter follow-up lengths, which presents the mean differences and 95% confidence intervals for lean body mass between women taking hormone replacement therapy and women who were not taking hormone replacement therapy (control group).

eTable 12. Summary Meta-analysis of the Association Between Longer Follow-up Lengths and Muscle Mass Outcomes

Study Name	Experiment	tal	Contro	ol	Mean	95% CI					
	-				Difference						
	Mean + SD	Total	Mean + SD	Total							
Aloia, 1995	-1.06 ± 1.64	30	-0.75±1.59	28	-0.31	-1.14, 0.52			+		
Jensen, 2003	0.18±1.77	268	-0.02±2.33	353	0.20	-0.12, 0.52			+₽-		
Kenny, 2005	-0.3±3.37	71	-0.5±3.3	68	0.20	-0.91, 1.31			t	_	
Bea, 2001	1) -0.44±2.28	453	-0.5±2.45	474	0.06	-0.24, 0.36			Ŧ		
	2) -0.29±1.99	543	-0.4±2.15	471	0.11	-0.15, 0.37			ŧ		
Total		1365		1394	0.10	-0.06, 0.27			•		
Heterogeneity	Chi ² = 1.40, df =4 (P	=0.84); I ² =0)%				-4	-2	0	2	4
Test for overall effect	Z=1.26 (P=0.21)						Favo	urs Control	Fav	ours Exp	perimental
								Mean I	Differer	nce	

Impact of Longer Follow-Ups on Lean Body Mass by Study

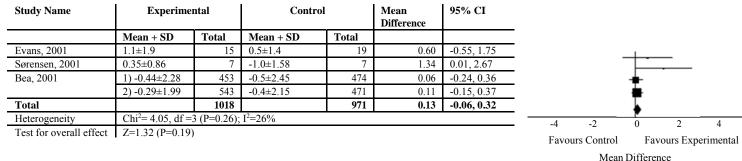
Caption: The forest plot of the meta-analyses of studies with longer follow-up lengths, which presents the mean differences and 95% confidence intervals for lean body mass between women taking hormone replacement therapy and women who were not taking hormone replacement therapy (control group).


eTable 13. Summary Meta-analysis of Studies With <10 Years of Time Since Menopause

Study Name	Experiment	al	Contro	ol	Mean Difference	95% CI						
	Mean + SD	Total	Mean + SD	Total								
Hassager, 1989	1) 0.19±2.15	32	0.33±2.13	58	-0.14	-1.06, 0.78						
-	2) 0.81±1.65	20	0.33±2.13	58	0.48	-0.43, 1.39			_		_	
Haarbo, 1991	1) -0.2±5.2	19	-0.7±3.85	24	0.5	-2.30, 3.30				-		_
	2) 0.6±3.7	19	-0.7±3.85	24	1.30	-1.00, 3.60				-		
Aloia, 1995	-1.06 ± 1.64	30	-0.75±1.59	28	-0.31	-1.14, 0.52				_		
Sipilä, 2001	1.1±4.25	15	-0.3±4.65	15	1.40	-1.79, 4.59		_	-			
Sørensen, 2001	0.35±0.86	7	-1.0±1.58	7	1.34	0.01, 2.67						
Jensen, 2003	0.18±1.77	268	-0.02 ± 2.33	353	0.20	-0.12, 0.52			-			
Pöllänen, 2007	$1.00{\pm}4.00$	10	-1.4±3.10	5	2.40	-1.28, 6.08						
Thorneycroft, 2007	1a) -0.12±1.87	97	0.19±1.55	94	-0.31	-0.80, 0.18				-		
	1b) 0.26±1.56	95	0.19±1.55	94	0.07	-0.37, 0.51			-	-		
	1c) -0.04±1.51	89	0.19±1.55	94	-0.23	-0.67, 0.21				-		
	2a) 0.55±1.48	86	0.19±1.55	94	0.36	-0.08, 0.80			-	•		
	2b) 0.1±1.47	96	0.19±1.55	94	-0.09	-0.52, 0.34			-•	-		
	2c) 0.13±1.45	94	0.19±1.55	94	-0.06	-0.49, 0.37				_		
	2d) 0.16±1.39	98	0.19±1.55	94	-0.03	-0.45, 0.39			-	_		
Total		1075		1230	0.04	-0.10, 0.18						
Heterogeneity	$Chi^2 = 15.99, df = 1000$	15 (P=0.38	$(3); I^2 = 6\%$				-4	-2		0	2	4
Test for overall effect	Z= 0.55 (P=0.58)						Favo	urs Cont	rol	Fav	ours Exp	erime
								Ν	lean Di	ifferen	ce	

