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Comparing the elastic energy of a single feature supported on a substrate 

A pillar supported on an elastic substrate deforms and stores elastic energy in three ways: (1) bending of 

the pillar, (2) stretching of the pillar, or (3) deformation of the underlying substrate.[30] During 

compression, it is unlikely that the finger will press at an angle greater than 30o from the perpendicular. 

This is a safe assumption based on our observation of the ways in which the participants interacted with 

the slabs. 

 

The energy of bending a pillar is given as 

 

𝑈𝑏 =
2𝐹𝑥
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Where F is the applied force (the x-axis is parallel to the surface of the slab, whereas the z-axis is normal 

to the surface), r is the radius of the micropatterned pillar, h is the height of the pillar, and E is the 

Young’s modulus. 

 

The energy of compressing a pillar is given as  

 

𝑈𝑝 =
𝐹𝑧

2ℎ
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The energy of a pillar deforming the underlying substrate is given as  

 

𝑈𝐷 =
8𝜋𝐹2

27𝐸𝑟
 

(S3) 

 

Note that all three equations have the same dependence on E and F (to a constant, geometric factor). As a 

consequence, the relative contribution from bending, compression of a pillar, and deforming the 

underlying substrate are the same at all moduli and forces. Comparing relative contributions 
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We obtain dimensionless values of 0.0066, 0.0597, and 0.9308 for the bending, stretching and substrate 

deformation components, respectively at 30o. The bending component is less than 1% of the stretching 

and substrate components in all cases. Slabs with a micropatterning of 30% were made of pillars and 50% 

were made from the negative of pillars (wells). Wells are less susceptible to bending because wells form a 

contiguous network, whereas pillars are stand-alone features. 

 

 

 

 

 

 

 

 

 

 

 



Hertzian contact model of a deformable finger 

 
We used the confinement effect of thin films to control the ratio between indentation depth and contact 

area (or equivalently, the radius), which is otherwise fixed for semi-infinite elastic bodies. In addition to 

the sample, the finger is also deformable, so we first consider two simpler cases where one object is 

deformable and the other is rigid. fig. S1a considers the case of a deformable finger and shows the contact 

area and indentation caused by a rigid substrate onto the finger, where the finger is considered as an 

elastic sphere with a finite thickness. In this case, the finger cannot penetrate into the substrate and 

deforms inward with a contact radius of a and the interface is displaced by δF. In the other case, we 

consider a deformable planar substrate that is being indented by a rigid finger (fig. S1b). In this case, the 

finger keeps its spherical shape at all applied forces and indents into the substrate by δS and a contact 

radius of a. Finally, we combine a deformable finger pushing into a planar deformable sample with finite 

thickness (see fig. S1c). Qualitatively, the finger acts as a deformable sphere and controls the contact 

radius. because the contact radius increases with increasing applied force. The contact radius of the finger 

serves as the radius of a cylindrical flat punch indenting into the substrate. Ordinarily, a cylindrical flat 

punch has a fixed radius that is insensitive to changes in force but the unique scenario arises shown in 

Fig. 1c arises from two deformable objects with different geometries (planar and spherical).   

 

Model parameters 
The model parameters used to calculate all values are given in Table S1. 

 

Table S1. Model parameters for the finger and substrate. 

Variable Value Notes 

EF 750 kPa Young’s modulus of the finger 

ES 0.2, 0.8 or 3 MPa Young’s modulus of the substrate 

νS, νF 0.45 Poisson ratio 

R 5 mm Radius of the finger 

h 0.1 to 4.2 mm Substrate thickness 

 

Two-alternative forced-choice test counterexample 

We demonstrate a hypothetical scenario to illustrate the fact that aggregate percentages are not necessarily 

consistent with head-to-head data. Imagine a scenario where multiple participants were asked to rank 

several different songs based on which ones were “better” (with no other explanation). Based on 

participant responses, we could simply average all participant responses and assemble a ranking of which 

songs were ranked better. Indeed, some songs may even be consistently rated higher than others, for a 

Fig. S1. Schematic of indentation depth and contact area. a) A soft, elastic sphere is pushed into a 

rigid substrate, which has a contact radius of a and an indentation depth of δF. b) A rigid sphere indents 

into a soft, elastic substrate, with a contact radius a and indentation depth into the substrate of δs. c) A 

soft, elastic sphere and a soft, elastic substrate indent a total depth δT with a contact radius a. 



variety of cultural reasons. This aggregated percentage, however, is unlikely to be consistent to head-to-

head comparisons. It is unlikely that the third-best song was always found to better than the fifth-best 

song in head-to-head comparisons. It is further unlikely that, across participants, the fourth-best song was 

better than the fifth-best song in head-to-head comparisons, as well as found to be worse than the third-

best song.  

