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Supplementary Information Text 

Modeling energy metabolism for E. coli.  

In this study, we constructed energy metabolism for Escherichia coli (stored in Dataset 

S1), which is derived from the latest GEM iML1515 (1). In order to determine biomass 

formation and ATP-producing pathways, we performed FBA with iML1515 assuming 

minimal medium with glucose as carbon source with oxygen available. 

 

For determining HY pathway, we fixed glucose uptake rate at 1 in the model, then 

maximized the ATP maintenance (ATPM) reaction with minimizing the calculated total 

fluxes. As a result, we obtained one unique flux distribution, from which we selected the 

reactions carrying non-zero fluxes and marked reaction IDs and metabolite IDs with 

“_HY” and “_hy”, respectively. 

 

For determining LY pathway, we changed the objective function to maximization of 

acetate production rate with minimizing the calculated total fluxes. Likewise, we selected 

the reactions with non-zero fluxes and marked reaction IDs and metabolite IDs with 

“_LY” and “_ly”, respectively. 

 

By combining the reactions in both the HY and LY pathways and selecting the unique 

reactions, we obtained energy metabolism. Next, we should determine biomass formation 

pathways from the unique reactions. In order to achieve so, with iML1515, we fixed 

growth rate at 1, supplied ATP by fixing the backward rate of the ATPM reaction at 

75.55 (this represents the ATP required for producing one biomass, i.e., GAM x mu), and 

then minimized glucose uptake rate with minimizing the calculated total fluxes. Using 

exchange rates (e.g., glucose, O2, H2O, and CO2) from the flux distribution, we 

formulated a net biomass reaction, which shows the amount of glucose needed for 

producing one biomass. Besides, we should determine which reactions in energy 

metabolism are needed for producing biomass, i.e., included in biomass formation 

pathway. To achieve so, we mapped the reactions with non-zero fluxes to the unique 

reactions in energy metabolism. The overlapped reactions should be included in biomass 

formation pathway, which were marked with “_Bio” in the model. To consider how 

much each reaction in the biomass formation pathway contributes to biomass formation, 

we formulated a drain reaction to produce biomass precursor, in which the flux value of 

each reaction is included as coefficient. 

 

At last, we added ATP transport reactions between biomass formation and ATP-

producing pathways, connecting the independent pathways, as well as exchange 

reactions. 
 

Modeling energy metabolism for S. cerevisiae.  

We also constructed energy metabolism model for Saccharomyces cerevisiae, stored in 

Dataset S2. In order to determine biomass and ATP-producing pathways, we used the 

consensus model Yeast7.6 (2) to perform FBA. Since the reaction IDs in Yeast7.6 do not 

show any biological information, we changed to the IDs in the GEM iMM904 (3), but 

still kept the GPR associations from Yeast7.6.  
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Following the same procedure as shown for E. coli modeling, we determined biomass 

and ATP-producing pathways. A minor change is that when determining LY pathway we 

maximized ethanol production rate. Additionally, we took into account the fluxes towards 

glycerol production in the case that experiments show that it cannot be neglected, e.g., 

growth at high temperature. The glycerol production pathway is not included in the 

model but we estimated the flux loss. To achieve so, we used the same method as done 

for determining biomass formation pathway, but we changed to maximize glycerol 

production rate. As a result, we obtained a net reaction that represents the amount of 

glucose goes to glycerol, and reactions with the corresponding fluxes contribute to 

glycerol production, which can then be used to estimate protein cost by producing 

glycerol. 

 

Likewise, we added exchange and ATP transport reactions. 
 

Protein cost analysis.  

In order to calculate protein cost for carrying one unit of flux, we collected molecular 

weights from the UniProt database (4). Besides, we took into consideration stoichiometry 

information for each protein, i.e., determined whether it is a monomer or oligomer. This 

information can be sourced from the BRENDA database (5), the RCSB PDB database 

(6), and also the UniProt database. The turnover rates used in the two models were 

collected from published studies and databases. Especially, most of the turnover rates in 

the E. coli model were obtained from the study, which calculated maximal catalytic rates 

using proteomics data (7). Some other turnover rates were obtained from either the 

BRENDA database or the SABIO-RK database (8). For the enzyme without available 

turnover rate, we assumed to be 79 /s, which is the median of CCM (9).  

