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SI-1. Introduction: additional points 

Granger causality (GC) and dynamic causal modeling (DCM): In our study, we employed GC 

to quantify effective connectivity. As a data-driven approach, GC has no requirement for the 

specification of connectivity priors as in DCM [1] [2] [3] [4]. While DCM is relevant in a wide 

range of applications, for whole-brain connectivity it is practically impossible to build a DCM 

model with connectivity priors since it would result in computational intractability. These reasons 

motivated our choice of GC. 

Comparing our study with another recent study on complex network modeling in PTSD/mTBI: 

A recent study reported complex-network characterization in PTSD and mTBI [5]. However, they 

considered neither directed networks nor dynamic variations in network properties, meaning that 

our work is looking at a fundamentally different characterization, providing novel insights that 

cannot be obtained through static or non-directional connectivity. Consequently, their work also 

did not present a coherent and comprehensive aberrant network structure that could explain PTSD 

and mTBI symptoms, possibly because they used only global measures of integration that do not 

give connection-level characterization, and they did not use directional connectivity. Rather they 

identified certain nodes with reduced static non-directional segregation, which correlated with 

certain relevant behaviors, whose usefulness and applications are different from that aimed in this 

work. 

 

SI-2. Supplemental Methods 

SI-2.1. Psychological health measures 

PTSD Checklist-5 (PCL5, [6]): The PCL5 is a 20-item self-report measure that assesses DSM-

V symptoms of PTSD. The PCL5 serves a variety of purposes, including making PTSD diagnoses, 

monitoring symptom change during and after treatment, and screening individuals for PTSD. Items 

are rated with a 5-point Likert scale; 1="Not at all" to 5="Extremely". An aggregate score (range: 

20-100) is obtained by summing the scores from all the 20 items, with a cut-score of 38 for a 

precursory diagnosis of PTSD [7]. 

PCL5 scores were significantly different (F(2,85)=101.65, p=3.64×10-44) between control 

group and the PTSD and PCS+PTSD groups combined. The reason for such a comparison was 
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that PTSD is the common condition between the PTSD and PCS+PTSD groups, with the PCL5 

score measuring only PTSD symptom severity. 

Neurobehavioral Symptom Inventory (NSI, [8]): The NSI is a 22-item self-report measure 

designed to assess post-concussive symptoms in persons sustaining an mTBI. Participants rate the 

severity of every symptom (within the past month) on a 5-point Likert scale ranging from 0 (none) 

to 4 (very severe). A total score (range: 0-88) is obtained by summing scores of the 22 items. NSI 

scores were significantly different (F(2,85)= 49.79, p=1.32×10-29) between PCS+PTSD group and 

the PTSD and control groups combined. 

CNS-Vital Signs® (CNS-VS, [9]): CNS-VS is a computerized neurocognitive assessment 

battery. We used five CNS-VS sub-tests (verbal memory, Stroop test, symbol digit coding, shifting 

attention test and continuous performance test). The following CNS-VS domain scores were then 

calculated: verbal memory (VM), reaction time (RT), complex attention (CA), cognitive flexibility 

(CF), processing speed (PS), and executive functioning (EF). Domain scores possess a mean of 

100 and standard deviation of 15. They were averaged to form a single aggregate score called 

neurocognitive composite index (NCI) [9]. 

 

SI-2.2. Procedures 

Upon arrival at Auburn University’s MRI Research Center for the scheduled appointment, 

participants were re-consented and re-screened for eligibility to ensure full comprehension of the 

study’s procedures, their rights and benefits. Participants finished a computerized neurocognitive 

battery of questionnaires and tests assessing medical history, demographics and psychological 

health. Once completed, the participants were escorted to the MRI suite for imaging. After 

completion, participants were provided a check for up to $250 to compensate for their time 

commitment. 