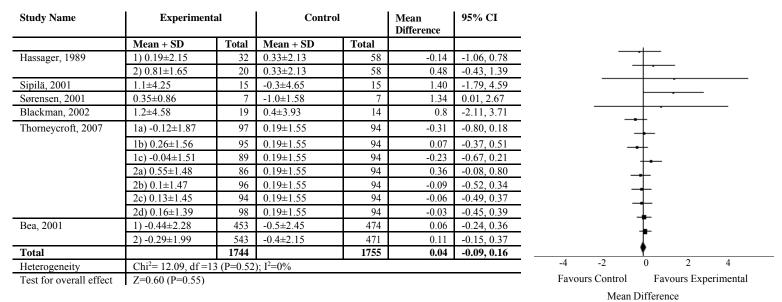
Impact of Younger Menopausal Age on Lean Body Mass by Study

Caption: The forest plot of the meta-analyses of studies with participants who had <10 years of time since menopause, presenting the mean differences and 95% confidence intervals for lean body mass between women taking hormone replacement therapy and women who were not taking hormone replacement therapy (control group).


eTable 14. Summary Meta-analysis of the Association Between Shorter Times Since Menopause and Muscle Mass Outcomes

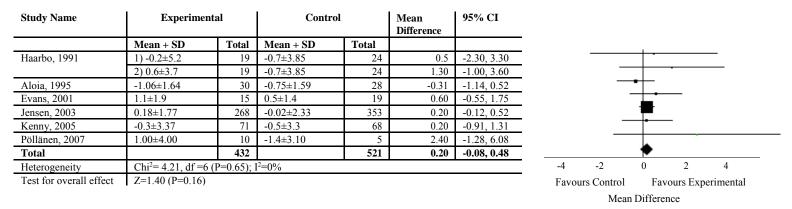
Impact of Shorter Time Since Menopause on Lean Body Mass by Study

Caption: The forest plot of the meta-analyses of studies with shorter times since menopause, which presents the mean differences and 95% confidence intervals for lean body mass between women taking hormone replacement therapy and women who were not taking hormone replacement therapy.


eTable 15. Summary Meta-analysis of the Association Between Longer Times Since Menopause and Muscle Mass Outcomes

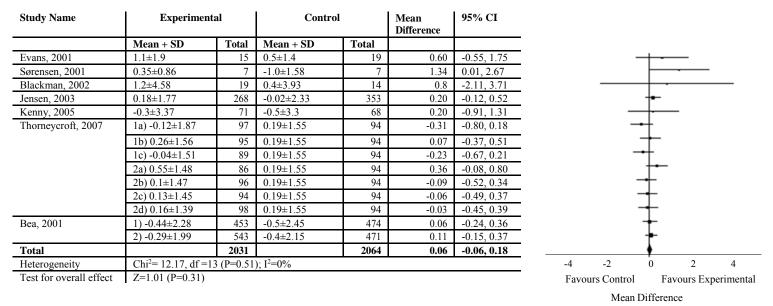
Impact of Longer Time Since Menopause on Lean Body Mass by Study

Caption: The forest plot of the meta-analyses of studies with longer times since menopause, which presents the mean differences and 95% confidence intervals for lean body mass between women taking hormone replacement therapy and women who were not taking hormone replacement therapy (control group).


eTable 16. Summary Meta-analysis of the Association Between Fair/Good Study Quality and Muscle Mass Outcomes

Impact of Better Study Quality on Lean Body Mass by Study

Caption: The forest plot of the meta-analyses of fair/good quality studies, which presents the mean differences and 95% confidence intervals for lean body mass between women taking hormone replacement therapy and women who were not taking hormone replacement therapy (control group).


eTable 17. Summary Meta-analysis of the Association Between Poor Study Quality and Muscle Mass Outcomes

Impact of Poorer Study Quality on Lean Body Mass by Study

Caption: The forest plot of the meta-analyses of poor quality studies, which presents the mean differences and 95% confidence intervals for lean body mass between women taking hormone replacement therapy and women who were not taking hormone replacement therapy (control group).

eTable 18. Summary Meta-analysis of the Association Between DEXA Measurement and Muscle Mass Outcomes

Impact of Use of DEXA Measurement on Lean Body Mass by Study

Caption: The forest plot of the meta-analyses of treatment arms utilizing DEXA measurement for muscle mass, which presents the mean differences and 95% confidence intervals for lean body mass between women taking hormone replacement therapy and women who were not taking hormone replacement therapy (control group).

