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Figure S1. Fatty acid synthase synthesizes various methyl-branched fatty
acids by incorporation of methylmalonyl-CoA

Same experiment as in Fig. 2. (a) Table representing the expected FAs according to
their number of carbons and the incorporation of malonyl-CoA or methylmalonyl-CoA
unit(s). (b)-(d) GC-MS analysis of the produced deuterated fatty acids (FAs) with
total carbon number of 15 (m/z 259), 16 (m/z 273), and 18 (m/z 301), (e)-(k) LC-MS
analysis of deuterated FAs with even numbers of carbons between 8 and 20 (m/z
146.1266, 174.1579, 202.1892, 230.2205, 258.2518, 286. 2831 and 314.3144,
respectively). (I)-(r) LC-MS analysis of deuterated FAs with odd numbers of carbons
between 9 and 21 (m/z 160.1423, 188.1734, 216.2049, 244.236, 272.2675,
300.2988 and 328.3301, respectively). Putative methyl-branched FAs are indicated
in black. The data shown are representative of at least 3 independent experiments.
AU, arbitrary units.

Figure S2. Relationship between the amount of mono- or polymethyl-fatty
acids synthesized by fatty acid synthase and the concentration of
methylmalonyl-CoA

(&) Sum of monomethyl-, dimethyl-, trimethyl- and tetramethyl-branched fatty acids
(FAs) monitored by GC-MS analysis of fatty acid methylesters. (b) Sum of
monomethyl-, dimethyl-, trimethyl-, tetramethyl and pentamethyl-branched FAs
monitored by LC-MS analysis. Values are presented as means +/- SEM from three
independent experiments.

Figure S3. Fatty acid synthase can synthesize ethyl-branched fatty acids by
incorporation of ethylmalonyl-CoA (LC-MS)

LC-MS analysis of the fatty acids (FAs) produced after incubation of FA synthase
with malonyl-CoA, d3-acetyl-CoA and the indicated concentrations of ethylmalonyl-
CoA. (a)-(g) Representative EICs of m/z corresponding to deuterated fatty acids with
even numbers of carbons between 8 and 20 (same m/z as Fig. S1 (e)-(k)). Putative
monoethyl- and diethyl-branched FAs are indicated in black. (h) Relationship
between the sum of monoethyl- and diethyl-branched FAs monitored by LC-MS
analysis and the concentration of ethylmalonyl-CoA used in the synthesis. AU,
arbitrary units.

Figure S4. Fatty acid profiles of L929 and 3T3-L1 adipocytes analyzed by GC-
MS in SCAN mode

Fatty acid (FA) profiles obtained by GC-MS analysis of fatty acid methylesters
(FAMEs) from L929 and 3T3-L1 cells before and after adipocyte differentiation
revealed similarities and differences. In both cell lines, we observed an increase in
monounsaturated FAs and an increase in odd carbon number FAs as previously
described (46). The most abundant FA species contained 16 carbons in 3T3-L1
adipocytes and 18 carbons in L929 cells. These preliminary analyses suggested that



both cell lines could be useful to analyze metabolic changes during adipocyte
differentiation. (a) L929 cells before and after differentiation in adipocytes. (b) 3T3-L1
cells before and after differentiation in adipocytes. (c) and (d) Comparison of the
profiles in wild type and ECHDC1 KO L929 (c) and 3T3-L1 (d) cells. Arrowheads
indicate the FA species that are increased in KO cells. Note that the tracing
corresponding to the KO L929 cells is also shown in Fig. 3a. AU, arbitrary units, TIC,
Total ion current.

Figure S5. ECHDC1 limits but does not completely prevent the formation of
methyl-branched fatty acids in adipocyte models

Fatty acid methylesters derived from wild type or ECHDC1 knockout (KO) L929 and
3T3-L1 adipocytes were analyzed by GC-MS. (a)-(d) Representative EICs
corresponding to FAs from L929 adipocytes with a total carbon number of 14, 15, 19
and 20 (m/z 242, 256, 312 and 326, respectively). (e)-(k) Representative EICs for
FAs from 3T3-L1 cells with a total carbon number of 14 to 20 (m/z 242, 256, 270
,284, 298, 312 and 326, respectively). Methyl-branched FA species are indicated in
black. (I)-(p) Quantitative GC-MS analysis of monomethyl-branched FAs containing
17 carbons from wild type and ECHDC1 KO L929 adipocytes clones, as well as a
KO clone transduced with a recombinant lentivirus driving the expression of
ECHDC1 (“ECHDC1 cDNA”) or an empty vector (“Ctrl”). Non-separated species
(represented in Fig. 3) were quantified together. Signals were normalized to the sum
of all straight-chain FAs and are presented as means +/- SEM for at least 3
independent experiments. Asterisks indicate p<0.05 in post-hoc testing. rel.conc.,
relative concentration.

Figure S6. Identification by different GC-MS approaches of C17:0-carbon
monomethyl-branched fatty acids derived from 3T3-L1 adipocytes.

(a) Representation of the 7 isomers of monomethyl-branched C16:0 expected to be
formed by methylmalonyl-CoA incorporation. (b) Spike-in of C17:0 fatty acid
methylesters (FAMES) isomers as indicated (in bold) in extracts of ECHDC1
knockout (KO) adipocytes. The upper tracing is not spiked. SC Straight chain. (c)-(i)
Assignment of the position of methyl-branches by spectra analysis according to
Apon and Nicolaides (41). The vertical bars in the upper chromatogram (obtained
from KO adipocytes) indicate the retention times at which the spectra shown in
panels (d) to (i) were recorded. Circled values in the spectra are specific to the
methyl-branched species indicated above each panel. (j) Molecular structure and
expected fragmentation pattern of the 3-pyridylcarbinol (“picolinyl”) derivatives of
C17:0 and 12-methyl-C16:0. The presence of a methyl-branch on C-12 of the latter
makes that no m/z 290 ion is expected in the spectrum. (k) Representative EICs of
“picolinyl’derivatives C17:0 FAs isomers in wild type and ECHDC1 KO adipocytes.
The vertical bars indicate the retention times at which the spectra displayed in (I)
were taken. lons with decreased intensity (circled) indicate the position of the
branch. SC, straight chain, AU, arbitrary unit.

Figure S7. Methyl-branched fatty acids are incorporated in phospholipids and
sphingomyelin species

(a)-(b) LC-MS lipidomic analysis (negative electrospray ionization) of several
phosphatidylethanolamine (PE) species containing methyl-branched FAs in wild type



(in white) and knockout (KO, in black) L929 adipocytes. PE(O-xx) refers to plasmanyl
species and PE(P-xx) refers to plasmenyl species (plasmalogens). ‘xx’ indicates the
total number of carbons in the fatty acyl or fatty alkyl moieties. (b) Representative
EICs for PE(35:1) in wild type (WT) or ECHDC1 KO L929 adipocytes incubated
without (upper tracings) or with (lower tracings) 2 mM d3-propionate. (c) LC-MS
lipidomic analysis (positive electrospray ionization) of several sphingomyelin (SM)
species containing methyl-branched FAs in wild type (white) and KO (black) L929
adipocytes. The “t” in SM(txx) refers to phytosphingosine (4-hydroxysphinganine).
rel. conc. = concentration relative to total ion current; AU, arbitrary units.
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Figure S6 (c to i)
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Figure S6 (jto I)
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Figure S7

phosphatidylethanolamine (PE) species PE(35:1) d3-PE(35:1)
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