 

Analyzing participant responses 

We relate participant responses to the slabs. We calculate an indentation depth and contact area at a range 

of forces (at a range similar to human touch) for each slab by using the Hertzian contact model. These 

indentation depths and contact area are then used as the independent variable in the Bradley-Terry model 

to predict participant responses. Different Bradley-Terry models are constructed by comparing different 

methods of combining the indentation depth and contact area, as well as comparing, for example, whether 

the indentation depth follows as the square root, or is linear, with participant responses. These different 

Bradley-Terry models are then compared to one another through by calculating the Akaike information 

criterion (AIC) of each model. To compare whether or not a better predictor of participant responses is 

obtained if we consider the finger is rigid, we recalculate an indentation depth and contact area for each 

slab, assuming contact with a rigid finger. We then repeat the analysis (calculating different Bradley-

Terry models, calculate AIC). Similarly, we verify whether micropatterning had an effect on participant 

responses by recalculating the contact area and reducing the contact area by the amount predicted from 

micropatterning. We then repeat the same analysis (calculating different Bradley-Terry models, calculate 

AIC). A schematic of this analysis shown in fig. S2. 

 

 
 

Fig. S2. Flowchart for analyzing participant responses. A Hertzian contact model is used to calculate 

indentation depth, δ, and contact area (radius, a) at a given force, F. Then the contact area is reduced for 

some slabs, depending on whether or not the slab was micropatterned. These values are then used to 

construct λ, which is used to calculate the probability of each participant response to each sample through 

the Bradley-Terry model. The Bradley-Terry model calculates parameters A and B by minimizing the 

error between participant responses to all paired comparisons (36 comparisons from 9 samples). The 

Akaike information criterion of each Bradley-Terry model is calculated, which is used to compare 

different scenarios (Hertzian models, forces, combinations of δ and a).  



AIC for all modeling scenarios 

The difference in AIC between the best-fit model and a variety of models is shown in fig. S3. These 

include results from both psychophysical tasks. 

 
Fig. S3. AIC of all scenarios for both psychophysical tests. Difference in AIC for a variety of scenarios 

and hypothesis are shown. Open markers represent results from the two-alternative forced choice test 

(2AFC). Closed markers represent results from the magnitude estimation test (ME). Calculating the 

contact area including the reduced contact area from micropatterning shown in circular markers, whereas 

ignoring the reduced contact area shown with circular marker. Title on y-axis is redundant with legends, 

shown for convenience. Naming convention follows accounting for the reduced area from 

micropatterning (#-includes micropatterning, !-ignores micropatterning), the combination of indentation 

depth and contact area, and modeling the finger as deformable (DF) or rigid (RF). Note that the scale bar 

can be translated left or right, but exists on an exponential scale. Therefore, doubling the distance 

increases the likelihood that one scenario is more probable by 1000-fold. 



Finite element model of strain fields 

The effect of micropatterned interfaces on the strain fields was simulated and shown in fig. S4. A total 

applied force of 1 N was spread across an interfacial area of 6.4 × 10-5 m2.  

 

 
 

Fig. S4. Finite element modeling of stress between micropatterned surface and finger. In (a), model 

setup of a flat object, representing the soft, outer layer of the finger contacting a micropatterned surface. 

(b) Von Mises stress across a micropatterned surface. (c) Same as (b), but for a flat surface. Color scale 

bar identical for the outputs of both simulations. 

 

The model geometry is shown in fig. S4a. Within fig. S4b, a heterogenous stress distribution extends 

between 0.05-0.06 mm into the skin. This heterogenous stress distribution has distinct oscillations in force 

compared to the flat interface in fig S4c. 

