Supplementary Information for

Chemical fingerprint of Zn-hydroxyapatite in the early stages of osteogenic differentiation

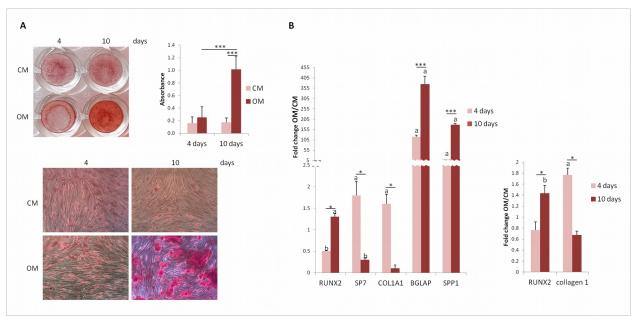
Alessandra Procopio^{1§}, Emil Malucelli^{1§*}, Alexandra T.J. Pacureanu², Concettina Cappadone¹, Giovanna Farruggia^{1,6}, Azzurra Sargenti¹, Sara Castiglioni³, Davide Altamura⁴, Andrea Sorrentino⁵, Cinzia Giannini⁴, Eva Pereiro⁵, Peter Cloetens², Jeanette A.M. Maier^{3&}, Stefano Iotti^{1,6&}.

¹Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy;

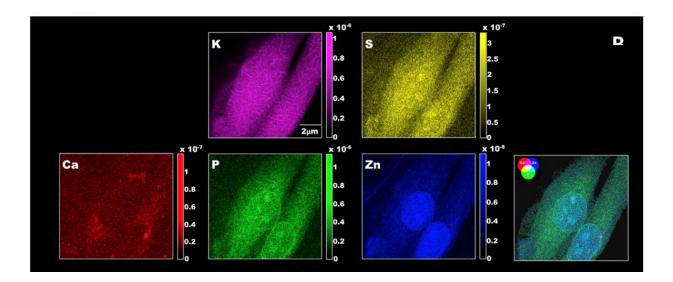
²ID16A Beamline, ESRF, the European Synchrotron, Grenoble, France

³Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, Milan, Italy;

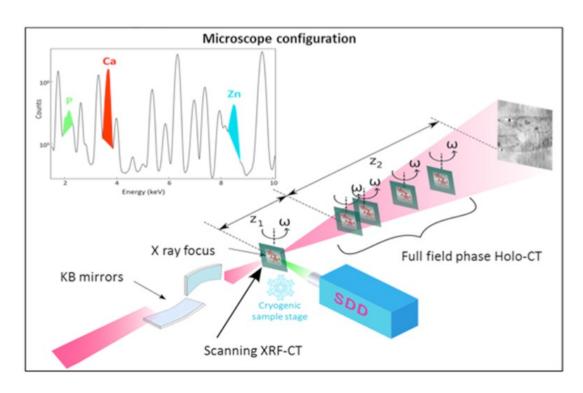
⁴Institute of Crystallography, National Research Council, Bari, Italy

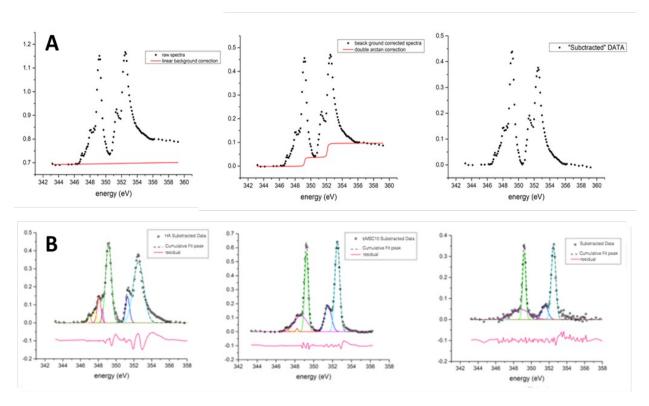

⁵ALBA Synchrotron Light Source, Cerdanyola del Vallès, Barcelona, Spain

⁶National Institute of Biostructures and Biosystems, Rome, Italy


[§]These authors equally contributed to this work

^{*}To whom correspondence should be addressed: emil.malucelli@unibo.it


[&]Both authors share senior authorship


Figure S1. (A) Alizarin Red staining was performed after exposure to culture medium (CM) or osteogenic medium (OM) for 4 and 10 days. Photographs of a representative plate (upper left panel) and photographs taken at 10X magnification (lower panel) are shown. After acid extraction the absorbance was measured at 562 nm (upper right panel). The results are shown as the mean ± standard deviation of four experiments in triplicate. Statistical significance was determined using Student's t test. ***p<0.001. (B) Real-Time PCR (left panel) was performed three times in triplicate on RNA extracted from bMSC exposed to CM or OM for 4 and 10 days using primers designed on *RUNX2*, SP7, *COL1A1*, *BGLAP* and *SPP1* sequence. ELISA for RUNX2 and collagen type 1 (right panel) was conducted on extracts from bMSC cultured in CM or OM for 4 and 10 days. All the values were normalized with respect to their controls cultured in CM. Statistical significance was determined using Student's t test. *p<0.05, ***p<0.001. Different letters indicate the statistically significant effect of OM *vs* CM (a: p<0.05, b: p<0.01).