Two identical but separate resting-state fMRI scans were performed for every participant and 

processed independently, thus providing 174 sessions of data for the 87 participants, which 

mathematically boosted the statistical power of our analysis beyond what would have been 

available from single scans of 87 participants, given that statistics were performed with 

connectivity values that were double in number (per connectivity path) in comparison with the 
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total number of participants per group. The two scans were performed on the same day, during the 

same visit of the soldier to the MRI Research Center. However, they were not done back to back, 

since a T1 MPRAGE sequence was executed between them. 

 

 

 

SI-2.3. Complex-Network Analysis 

We first describe the network measures of segregation and integration, and then explain how 

they were used in the context of this work. As noted earlier, we dealt with weighted directed 

networks in this work. Weighted, because we did not binarize our connectivity matrices, since 

binarizing requires choosing an arbitrary threshold value that might bias the results in faulty ways. 

There are approaches to binarize reliably [10], which essentially involves using a range of arbitrary 

thresholds and either choosing one of them based on some mathematical criteria or reporting 

findings for an entire range of thresholds. However, given the complexity of our hypothesis, we 

chose to use weighted networks instead, which is considered acceptable [10]. 

Functional segregation was quantified using transitivity (global measure, one value for whole 

brain per participant), clustering coefficient and local efficiency (both local measures, one value 

per node/region per participant). Functional integration was quantified using global efficiency 

(global measure), shortest path length and edge betweenness (both local measures, one value per 

connection per participant). We obtained source codes for these measures from the Brain 

Connectivity Toolbox (April 2014 release) [10], and implemented the entire pipeline in the 

Matlab® platform through custom codes. We explain each of these measures here (for weighted 

directed networks only), while a more detailed account can be found in [10]. 
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Fig.S1. A simple example network used to explain several complex-network measures numerically. 

The node numbers are marked within the node. The connectivity weight for each directional 

connection are marked next to the arrow. This network contains two sub-networks or modules 

(nodes 1,2,3 and nodes 4,5,6,7), which are connected through pivotal connections between node-

3 and node-4. 

 

We first define certain basic network entities. All measures are explained numerically using a 

simplified example (see Fig.S1). The degree of a node is the sum of all the connectivity weights 

associated with a node. Given the set of all nodes (brain regions or ROIs) N and connectivity 

weights (EC value) 𝑤𝑖𝑗 for path i-to-j (i,j), the degree of a node is defined as, 

 

𝑂𝑢𝑡 𝑑𝑒𝑔𝑟𝑒𝑒: 𝑘𝑖
𝑜𝑢𝑡 = ∑ 𝑤𝑖𝑗; 

𝑗∈𝑁
 𝐼𝑛 𝑑𝑒𝑔𝑟𝑒𝑒: 𝑘𝑖

𝑖𝑛 = ∑ 𝑤𝑗𝑖
𝑗∈𝑁

                                                      (1) 

 

In the example (Fig.S1), the degrees for node-4 are 𝑘4
𝑖𝑛 = 2.6, 𝑘4

𝑜𝑢𝑡 = 1.5, while that for node-

2 are 𝑘2
𝑖𝑛 = 0.5, 𝑘2

𝑜𝑢𝑡 = 1.0. This shows that node-4 is a stronger node and is predominantly 

driven by other nodes while node-2 is a weaker node and predominantly drives others. The weight 

of a “no connection” is taken as zero. The number of triangles around a node is the basis for 

measuring segregation, which informs about how well the neighbors of a node are well-connected 

neighbors themselves, which characterizes how well-connected a sub-network is. The number of 

triangles around a node is defined as the geometric mean of the triangles around node i as, 
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𝑡𝑖 =
1

2
∑ [(𝑤𝑖𝑗 + 𝑤𝑗𝑖)(𝑤𝑖ℎ + 𝑤ℎ𝑖)(𝑤𝑗ℎ + 𝑤ℎ𝑗)]

1
3⁄

𝑗,ℎ∈𝑁
                                                                    (2) 

 

In the example (subscripts indicate node number), 𝑡3 = 0.4, 𝑡6 = 1.3. If the connection 

between nodes 4 and 5 is removed and inserted as the connection between nodes 4 and 1, we get 

𝑡3 = 1.6, 𝑡6 = 0.5, which is a reversal from the former case. 

