20 Lee and Moody, et al.

A SUPPLEMENTARY MATERIALS
A.1 Derivation of Worse Case Insertion Performance

The number of combinations at each level [for a k-simplex is given by the binomial theorem, (];)
In the worst case, where the simplicial complex is empty, the total number of nodes created for
inserting a k-simplex is Zf:o (Ilc) = 2% The number of edges to represent all topological relations is

then given by Zf:o l(];) =k-2k 1

A.2 Templated Insertion Algorithm

Pseudocode for the algorithms presented in this manuscript have been vastly simplified in order
to facilitate understanding. For example Algorithm 1, while the non-templated version is appears
straightforward, it is impossible to be implemented in C++ directly, due to several typing related
issues. First, the function prototype for insert () requires the rootSimplex as the second argument.
Simplices at different levels have different types and insert() must be overloaded. Similarly the
variable newSimplex and function createSimplex () must know the type of simplex which will
be created at compile time.

The actual implementation uses variadic templates to resolve the typing issues. As an example,
templated pseudocode for simplex insertion (Algorithm 1) is shown in Algorithm 6. Not only does
the templated code automatically build the correct overloaded functions, but it provides many
optimizations.

The step-by-step insertion of tetrahedron {1,2,3,4} is shown in Figure 6. Numbered red lines
correspond to newNode and root in function insertNode (). Skinny black lines are the topological
relations inserted by backfill().

Colored Abstract Simplicial Complex

ALGORITHM 6: Templated pseudocode implementation of Algorithm 1.

Input: keys[n]: Indices of n simplices to describe new simplex s,
¥ simplicial complex
Output: The new simplex s

/* User function to insert simplex {keys} */
Function insert<n>(keys[n]){
return setupForLoop<0, n>(root, keys) /* ’root’ is the root node */
}
// The following are private library functions...
/* Array slice operation. Algorithm 1: keys[0:i] */
Function setupForLoop<level, n>(root, keys){ /* General template */
return forLoop<level, n, n>(root, keys) /* Setup the recursive for loop */
}
Function setupForLoop<level, 0>(root, keys){ /* Terminal condition n=10 */
return root
}
/* Templated for loop. Algorithm 1: for (i = @; i < n; i++) */
Function forLoop<level, antistep, n>(root, keys){ /* For loop for antistep */
/* n— antistep defines next key to add to root */
insertNode<level, n-antistep>(root, keys)
return forLoop<level, antistep-1, n>(root, keys)
}
Function forlLoop<level, 1, n>(root, keys){ /* Stop when antistep = 1 */
return insertNode<level, n-1>(root, keys)
}
Function insertNode<level, n>(root, keys){ /* Insert a new node */
v = keys[n]
if (root Uv € F)1
newNode= root.up[v]
}
else{ /* Add simplex root Uwv */
newNode = createSimplex<n>() /* Create a new node, n-simplex newNode */
newNode.down[v] = root /* Connect boundary relation */
root.up[v] = newNode /* Connect coboundary relation */
backfill (root, newNode, v)/* Backfill other topological relations */
}
/* Recurse to insert any cofaces of newNode. Algorithm 1: insert(keys[@:i],
newSimplex) */
return setupForLoop<level+1, n>(newNode, keys)
}

Function backfill<level>(root, newNode, value){ /* Backfilling pointers to other parents */
for (currentNode in root.down){

childNode = currentNode.up[value] /* Get simplex currentNode U value */
newNode.down[value] = child /* Connect boundary relation */
child.up[value] = newNode /* Connect coboundary relation */

22 Lee and Moody, et al.

Fig. 6. The Hasse diagrams for the step-by-step insertion of tetrahedron {1,2,3,4} by Algorithm 1. Red lines
represent the order of creation for each simplex. The skinny black lines represent where connections to parent
simplices are backfilled.

Colored Abstract Simplicial Complex 23

A.3 Code for Getting Neighbors by Adjacency

The C++ code for collecting the set of k-simplices sharing a common coface with simplex s. A
function call to neighbors_up() calls the following code which serves primarily to help the
compiler deduce the dimension, k, of s.

template <class Complex, class SimplexID, class InsertlIter>

void neighbors_up(Complex &F, SimplexID s, InsertIter iter)
{

neighbors_up<Complex, SimplexID::level, InsertIter>(F, s, iter);

3

With the simplex dimension determined, we call an overloaded function which defines the operation
for a k-simplex.

template <class Complex, std::size_t level, class InsertlIter>
void neighbors_up(
Complex &F,
typename Complex::template SimplexID<level> s,
InsertIter iter)

{
for (auto a : F.get_cover(s))
{
auto id = F.get_simplex_up(s, a);
for (auto b : F.get_name(id))
{
auto nbor = F.get_simplex_down(id, b);
if (nbor != s)
{
*iter++ = nbor;
3
}
3
3

Neighbors of s are pushed into an insert iterator provided by the user. In this fashion, depending
upon the container type the iterator corresponds to, the user can specify whether or not duplicate
simplices are returned (std: : vector) or not (std: : set).

	A Supplementary Materials
	A.1 Derivation of Worse Case Insertion Performance
	A.2 Templated Insertion Algorithm
	A.3 Code for Getting Neighbors by Adjacency