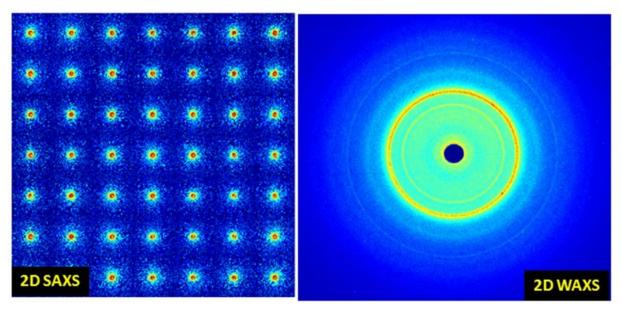

Figure S2. 2D x-ray fluorescence maps (pixel size 70 nm, expressed in areal mass (g/cm3)) of non-induced bMSC. Magenta: elemental map of K. Yellow: elemental map of S. Red: elemental map of Ca. Green: elemental map of P. Blue: elemental map of Zn. Composite elemental distribution of Ca, P and Zn to better understand the correspondence of elements accumulation.

Figure S3. The experimental set-up at the ID16A-NI 'Nano-Imaging' beamline of the ESRF Synchrotron.

Figure S4. Panel A: Linear background and double arctan subtraction showed for the HA reference sample. The "subtracted DATA" are the experimental points on which the Gaussians fit was performed. Panel B: Ca L edge Gaussian fits for the subtracted data reported in the main text (HA, bMSC10 and BMSC4). The subtracted data (empty circles) are over imposed with the Gaussians used for the fits and the cumulative fit which is simply the sum of the Gaussian curves (dashed lines). The corresponding residual, calculated as the difference between the subtracted data and the cumulative fit is also reported, vertically shifted for sake of clarity.

Figure S5. Scanning SAXS 2D data recorded across a 0.9x0.9 mm² area (left); 2D WAXS (right), averaged in the same area

BMSC4		Value	Standard Error	
Peak1(Gaussian)	хс	347.0634	0.27232	
Peak1(Gaussian)	Α	0.00316	0.00603	
Peak1(Gaussian)	W	0.43784	0.73408	
Peak2(Gaussian)	хс	348.7958	0.12042	
Peak2(Gaussian)	Α	0.11839	0.01162	
Peak2(Gaussian)	W	2.29355	0.32177	
Peak3(Gaussian)	хс	349.1931	0.00559	
Peak3(Gaussian)	A	0.13657	0.00652	
Peak3(Gaussian)	W	0.40554	0.01597	
Peak4(Gaussian)	хс	351.5148	0.04513	
Peak4(Gaussian)	A	0.06064	0.00744	
Peak4(Gaussian)	W	0.82879	0.12052	
Peak5(Gaussian)	хс	352.50000	0.00761	
Peak5(Gaussian)	A	0.21872	0.00631	
Peak5(Gaussian)	W	0.58772	0.01786	
BMSC10		Value	Standard Error	
Peak1(Gaussian)	хс	348.98978	0.00775	
Peak1(Gaussian)	Α	0.51081	0.01331	
Peak1(Gaussian)	W	0.60646	0.01854	
Peak2(Gaussian)	хс	351.20877	0.03643	
Peak2(Gaussian)	A	0.16659	0.01822	
Peak2(Gaussian)	W	0.72996	0.0912	
Peak3(Gaussian)	хс	352.30259	0.00907	
Peak3(Gaussian)	A	0.56612	0.01528	
Peak3(Gaussian)	W	0.69512	0.02175	
Peak4(Gaussian)	XC	346.72671	0.22735	
Peak4(Gaussian)	A	0.01104	0.01863	
Peak4(Gaussian)	W	0.35674	0.53551	
Peak5(Gaussian)	хс	347.40298	0.22689	
Peak5(Gaussian)	A	0.05346	0.05586	
Peak5(Gaussian)	W	0.62507	0.70939	
Peak6(Gaussian)	хс	347.97583	0.08754	
Peak6(Gaussian)	Α	0.0629	0.06329	
Peak6(Gaussian)	W	0.40201	0.30606	
Peak7(Gaussian)	хс	348.30887	0.06793	
Peak7(Gaussian)	Α	0.02674	0.02976	
Peak1(Gaussian)	хс	348.98978	0.00775	
HA		Value	Standard Error	
Peak1(Gaussian)	хс	346.96418	0.23915	
Peak1(Gaussian)	Α	0.01871	0.02901	
Peak1(Gaussian)	w	0.41351	0.37816	
Peak2(Gaussian)	хс	347.55357	0.47415	
Peak2(Gaussian)	A	0.03911	0.11437	
Peak2(Gaussian)	W	0.56412	1.28968	
Peak3(Gaussian)	хс	348.08607	0.17356	
Peak3(Gaussian)	A	0.07534	0.1132	
Peak3(Gaussian)	W	0.48911	0.48683	
Peak4(Gaussian)	хс	348.47364	0.05218	
Peak4(Gaussian)	A	0.01881	0.02459	
Peak4(Gaussian)	W	0.22477	0.13979	
Peak5(Gaussian)	хс	349.15099	0.01168	
Peak5(Gaussian)	A	0.35646	0.01179	
Peak5(Gaussian)	W	0.76594	0.03117	
Peak6(Gaussian)	хс	351.29468	0.02867	
	1	1	1	