The shortest path length (SPL) is a basis for measuring integration, and is estimated as the 

smallest sum of inverse path-weights from node i to j. It is a measure of how easy it is to reach 

node j from node i. The shortest path 𝑔𝑖→𝑗 is usually determined using Dijkstra’s algorithm [11]. 

The shortest path length is determined as, 

 

𝑑𝑖𝑗 = ∑ 1
𝑤𝑢𝑣

⁄
𝑤𝑢𝑣∈𝑔𝑖→𝑗

                                                                                                                             (3) 

 

In the example (Fig.S1), 𝑑1→7 = 5.2, 𝑑7→1 = 6.5, indicating that it is shorter (easier) to 

communicate from node 1 to 7 than from node 7 to 1. The SPL is a supremely important network 

measure, and is analogous to meta-connectivity, because it represents indirect connections between 

regions which are directly not connected with pairwise connectivity modeling (or weakly 

connected). For example, nodes 1 and 7 are not directly connected, but SPL makes it possible to 

quantify indirect relationships between them through other regions. 

Measures of segregation: 

Transitivity is a global measure indicating the average percentage of triangles (clusters) 

associated with the nodes compared to the total strength of all connections. It is a global measure 

of overall efficiency of local processing in the brain, which is defined as, 

 

𝑇 =
∑ 𝑡𝑖𝑖∈𝑁

∑ [(𝑘𝑖
𝑖𝑛 + 𝑘𝑖

𝑜𝑢𝑡)(𝑘𝑖
𝑖𝑛 + 𝑘𝑖

𝑜𝑢𝑡 − 1) − 2 ∑ 𝑤𝑖𝑗𝑤𝑗𝑖𝑗∈𝑁 ]𝑖∈𝑁

                                                              (4) 

 

In the example (Fig.S1), simple computation yields T=0.22. If nodes 4 to 7 were to be removed, 

we get T=0.39 since nodes 1-3 form neat triangles. If nodes 1 to 3 were to be removed, we get 
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T=0.28; lower since nodes 5 and 7 are not connected. The entire network has a smaller transitivity 

value since the connection from nodes 3 to 4 is not part of any triangle/cluster. 

Clustering coefficient (CC, a local measure) gives a transitivity-type characterization for every 

node. It is the ratio of all triangles around a node to the total sum of all connectivity weights 

associated with the node. 

 

𝐶𝐶𝑖 =
𝑡𝑖

[(𝑘𝑖
𝑖𝑛 + 𝑘𝑖

𝑜𝑢𝑡)(𝑘𝑖
𝑖𝑛 + 𝑘𝑖

𝑜𝑢𝑡 − 1) − 2 ∑ 𝑤𝑖𝑗𝑤𝑗𝑖𝑗∈𝑁 ]
                                                                   (5) 

 

In the example (Fig.S1), 𝐶𝐶3 = 0.13, 𝐶𝐶5 = 0.45, because about one-thirds of node-3’s 

connections do not form a triangle at all, while all of node-5’s connections form triangles and with 

high strengths. Clearly, node-5 is associated with more specialized processing. 

Local efficiency (EffLoc, a local measure) is closely related to CC. Essentially, if a given node 

has powerful neighbors that are involved in several shortest paths, then the node has high EffLoc, 

indicating that the node is important in the sub-network for specialized processing. 