Testing generalization accuracy using leave-one-out cross-validation 

One potential concern is that our equation is overfitted to the participants in our experiment, and that the 

equation is not generalizable. To address this, we assessed model generalization using leave-one-out 

cross-validation (LOO CV). For each of the five participants, either Equation 5 (for the two-alternative 

forced choice test) or Equation 7 (for magnitude estimation) was re-derived using only the other four 

participants’ data, yielding five different equations (one for each participant). These rederived equations 

were then used to predict the responses for the remaining participant. This LOO CV procedure enables us 

to estimate the ability of Equation 5 and 7 to predict the responses of new participants whose data did not 

contribute to the derivation of the equation. 

 

To quantify the accuracy of the predictions in the two-alternative forced choice test, we used a LOO CV 

model to fit a logistic mixed effects regression with random effect of participant. The intercept term of the 

model (i.e., model accuracy) was significantly larger than chance ( 𝑐ℎ𝑎𝑛𝑐𝑒 𝛽0 = 0, 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝛽0 =
1.30, 𝑊𝑎𝑙𝑑 𝑧 = 6.19, 𝑝 < 0.0001). Furthermore, we compared the prediction accuracy of the LOO CV 

model to the prediction accuracy of the full (i.e., potentially-overfit) model (fig. S5). The LOO CV model 

was not significantly less accurate than the full model (𝑊𝑎𝑙𝑑 𝑧 = 0.31, 𝑝 = 0.76); indeed, the LOO CV 

model was only 0.55% less accurate than the full model. 



 
Fig. S5. Leave-one-out cross-validation of participant responses of the two-alternative forced-choice 

test. Performance of Equation 5 when fit to the full and cross-validated models. Model accuracy is back-

transformed from the fixed-term intercept using the inverse logit function. Error bars are 95% confidence 

intervals. The dotted red line depicts chance performance.  

 

A similar accuracy between the full and cross-validated models both yield suggests that the residual error 

(~20%) is not due to between-participant differences, but rather due to additional factors (e.g. differences 

in applied force between participants during the moment of judgement). Furthermore, the similar 

accuracy suggests that equations 5 is not overfit, and is likely to yield similar accuracy when applied to 

new participants. 

 

For Equation 7, in magnitude testing, “accuracy” is not as well-defined because participant responses are 

not binary. Instead, we quantified the average absolute deviation between the prediction of Equation 7 

and participant responses. For example, if our equation predicts a softness of 8, and the participant 

indicates a softness of 6, the absolute deviation for this trial would be 2. As before, we can test 

generalization by comparing the average absolute deviation for the predictions of the full model to the 

average absolute deviation for the predictions of a LOO CV model. On average, the model predictions for 

the LOO CV model were within 1.59 units (on the 1-10 scale) of the participant’s true responses, whereas 

the model predictions for the full model were within 1.54 units (on the 1-10 scale). This is not a 

statistically-significant difference in average absolute deviation (𝑡(87.96) = −0.18, 𝑝 = 0.86); indeed, 

the average absolute deviation for the LOO CV model was only 0.047 units (on the 1-10 scale) larger than 

in the full model.  
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Fig. S6. Leave-one-out cross-validation of participant responses of the magnitude estimation test. 
Performance of Equation 7 when fit to the full and cross-validated models. Absolute deviation are in units 

of the 1-10 softness scale. Error bars are 95% confidence intervals. The dotted red line depicts the average 

deviation of a model for each participant.  

 

As with the two-alternative forced choice test, the insignificant difference between the average absolute 

deviation of the full model and the leave-one-out model shows that Equation 7 is not overfit. Therefore, 

additional participants are likely to yield similar results to Equation 7. 
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Validation of findings on a second set of slabs 

We validated our findings on a larger number of participants by repeating the two-alternative forced 

choice test and magnitude estimation with 10 additional participants on a related, but different set of 

slabs. These slabs had similar thicknesses and micropatterning, but had lower moduli (63 kPa, 592 kPa, 

and 810 kPa, instead of 0.1 MPa, 0.8 MPa, and 3 MPa, respectively—see Table S1). This set of slabs, as 

compared to the slabs in the main text, are more similar to one another. Therefore, the psychophysical 

tasks were somewhat more difficult for the participants. 

Table S2. Slab parameters. 