 

Protein cost is defined in this study as protein mass (g/gCDW) required for carrying one 

unit of flux (mol/gCDW/h). Based on the kinetic equation of an enzymatic reaction: 

𝑣 = 𝑘𝑐𝑎𝑡 ∙ 𝐸 ∙ 𝑓(𝑋) 
in which 𝑣 is reaction rate, 𝑘𝑐𝑎𝑡  is turnover rate, 𝐸 is enzyme concentration, 𝑓(𝑋) is a 

function of substrate and product concentrations. The calculation of protein cost is just 

similar to calculate enzyme concentration in the equation: 

𝑝 = 𝐸 =
𝑣[𝑚𝑜𝑙𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒/𝑔𝐶𝐷𝑊/ℎ]

𝑘𝑐𝑎𝑡[𝑚𝑜𝑙𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒/𝑚𝑜𝑙𝑒𝑛𝑧𝑦𝑚𝑒/ℎ] ∙ 𝑓(𝑋)
 

When the reaction rate is one mol/gCDW/h, the minimal protein cost can be calculated 

by assuming 𝑓(𝑋) is one. Then we obtained: 

𝑝 =
[𝑚𝑜𝑙𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒/𝑔𝐶𝐷𝑊/ℎ]

𝑘𝑐𝑎𝑡[𝑚𝑜𝑙𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒/𝑚𝑜𝑙𝑒𝑛𝑧𝑦𝑚𝑒/ℎ]
=
[𝑚𝑜𝑙𝑒𝑛𝑧𝑦𝑚𝑒/𝑔𝐶𝐷𝑊]

𝑘𝑐𝑎𝑡
=
𝑀𝑊

𝑘𝑐𝑎𝑡
[𝑔/𝑔𝐶𝐷𝑊] 

Accordingly, we can calculate the minimal protein cost by dividing molecular weight 

(g/mol) of the enzyme by its turnover rate (/h). 

 

We then collected the information, e.g., molecular weight and turnover rate, as described 

in the main text and calculated protein cost for all the enzymatic reactions in the models. 

Besides, for the reactions with multiple isozymes, the lowest protein cost was adopted. 
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The protein cost information can be available in Dataset S1 for E. coli and Dataset S2 for 

S. cerevisiae. 

 

Model simulations.  

With the two models, we carried out several types of constraint-based simulations in this 

study following the linear programming (LP) problem: 

minimize 𝑐𝑇𝑣 

subject to 𝑆 ∙ 𝑣 = 0, 
∑𝑝𝑖 ∙ 𝑣𝑖 ≤ ∅, 

𝑙𝑏𝑖 ≤ 𝑣𝑖 ≤ 𝑢𝑏𝑖. 

We used the function linprog in MATLAB to solve LP problem, which attempt to solve a 

minimization problem, but can be used to find the maximum by changing the objective 

function to negative. 

 

Without any experimental data, we performed simulations by changing protein constraint 

of energy metabolism from 0.05 to 0.15 g/gCDW and glucose uptake rate. We 

maximized ATP production rate without limiting other exchange reactions. As a result, 

we can obtain the maximal ATP production rate for each fixed protein constraint and 

glucose uptake rate, and also flux distribution. 

 

With physiological data, we used the models to estimate the minimal protein mass of 

energy metabolism. To achieve so, we fixed the corresponding exchange rates to 

experimental values and then searched for the minimal protein allocation that can still 

obtain a feasible solution. For the cases that the original experimental data cannot result 

in a feasible solution even though without limiting protein allocation, we gradually 

enlarged the bounds of the exchange reactions till we obtained a feasible solution. Then 

with the changed bounds we searched for the minimal protein allocation. This type of 

simulation was carried out for investigating strains under batch conditions. Additionally, 

with fixing the minimal protein allocation, we can then estimate fraction of flux through 

different pathways as well as proteome allocation among those pathways. 

 

Regarding the simulations of metabolic switch, we firstly determined protein allocation to 

energy metabolism according to the minimal protein mass estimated for cells in batch 

conditions. We chose the median of those values estimated with the physiological data 

from various datasets. Subsequently, we fixed the protein allocation and then minimized 

glucose uptake rate for a series of growth rates. 