 

𝐸𝑓𝑓𝐿𝑜𝑐𝑖 =
∑ [(𝑤𝑖𝑗 + 𝑤𝑗𝑖)(𝑤𝑖ℎ + 𝑤ℎ𝑖)([𝑑𝑗ℎ(𝑁𝑖)]−1 + [𝑑ℎ𝑗(𝑁𝑖)]−1)]𝑗,ℎ∈𝑁,𝑗≠𝑖

[(𝑘𝑖
𝑖𝑛 + 𝑘𝑖

𝑜𝑢𝑡)(𝑘𝑖
𝑖𝑛 + 𝑘𝑖

𝑜𝑢𝑡 − 1) − 2 ∑ 𝑤𝑖𝑗𝑤𝑗𝑖𝑗∈𝑁 ]
                              (6) 

 

Where 𝑑𝑗ℎ(𝑁𝑖) is the shortest path length between j and h which contains only the neighbors 

of node i. In the example (Fig.S1), 𝐸𝑓𝑓𝐿𝑜𝑐3 = 0.15, 𝐸𝑓𝑓𝐿𝑜𝑐5 = 0.45. While CC and EffLoc 

usually give similar (but not same) results, their interpretations are different. In this work, along 

with transitivity as the global measure, we employed both CC and EffLoc as local measures, which 

are the two popularly used local measures of segregation. We took an overlap (intersection) of the 

final significant group differences for the two measures, so that the affected nodes had differences 

in both the measures, thus providing more conservative results with a broader interpretation. 

Measures of integration: 

Global efficiency (EffGlob) is a global measure indicating the aggregate ease of 

communication in the entire network. It is defined as the average inverse shortest path length of 
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the complete network. That means, if the shortest paths in the network are shorter (easier to 

communicate) on average then we get a larger global efficiency. 

 

𝐸𝑓𝑓𝐺𝑙𝑜𝑏 =
1

𝑛
∑

∑ (𝑑𝑖𝑗)
−1

𝑗∈𝑁,𝑗≠𝑖

𝑛 − 1𝑖∈𝑁
                                                                                                     (7) 

 

Where n is the total number of nodes in the network. In the example shown in Fig.S1, 

EffGlob=0.32. Now if we were to remove the connections between nodes 1 and 2, we would get 

EffGlob=0.32 (unchanged), because it is a localized connection that does not have much role in 

information integration. However, if we were to remove the connections between nodes 3 and 4, 

which is the key link between the two sub-networks, we would get EffGlob=0.18. 

Edge betweenness (EB) is a local measure obtained for each connection. For a given 

connection, it measures the number of all shortest paths in the entire network that contain the given 

connection. That means, if the connection were an important link in the network, then a large 

portion of shortest paths would go through it, giving a high value of EB. It is evaluated through a 

variant of Dijkshra’s algorithm [10]. In our example (Fig.S1), 𝐸𝐵1→2 = 0, 𝐸𝐵4→6 = 4, 𝐸𝐵6→4 =

6, 𝐸𝐵3→4 = 12. These values are intuitive since path 1→2 has little role in integrating the rest of 

the network, while the paths between nodes 4 and 6 have a role restricted within the sub-network 

(with 6→4 being stronger than 4→6). The path between nodes 3 and 4, however, is pivotal to the 

efficient communication between the sub-networks and integration of information, which is why 

we observe the highest EB for this path. 

 

SI-2.4. Machine learning classification analysis 

Here, we explain the RCE-SVM classification technique [12] in detail. The data was first split 

into training data (patterns in the data are learned from this) and testing/validation data (the learned 

pattern is independently tested with this to assess the quality of learning). Significant group 

differences were then identified for all three comparisons (PTSD vs PCS+PTSD, control vs 

PCS+PTSD, and control vs PTSD) from the training data only, using a threshold of p<0.05 

(controlled for age, education, race and head motion). An uncorrected significance threshold was 

used (p<0.05) since we wanted to be liberal about which features were fed into the classifier, thus 
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having the classifier itself choose the most predictive features. Next, we identified overlapping 

network measures between the three comparisons, across all network measures, which formed the 

input features to the classifier. This initial filtering is found to enhance the quality of classification 

[13] by ensuring that non-discriminatory features are not input to the classifier. 