Slab Young’s Modulus 

E (MPa) 
Thickness  

h (mm) 
Effective surface area 

(% of original surface area) 
Marker 

Yellow (Y) 0.80 4.20 30 ■ 
Blue (B) 0.80 1.40 30 ■ 

Neon green  (Ng) 0.80 0.60 50 ■ 

Red  (R) 0.60 0.58 100 ▲ 
Green  (G) 0.60 0.50 100 ▲ 
Brown  (Wn) 0.60 0.30 100 ▲ 
Orange  (O) 0.06 0.40 30 ● 
Purple  (P) 0.06 0.20 50 ● 

Pink  (K) 0.06 0.13 100 ● 
 

The results from human testing is shown below in fig. S7. 



 

 
Fig. S7. Validating results with psychophysical testing on a second set of slabs. (A) Aggregate 

percentage of times a slab was judged as softer than another in the two-alternative forced choice test. (B) 

Head-to-head comparisons from the two alternative-forced choice tests. (C) Results from the magnitude 

estimation test. (D) Predictive power by AIC of different Hertzian contact models and combinations of 

indentation depth and contact area. n = 10 in both psychophysical tests. 

 

The results from the two-alternative forced choice test are shown in fig. S7A-B. In fig. S7A, we see 

examples where slabs with a lower modulus (P) are not often chosen to be soft. Conversely, the second-



softest sample (R) was fabricated with an intermediate modulus. We confirm that participants are 

evaluating the perceived softness of an object on univariate scale as the majority of responses are 

transitive, as shown in fig. S7B. There are three comparisons which are a toss-up (50%), which 

participants found difficult to distinguish between. Overall, the 33 other comparisons upheld transitivity. 

The results here support the finding that softness is a univariate and basic tactile sensation preserved 

between participants. 

 

Participants were asked to evaluate the relative softness of the samples in a magnitude estimation test. 

These responses are shown in fig. S7C. Participants routinely found certain samples softer than others. 

The order of softness broadly follows the order established by the two-alternative forced-choice test in 

fig. S7A. 

 

A comparison of the different way to model participant responses as a function of the indentation depth 

and contact is shown in fig. S7D and S7E for the two-alternative forced choice test and magnitude 

estimation, respectively. In both tests, considering the finger as a rigid (dashed lines) object, instead of 

deformable object was more predictive, confirming the findings in the main text. Furthermore, the contact 

area and indentation depth were again found to be additive. Finally, the best-fit model in fig. S7D-E are 

when the indentation depth is added with the contact radius (green line). The second best-fit model was 

the square root of the indentation depth added with the contact area (red line). In the main text, this order 

was reversed. Instead of a discrepancy, this adds support that both the indentation depth and contact area 

are important (p < 2×10-16 and p < 1×10-12, for the two-alternative forced choice and magnitude estimation 

tasks, respectively) and are both independent tactile cues. We note that both the green line and red line 

represented the top two options from all modeling scenarios and are, in fact, relatively similar in AIC in 

fig. S7D-E. That is, the difference between the green line and red line is not statistically significant. 

Based on the results here, the probability of judging slab 1 as softer than slab 2 is given as 

 

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑆𝑙𝑎𝑏 1 𝑠𝑜𝑓𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 𝑆𝑙𝑎𝑏 2 =  
𝑒λ1−λ2

1 + 𝑒λ1−λ2
 

 

𝜆𝑖 = 871 [m−
1
2]√𝛿𝑖 + 4.14 × 106 [m−2]𝜋𝑎𝑖

2 

(S5) 

 

The relative softness of a slab is given as 

 

𝑆𝑜𝑓𝑡𝑛𝑒𝑠𝑠 = −9.78 + 1601[m−
1
2] √𝛿 + 6.12 × 106[m−2]𝜋𝑎2 

 

(S6) 

 

Here, note that the magnitude estimation was performed on slabs with a different modulus than the main 

text. However, relative relationships are still valid. Even with different sets of slabs, the coefficients are 

relatively similar, ranging from a factor of 1.3 to 4, which confirms the consistency in the human 

perception of softness. Finally, both models for the two-alternative force choice and magnitude estimation 

tasks models showed large effect sizes (per Cohen’s rule-of-thumb guidelines of >0.25) of with 

McFadden’s pseudo r2 = 0.34 and r2= 0.54, respectively. 

Power analysis 

A power analysis was performed on the first set of slabs in the main text. In the two-alternative forced 

choice task, based on the pseudo r2 value, a replication using just one participant obtains a power of 0.995 

and with ten participants, power > 0.9999. In the magnitude estimation task, replication with two 

participants has a power of 0.86 and ten participants have a power > 0.9999. 