 

In order to predict metabolic engineering targets with the model, we doubled turnover 

rate of each enzyme in the model one by one, and then maximized the growth rate. The 

predicted growth rate was then compared to the reference growth rate, which was 

estimated without changing any turnover rates. 
 

Adjustment of protein efficiency.  

The ratio of protein efficiencies between LY and HY pathways can control the 

simulations of metabolic switch in terms of the critical point and the slope of 

acetate/ethanol flux versus glucose flux or growth rate. To change the ratio, we just 
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adjusted the enzyme saturation of HY pathway in this study since adjusting the enzyme 

saturation of LY pathway can change the maximal glucose flux or growth rate. By 

adjusting the ratio, we can change simultaneously the critical point and the slope. In this 

study, the best-fitted ratio with experimental observation was chosen when the difference 

between the simulated and experimental critical points is small enough (<0.001 /h in 

growth rate). 
 

Proteomics data analysis.  

We used absolute proteomics data from three published datasets (10–12) to estimate 

protein mass of energy metabolism. Since the datasets use different units, here we show 

how to convert them.  

 

The unit in the dataset (10) is molecules per fL of cytosol volume, which can be 

converted to g/gCDW as follow: 
[𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠]

[𝑓𝐿]
=

[𝑚𝑜𝑙]

𝑁𝐴[𝑓𝐿]
=
𝑀𝑊[𝑔]

𝑁𝐴[𝑓𝐿]
=

𝑀𝑊[𝑔]

𝑁𝐴 ∙ 𝜌 ∙ 10−12[𝑔𝐶𝑊𝑊]

=
𝑀𝑊[𝑔]

𝑁𝐴 ∙ 𝜌 ∙ 10−12 × 0.3[𝑔𝐶𝐷𝑊]
 

In which is 𝑁𝐴 the Avogadro constant, 𝑀𝑊 is molecular weight (g/mol), 𝜌 is cell 

buoyant density (1.1 g/mL) (10), 0.3 is from a dry fraction of wet biomass of 30% (10). 

 

The unit in the dataset (12) is molecules per pgCDW, which can be converted to g/gCDW 

as follow: 
[𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠]

[𝑝𝑔𝐶𝐷𝑊]
=

[𝑚𝑜𝑙]

𝑁𝐴[𝑝𝑔𝐶𝐷𝑊]
=

𝑀𝑊[𝑔]

𝑁𝐴[𝑝𝑔𝐶𝐷𝑊]
=

𝑀𝑊[𝑔]

𝑁𝐴 ∙ 10−12[𝑔𝐶𝐷𝑊]
 

 

Calculating of apparent saturation.  

According to (7), the kinetic equation of an enzymatic reaction: 

𝑣 = 𝑘𝑐𝑎𝑡 ∙ 𝐸 ∙ 𝑓(𝑋) = 𝐸 ∙ 𝑘𝑎𝑝𝑝 

in which, 𝑘𝑎𝑝𝑝  is in vivo catalytic rate of the enzyme under a condition. Therefore, the 

apparent saturation 𝜎𝑎𝑝𝑝 can be calculated by: 

𝜎𝑎𝑝𝑝 = 𝑘𝑎𝑝𝑝/𝑘𝑚𝑎𝑥  

In which, 𝑘𝑚𝑎𝑥  is the maximal value of the catalytic rate over many conditions. 

Therefore, the kinetic equation can be: 

𝑣 = 𝐸 ∙ 𝑘𝑎𝑝𝑝 = 𝜎𝑎𝑝𝑝 ∙ 𝑘𝑚𝑎𝑥 ∙ 𝐸 

In our models, we used the maximal value 𝑘𝑚𝑎𝑥  for each enzyme and did not take the 

apparent saturation 𝜎𝑎𝑝𝑝 into account. Therefore, we can obtain an estimated total 

enzyme concentration, which is less than or equal to the real value: 

𝐸𝑒𝑠𝑡 =∑𝐸𝑒𝑠𝑡,𝑖
𝑖

=∑
𝑣𝑖

𝑘𝑚𝑎𝑥,𝑖
𝑖

 

The real concentration should be: 

𝐸𝑟𝑒𝑎𝑙 =∑𝐸𝑟𝑒𝑎𝑙,𝑖
𝑖

=∑
𝑣𝑖

𝜎𝑎𝑝𝑝,𝑖 ∙ 𝑘𝑚𝑎𝑥,𝑖
𝑖

 