Our choice of support vector machine (SVM) [14] for classification was driven by its wide 

applicability and acceptance in several fields including neuroimaging [15]. Earlier studies have 

illustrated that the use of discriminatory features enhances SVM classification performance [12] 

[13]. Thus, we employed the wrapper method of recursive cluster elimination (RCE), which 

iteratively eliminates features to minimize prediction error, wherein feature selection and feature 

classification steps are embedded together. The RCE-SVM classification technique’s main steps 

are the clustering step, the SVM-scoring step and the RCE step. Features initially fed into the 

classifier were divided into training and testing datasets. The classifier was trained on the training 

data, while the testing data was entirely kept blinded to the classifier. Once training was completed, 

the testing data was fed to the classifier to obtain the classification accuracy, which ensured 

generalizability of results. 

In clustering step, the k-means algorithm was utilized to cluster training data into ‘N’ clusters. 

Initially the number of clusters was set as the number of features, and was then iteratively reduced 

by one, until no empty clusters remained. The value of ‘N’ obtained through this served as the 

initial ‘N’ for the RCE-SVM loop. In the SVM-scoring step, linear SVM was employed and each 

cluster was scored based on its ability to differentiate between groups. To assess cluster 

performance, training data was randomly partitioned into six non-overlapping subsets of equal 

sizes (i.e. six folds). Using five of those subsets, SVM was trained and performance (accuracy) 

was computed using the remaining subset. All possible partitions were generated by repeating the 

clustering cum cross-validation procedure a hundred times. For each of the hundred repetitions, 

classification accuracy was obtained using the testing data. 

Using the outcome of these hundred repetitions and six folds for each repetition, the cluster’s 

score was obtained as the average accuracy. Bottom 20% of low-scoring clusters were rejected in 

the RCE step. Remaining features were then merged and the value of ‘N’ was reduced by 20%. 

This ascertained that only a few top-classifying features qualified for the next iteration. The 

clustering step, SVM-scoring step and the RCE-step were iteratively repeated again. After each 
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such iteration, classifier performance was computed using reduced number of features compared 

to the earlier iterations. Once the number of clusters reached two, the process was terminated. 

Fig.S2 illustrates the RCE-SVM procedure with a flowchart. The complete separation of training 

and testing data sets eliminates bias in the calculation of classification accuracy [16]. Further, the 

few features obtained in the final two clusters would then be those with highest discriminative 

ability, hence carrying predictive value for diagnosis. Complete information on the RCE-SVM 

algorithm could be obtained from previous reports [12] [17]. 

 

 

Fig.S2. Flowchart describing the recursive cluster elimination based support vector machine 

(RCE-SVM) classification procedure 

 

SI-3. Supplemental Results 

SI-3.1. Observations using a different brain parcellation instead of Craddock-200 

We repeated our analysis pipeline by using the Shen functional brain parcellation [18] instead 

of the Craddock-200 atlas (identical statistical methods and thresholds were used in the repeated 
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analysis). We found very similar results using the Shen atlas as compared to the Craddock-200 

atlas. Specifically, we found altered functional segregation within ROIs in the middle frontal gyrus 

(MFG), medial prefrontal, anterior insula, hippocampus and visual regions. We found altered 

functional integration from left MFG to the left insula, left amygdala and left hippocampus, to the 

lateral parietal cortex – these were altered between all three groups. We found altered integration 

from the same prefrontal regions to visual and lateral parietal, which were significantly different 

for control vs PTSD and control vs PCS+PTSD comparisons, but not for PTSD vs PCS+PTSD 

comparison. These results are essentially the same as those observed using the Craddock-200 atlas. 