Peak6(Gaussian)	Α	0.0826	0.01256	
Peak6(Gaussian)	w	0.533	0.07166	
Peak7(Gaussian)	хс	352.50000	0.02346	
Peak7(Gaussian)	A	0.49785	0.01759	
Peak7(Gaussian)	W	1.38511	0.059	
Ca(H ₂ PO ₄) ₂		Value	Standard Error	
Peak1(Gaussian)	хс	348.0256	0.03131	
Peak1(Gaussian)	Α	0.08818	0.0384	
Peak1(Gaussian)	W	0.40528	0.12095	
Peak2(Gaussian)	хс	349.01023	0.00427	
Peak2(Gaussian)	Α	0.43131	0.0071	
Peak2(Gaussian)	W	0.56216	0.01111	
Peak3(Gaussian)	хс	351.35918	0.0126	
Peak3(Gaussian)	Α	0.23067	0.00814	
Peak3(Gaussian)	W	0.74947	0.03063	
Peak4(Gaussian)	хс	352.29333	0.00466	
Peak4(Gaussian)	Α	0.50254	0.00816	
Peak4(Gaussian)	W	0.64214	0.01109	
Peak5(Gaussian)	хс	346.8544	0.05433	
Peak5(Gaussian)	Α	0.02318	0.00914	
Peak5(Gaussian)	W	0.36179	0.10812	
Peak6(Gaussian)	хс	347.49449	0.12196	
Peak6(Gaussian)	Α	0.05086	0.03203	
Peak6(Gaussian)	W	0.6	0.36372	
Peak7(Gaussian)	хс	348.41407	0.03783	
Peak7(Gaussian)	Α	0.05208	0.01959	
Peak7(Gaussian)	W	0.31695	0.06955	

Table S1. Fitting results. The used formula for the Gaussian function is:

$$y = \left(\frac{A}{w \cdot \sqrt{\frac{PI}{4 \cdot \ln(2)}}}\right) e^{\left(-4 \ln(2) \times \left(\frac{(x - xc)^2}{w^2}\right)\right)}.$$

Fits were shifted to have the L_2 peak centered at 352.5 eV.

sample	crystallographic unit cell parameters			cell volume	volume contraction factor
10days	a (Å)	b (Å)	c (Å)	V(ų)	X
	9.480±0.005	9.480±0.005	6.906±0.005	538±2	0.97±0.01
	alpha (°)	beta (°)	gamma (°)		
	90	90	120		
10days_A	a (Å)	b (Å)	c (Å)		
	9.521±0.005	9.521±0.005	6.910±0.005	543±2	0.98±0.01
	alpha (°)	beta (°)	gamma (°)		
	90	90	120		

4days	a (Å)	b (Å)	c (Å)		
	9.579±0.005	9.579±0.005	6.949±0.005	552±2	1
	alpha (°)	beta (°)	gamma (°)		
	90	90	120		

Table S2. Crystallographic unit cell parameters (a, b, c, alpha, beta, gamma) and cell volume (V), after Rietveld analysis, and relative volume contraction factor X, given by the ratio V(10 days)/V(4 days).

Movie S1.

Virtual stack of x-ray phase-contrast tomography of bMSC after 4 days of the osteogenic induction (pixel size 50 nm).

Movie S2.

Virtual stack of x-ray phase-contrast tomography of bMSC after 10 days of the osteogenic induction (pixel size 15 nm).

Movie S3.

3D nano-rendering of x-ray phase-contrast tomography of bMSC after 4 days of differentiation.

Movie S4.

3D nano-rendering of phase-contrast tomography of bMSC after 10 days of differentiation.

Movie S5.

Virtual stack of X-ray fluorescence projections of Ca, P and Zn of bMSC after 10 days of the osteogenic induction (pixel size 125 nm). Red: virtual stack projections of Ca. Green: virtual stack projections of P. Blue: virtual stack projections of Zn. Composite elemental distribution of Ca, P and Zn.

Movie S6.

Zoomed 3D nano-rendering of Ca (red spots), P (green spots) and Zn (blu spots) of bMSC after 10 days of the osteogenic induction. In cyan was represented the nucleus.