eTable 19. Summary Meta-analysis of the Association Between Other Measurement and Muscle Mass Outcomes

Study Name	Experiment	tal	Contro	h	Mean Difference	95% CI					
	Mean + SD	Total	Mean + SD	Total							
Hassager, 1989	1) 0.19±2.15	32	0.33±2.13	58	-0.14	-1.06, 0.78		-			
	2) 0.81±1.65	20	0.33±2.13	58	0.48	-0.43, 1.39			_+∎_	—	
Aloia, 1995	-1.06±1.64	30	-0.75±1.59	28	-0.31	-1.14, 0.52		_	╼┼╴		
Sipilä, 2001	1.1±4.25	15	-0.3±4.65	15	1.40	-1.79, 4.59				-	
Pöllänen, 2007	$1.00{\pm}4.00$	10	-1.4±3.10	5	2.40	-1.28, 6.08					
Total		107		164	0.07	-0.43, 0.57			•		
Heterogeneity	Chi ² = 3.99, df =4	(P=0.41); !	i ² =0%		-	-4	-2	0	2	4	
Test for overall effect	Z=0.28 (P=0.78)	· · · · ·					Favor	urs Control	l Fav	vours Exp	erimental

Impact of Use of Other Measurement Types on Lean Body Mass by Study

Caption: The forest plot of the meta-analyses of treatment arms utilizing other measurement of muscle mass, which presents the mean differences and 95% confidence intervals for lean body mass between women taking hormone replacement therapy and women who were not taking hormone replacement therapy (control group).

Mean Difference

eTable 20. GRADE Assessment

Quality Assessment										
Outcome	Exposure	Participants (# of Studies)	Risk of Bias	Inconsistency	Indirectness	Imprecision ¹	Publication Bias	Quality of Evidence	Mean Difference (kg)	
Lean body mass (kg)	E-only or E- P HRT	4452 (12) ²	Serious ³	Not serious (I ² =0%)	Not serious	Serious ⁴	Serious ⁵	$\Phi \Phi$ LOW ⁶	0.06 (-0.05, 0.18)	

¹ Studies were considered at risk for imprecision if they did not meet the optimal information size criteria (<400 cases, 200 per group), or if the optimal information size is met, but the 95% CI includes 0.

² Included data from 12 randomized controlled trials, with a duration of follow-up ranging from 6 months to 7.7±1.8 years, enrolling participants from 4 different countries.

³ Study quality (assessed by the Cochrane Collaboration's tool for assessing risk of bias) ranged from poor to good. 50% of studies included in this analysis were of poor quality, 33% were fair, and 17% were good.

⁴ Optimal information size was met, however overall 95% CI of the mean difference crosses 0.

⁵ Visual inspection of the funnel plot and Begg's test (p=0.061) suggests publication bias, whereas the Egger's test (p=0.525) does not.

⁶ Data from randomized controlled trials begin with a grade of "HIGH". Downgraded due to risk of bias, imprecision, and publication bias.

Stratified by de	osage							
<0.625 mg E-only HRT	589 (3) ⁷	Not serious ⁸	Not serious $(I^2=0\%)$	Not serious	Serious9	Not assessed ¹⁰		-0.01 (-0.29, 0.28)
							MODERATE ¹¹	
≥0.625 mg E-only HRT	1118 (2) ¹²	Not serious ¹³	Not serious $(I^2=37\%)$	Not serious	Serious ¹⁴	Not assessed ¹⁵	$\oplus \oplus \oplus$	-0.07 (-0.42, 0.27)
5							MODERATE ¹⁶	
<0.625 mg E + any P	570 (1) ¹⁷	Not serious ¹⁸	Not serious $(I^2=0\%)$	Not serious	Serious ¹⁹	Not assessed ²⁰	000	-0.06 (-0.30, 0.19)
dose			(1 0/0)				MODERATE ²¹	
$\geq 0.625 \text{ mg}$ E + any P	1553 (10) ²²	Not serious ²³	Not serious $(I^2=0\%)$	Not serious	Serious ²⁴	Serious ²⁵	⊕⊕	0.19 (-0.01, 0.39)
dose			(1 0/0)				LOW^{26}	

⁷ Included data from 3 randomized controlled trials, with a duration of follow-up ranging from 2-3 years, enrolling participants from 2 different countries.

⁸ Study quality ranged from poor to good. Thorneycroft et al. is a larger, good quality study with more participants contributing to this meta-analysis. Kenny et al. is a poor quality study with placebo women receiving progesterone as well. While ideally the control group would receive no hormones, due to the poor quality of this study, it is unlikely to impact the results.