Machine learning results also showed the same trend of higher accuracy using graph measures as 

compared to non-imaging measures; a classification accuracy of 81.16% was obtained (which is 

close to the 81.37% accuracy obtained using Craddock-200 atlas). The classification accuracies 

obtained with the two atlases were not significantly different (p=0.56). Since we obtained similar 

results with two different atlases, it is reassuring that our results are not highly specific to the 

Craddock-200 parcellation. 

 

SI-3.2. Observations using eigenvariate time series data instead of mean time series 

In this study, mean time series was obtained (post voxel-level deconvolution) from 3D+time 

fMRI data using the Craddock-200 atlas, as described in the main manuscript. The practice of 

computing mean time series from ROIs has been followed in fMRI studies since a long time (for 

example, [19] [20] [21] [22] [23]). Each ROI may have a few hundred/thousand voxels; hence, 

given that the purpose of ROI time series extraction is to obtain one time series from 

hundreds/thousands of voxel time series, it is an obvious step to take the average of all voxel time 

series to obtain the ROI time series. This explains its widespread use. We have used mean time 

series in several of our recent publications as well [24] [25] [26] [27]. That being said, we also 

acknowledge that some studies have questioned the approach of averaging the time series [28]. 

Hence, as an alternate approach, we obtained eigenvariate time series [29] instead of mean time 

series and repeated the analysis. Across all subjects and voxels, the correlation between mean time 

series and eigenvariate time series was 0.948±0.044 (significantly correlated in 100% of the data, 

p<0.05), implying that the two approaches resulted in nearly identical time series. We also repeated 
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the analysis pipeline with eigenvariate time series instead of mean time series and arrived at the 

same results (same segregation nodes and integration connections were identified). 

 

SI-3.3. Observations using ROI-level deconvolved data instead of voxel-level deconvolved data 

In our study, we performed deconvolution on voxel-level time series, and then extracted mean 

deconvolved time series from that using the Craddock-200 parcellation. An alternate option would 

have been to extract mean ROI time series first and then perform deconvolution on ROI data. Here 

we provide justification for choosing the former. 

Our choice is driven by the fact that intra-subject spatial variability of the hemodynamic 

response function (HRF) has been demonstrated before [30] [31]. HRF varies across the brain 

within an individual, and this variability depends on several factors that modulate neurovascular 

coupling including blood vessels and neuromodulators within the voxel [32] [33] [34]. These 

factors could vary sharply across nearby voxels, for example, if an artery is passing through a 

voxel then that voxel is expected to have a markedly different HRF compared to its neighbors that 

don’t have the artery. This being the case, it is preferable to model HRF variability at the voxel-

level to minimize the confound of HRF variability as much as possible, which explains our choice. 

Nevertheless, we repeated the analysis pipeline by performing deconvolution on mean ROI 

time series instead of voxel-level time series. Across all subjects and ROIs, we found that the 

correlation between voxel-level deconvolved and ROI-level deconvolved ROI time series data was 

0.922±0.063 (the correlations were significant in every ROI in every subject). Hence, it appears 

that, on average, the two approaches result in very similar deconvolved time series. We repeated 

our analysis pipeline using ROI-deconvolved data (identical statistical analysis and thresholds) 

and found the same results (same segregation regions and integration connections emerged). 

 

SI-3.4. Supplemental machine learning classification results 

In the main text, we presented worst-case classification accuracy results (Fig.9b and Table 3). 

Here we present Fig.S3, showing average classification accuracies instead. 
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Fig.S3. Machine learning classification was performed using recursive cluster elimination based 

support vector machine (RCE-SVM) classifier, to classify between control, PTSD and PCS+PTSD 

groups. Figure shows average classification accuracies obtained using recursively reducing 

number of discriminative features (poorer features are successively eliminated). Classification 

was independently performed with both whole-brain network measures and non-imaging 

measures. We observed that network measures consistently outperformed NIMs, with about 11% 

better performance in the final RCE step using top-predictive connectivity features. The trend is 

highly similar to what was observed with worst-case accuracies. 
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