Supporting information

Prediction of Ordered Water Molecules in Protein Binding Sites from Molecular Dynamics Simulations: The Impact of Ligand Binding on Hydration Networks

Axel Rudling¹, Adolfo Orro¹, and Jens Carlsson^{2,*}

¹ Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden.

² Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, BMC, Box 596, SE-751 24 Uppsala, Sweden.

*Corresponding author e-mail: jens.carlsson@icm.uu.se.

Table of Contents

Table S1. Protonation states of histidine residues	
Table S2. Summary of number of crystal structures per protein	S5
Table S3. Summary of results for eight apo crystal structures	S6

Supporting Tables

Table S1. Protonation states of histidine residues present within the simulation sphere.

Protein	Residue number	Protonation
Acetylcholinesterase	159	δ
	170	3
	185	δ
Coagulation factor VII	25	δ
	48	3
	115	δ
	132	δ
Fatty acid binding protein adipocyte	132	3
Heat shock protein HSP 90-alpha	51	3
	118	3
	151	3
	158	3
Tyrosine-protein kinase JAK2	6	δ
	40	δ
	54	3
	86	δ

	105	3
Poly [ADP-ribose] polymerase-1	23	δ
	49	δ
	52	3
	67	δ
	114	δ
	137	δ
	140	δ
	146	δ
Serine/threonine-protein kinase PLK1	52	3
	57	3
	59	δ
	64	δ
	86	3
Protein-tyrosine phosphatase 1B	10	δ
	59	δ
	88	3
	90	3
	113	δ
GAR transformylase	33	3

	76	3
	89	δ
	103	δ
	135	3
Muscle glycogen phosphorylase	50	3
	55	δ
	67	δ
	78	δ
	87	ϵ and δ
	106	δ
	144	δ
	145	δ
Thrombin	29	δ
	52	δ
	151	δ
Trypsin I	17	8
	31	δ

Protein	Protein Number of structures	
Acetylcholinesterase	56	
Coagulation factor VII	53	
Fatty acid binding protein adipocyte	25	
Glutamate ionotropic receptor AMPA subunit 2	38	
Heat shock protein HSP 90-alpha	196	
Tyrosine-protein kinase JAK2	32	
Poly [ADP-ribose] polymerase-1 ^a	16	
Serine/threonine-protein kinase PLK1 ^a	8	
Protein-tyrosine phosphatase 1B	116	
GAR transformylase ^a	19	
Muscle glycogen phosphorylase	167	
Thrombin	215	
Trypsin I	371	
Sum:	1312	

Table S2. Number of crystal structures of the proteins from the PDB with resolution ≤ 2.5 Å and an RMSD < 1.0 Å to the reference structure.</td>

^a This protein was not included in the analysis of frequently observed crystal waters because there were ≤ 20 crystal structures of the protein.

Protein	PDB code	Crystal waters ^a	Hydration sites ^b
Acetylcholinesterase	1ea5	13 (8)	19
Coagulation factor VII	1 klj	1 (0)	31
Fatty acid binding protein adipocyte	3q61	16 (14)	21
Glutamate ionotropic receptor, AMPA subunit 2	4o3b	12 (10)	25
Heat shock protein 90-alpha	luyl	15 (13)	17
Protein-tyrosine phosphatase 1B	2cm2	12 (10)	19
Thrombin	2uuf	20 (14)	29
Trypsin I	1s0q	19 (9)	26

Table S3. Summary of results for eight apo crystal structures.

 Sum:
 108 (78)
 187

 ^a Number of waters in the binding site of the crystal structure, *i.e.* within 4 Å of both the protein and ligand (from the reference structure). The number of crystal waters that were reproduced by hydration sites is shown in parentheses.
 b
 Number of hydration sites within 4 Å of the protein and ligand (from the reference structure).