⁹ Optimal information size was met, however 95% CI of the mean difference crosses 0.

¹⁰ Due to a small number of studies (n < 10), publication bias was not formally assessed.

¹¹ Data from randomized controlled trials begin with a grade of "HIGH". Downgraded due to imprecision.

¹² Included data from 2 randomized controlled trials, with a duration of follow-up ranging from 2-6 years, enrolling participants from the USA.

¹³ Study quality ranged from fair to good.

¹⁴ Optimal information size was met, however 95% CI of the mean difference crosses 0.

¹⁵ Due to a small number of studies (n<10), publication bias was not formally assessed.

¹⁶ Data from randomized controlled trials begin with a grade of "HIGH". Downgraded due to imprecision.

¹⁷ Included data from 1 randomized controlled trials, with a duration of follow-up of 2 years, enrolling participants from the USA.

¹⁸ Study quality was good.

¹⁹ Optimal information size was met, however 95% CI of the mean difference crosses 0.

 20 Due to a small number of studies (n<10), publication bias was not formally assessed.

²¹ Data from randomized controlled trials begin with a grade of "HIGH". Downgraded due to imprecision.

²² Included data from 10 randomized controlled trials, with a duration of follow-up ranging from 6 months to 6 years, enrolling participants from 4 different countries.

²³ Study quality ranged from poor to good. 60% of studies included in this analysis were of fair/good quality.

²⁴ Optimal information size was met, however 95% CI of the mean difference crosses 0.

²⁵ Visual inspection of the funnel plot suggests publication bias.

²⁶ Data from randomized controlled trials begin with a grade of "HIGH". Downgraded due to imprecision and publication bias.

	Stratified by fo	ollow-up length							
	Shorter	1644 (6) ²⁷	Not serious ²⁸	Not serious	Not serious	Serious ²⁹	Not assessed ³⁰	@@@	0.00 (-0.16, 0.16)
	length			$(I^2=0\%)$					
								MODERATE ³¹	
	Longer	2759 (4) ³²	Serious ³³	Not serious	Not serious	Serious ³⁴	Not assessed35	@@	0.10 (-0.06, 0.27)
	length			$(I^2=0\%)$					
								LOW ³⁶	

²⁷ Included data from 6 randomized controlled trials, with a duration of follow-up ranging from 6 months to 2 years, enrolling participants from 4 different countries
²⁸ Study quality ranged from poor to good. 66% were fair or good, 33% were poor.
²⁹ Optimal information size was met, however overall 95% CI of the mean difference crosses 0.

³⁰ Due to a small number of studies (n<10), publication bias was not formally assessed.
³¹ Data from randomized controlled trials begin with a grade of "HIGH". Downgraded due to imprecision.

³² Included data from 4 randomized controlled trials, with a duration of follow-up ranging from 2.9 ± 1.1 -6 years, enrolling participants from 2 different countries. ³³ Study quality ranged from poor to fair. 75% were of poor quality.

³⁴Optimal information size was met, however overall 95% CI of the mean difference crosses 0.

 35 Due to a small number of studies (n<10), publication bias was not formally assessed.

³⁶ Data from randomized controlled trials begin with a grade of "HIGH". Downgraded due to risk of bias and imprecision.

	Stratified by time since menopause										
	Shorter	2092 (5) ³⁷	Serious ³⁸	Not serious	Not serious	Serious ³⁹	Not assessed ⁴⁰	⊕⊕	0.01 (-0.13, 0.16)		
				$(I^2=0\%)$							
								LOW^{41}			
	Longer	1989 (3) ⁴²	Serious ⁴³	Not serious	Not serious	Serious ⁴⁴	Not assessed ⁴⁵	@@	0.16 (-0.10, 0.42)		
	-			$(I^2=26\%)$							
								LOW^{46}			

³⁷ Included data from 5 randomized controlled trials, with a duration of follow-up ranging from 6 months to 5 years, enrolling participants from 4 different countries.
³⁸ Study quality ranged from poor to good. 80% were of poor quality.
³⁹ Optimal information size was met, however 95% CI of the mean difference crosses 0.

 40 Due to a small number of studies (n<10), publication bias was not formally assessed.

⁴¹ Data from randomized controlled trials begin with a grade of "HIGH". Downgraded due to risk of bias and imprecision.

⁴² Included data from 3 randomized controlled trials, with a duration of follow-up upto 6 years, enrolling participants from 2 different countries.

⁴³ Study quality ranged from poor to fair. Although 67% were of fair quality, this was downgraded due to poorly reported information.

⁴⁴ Optimal information size was met, however 95% CI of the mean difference crosses 0.

 45 Due to a small number of studies (n<10), publication bias was not formally assessed.

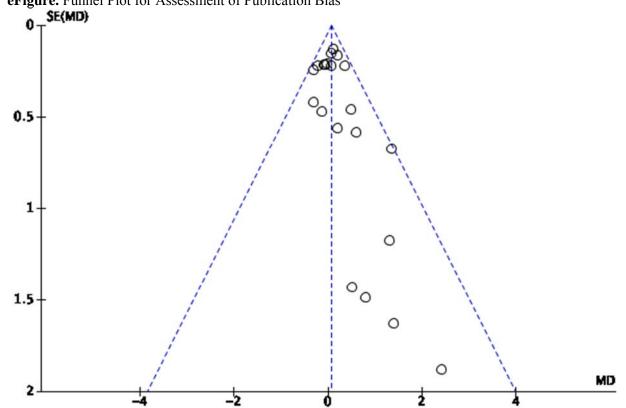
⁴⁶ Data from randomized controlled trials begin with a grade of "HIGH". Downgraded due to risk of bias and imprecision.

Stratified by study quality										
Fair/Good	3449 (6) ⁴⁷	Not serious	Not serious	Not serious	Serious ⁴⁸	Not assessed49	$\Theta \Theta \Theta$	0.04 (-0.09, 0.17)		
			(<i>I</i> ² =0%)				MODERATE ⁵⁰			
Poor	952 (6) ⁵¹	Serious	Not serious $(I^2=0\%)$	Not serious	Serious ⁵²	Not assessed ⁵³	⊕ ⊕	0.20 (-0.08, 0.48)		
							LOW ⁵⁴			

⁴⁷ Included data from 6 randomized controlled trials, with a duration of follow-up ranging from 6 months to 6 years, enrolling participants from 4 different countries.
⁴⁸ Optimal information size was met, however 95% CI of the mean difference crosses 0.
⁴⁹ Due to a small number of studies (n<10), publication bias was not formally assessed.
⁵⁰ Data from randomized controlled trials begin with a grade of "HIGH". Downgraded due to inconsistency and imprecision.

⁵¹ Included data from 6 randomized controlled trials, with a duration of follow-up ranging from 6 months to 5 years, enrolling participants from 4 different countries.

⁵² Optimal information size was met, however 95% CI of the mean difference crosses 0.
⁵³ Due to a small number of studies (n<10), publication bias was not formally assessed.
⁵⁴ Data from randomized controlled trials begin with a grade of "HIGH". Downgraded due to risk of bias, inconsistency, and imprecision.


Stratified by type of muscle measurement											
DEXA	4095 (7) ⁵⁵	Not serious56	Not serious	Not serious	Serious ⁵⁷	Not assessed ⁵⁸	$\oplus \oplus \oplus$	0.06 (-0.06, 0.18)			
			(I ² =0%)				MODERATE ⁵⁹				
Other	271 (4) ⁶⁰	Serious ⁶¹	Not serious $(I^2=0\%)$	Not serious	Serious ⁶²	Not assessed ⁶³	⊕⊕	0.07 (-0.43, 0.57)			
			、 ,				LOW ⁶⁴				

⁵⁵ Included data from 7 randomized controlled trials, with a duration of follow-up ranging from 6 months to 6 years, enrolling participants from 3 different countries.
⁵⁶ Study quality ranged from poor to good. 57% were of fair/good quality.
⁵⁷ Optimal information size was met, however 95% CI of the mean difference crosses 0.
⁵⁸ Due to a small number of studies (n<10), publication bias was not formally assessed.
⁵⁹ Data from randomized controlled trials begin with a grade of "HIGH". Downgraded due to imprecision.

⁶⁰ Included data from 4 randomized controlled trials, with a duration of follow-up ranging from 12 months to 3 years, enrolling participants from 3 different countries.

⁶¹ Study quality ranged from poor to good. 50% were of poor quality.
⁶² Optimal information size was met, however 95% CI of the mean difference crosses 0.
⁶³ Due to a small number of studies (n<10), publication bias was not formally assessed.

⁶⁴ Data from randomized controlled trials begin with a grade of "HIGH". Downgraded due to risk of bias and imprecision.

eFigure. Funnel Plot for Assessment of Publication Bias

Caption: A visual inspection of the funnel plot of effect size and precision presents some asymmetry, indicating potential publication bias.