When we use an average apparent saturation for all the enzymes, we can obtain: 
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𝐸𝑟𝑒𝑎𝑙 =
1

𝜎𝑎𝑝𝑝
∑

𝑣𝑖
𝑘𝑚𝑎𝑥,𝑖

𝑖

 

Therefore, we can calculate the average apparent saturation: 

𝜎𝑎𝑝𝑝 = 𝐸𝑒𝑠𝑡/𝐸𝑟𝑒𝑎𝑙  

Here we chose as the real value the median of measured proteome levels assigned to 

energy metabolism, which is around 0.1 g/gCDW in both E. coli and S. cerevisiae. 
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Fig. S1. Overview of energy metabolism in E. coli (A) and S. cerevisiae (B). Reaction ID 

is consistent with that in Dataset S1 and Dataset S2. The estimated protein cost data are 

available in Dataset S1 and Dataset S2. 
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Fig. S2. The effect of the ratio of protein efficiencies between LY and HY on the critical 

point with increasing growth rates. (A) Simulations for E. coli. (B) Simulations for S. 

cerevisiae. 
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Fig. S3. Change in total protein (black filled dot) and individual proteins (open dot) in 

energy metabolism of various conditions compared with reference condition. Condition 

ID is available in Dataset S3. E. coli dataset 1 is from (10). E. coli dataset 2 is from (11). 

S. cerevisiae dataset is from (12). 
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Fig. S4. (A) Predicted minimal protein mass of energy metabolism in E. coli using 

experimental exchange rates as constraints. Data were from the same studies as Fig. 3A. 

(B) Predicted minimal protein mass of energy metabolism in S. cerevisiae using 

experimental exchange rates as constraints. Data were from the same studies as Fig. 3B.   
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Fig. S5. Simulations of various strains under exponential growth. (ACEF) Simulations for 

E. coli. (BDGH) Simulations for S. cerevisiae. For one thing, it shows that cells, even 

though high ATP production rate is required, still maintain a considerable activity of the 

HY pathway, which accounts for 40-60% of the protein mass of energy metabolism. For 

another thing, it shows that the correlation between the protein allocation to energy 

metabolism and growth rate is quite poor, so is the correlation between the ATP 

production rate and growth rate. 
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Fig. S6. Comparisons between E. coli and S. cerevisiae. (A) Cumulative distribution of 

molecular weights of all the enzymes involved in energy metabolism. It shows that 

enzymes in E. coli are generally a little bigger than those in S. cerevisiae. (B) Cumulative 

distribution of turnover rates of all the enzymes involved in energy metabolism. It shows 

that E. coli and S. cerevisiae have considerable turnover rates for the enzymes in energy 

metabolism. (C) Cumulative distribution of protein costs of all the enzymes involved in 

energy metabolism, which can be calculated by molecular weight over turnover rate. It 

shows that E. coli has a greater number of costly enzymes than S. cerevisiae. (D) Protein 

costs of shared reactions in E. coli (Eco) and S. cerevisiae (Sce). It shows that the 

fructose 1,6-bisphosphate aldolase (FBA) reaction in S. cerevisiae is the most expensive 

among all the reactions. (E) Foldchange of protein costs between E. coli and S. cerevisiae 

for the same reaction. It shows that for most reactions E. coli should allocate more 

proteins than S. cerevisiae. (F) Comparison of protein costs of pathways between E. coli 

and S. cerevisiae. Values in the table are protein costs (g/gCDW) per flux of glucose for 

glycolysis, pyruvate for the TCA cycle, and NADH for oxidative phosphorylation. The 

table shows that lower protein efficiency of energy metabolism in S. cerevisiae could be 

contributed by its much higher protein cost of oxidative phosphorylation compared with 

E. coli. More specifically, it is due to higher protein cost of ATP synthase reaction, which 

is caused by lower turnover rate of the enzyme (Dataset S1 and Dataset S2). 
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Fig. S7. The effect of the ratio of protein efficiencies between LY and HY on the critical 

point with increasing glucose uptake rates. The simulations were generated by assuming 

that the protein mass of energy metabolism is 0.1 g/gCDW. By decreasing the ratio in E. 

coli to the value in S. cerevisiae, i.e., from panel A to B, we can see that the critical point 

increases. This means that increasing the ratio can make cells easier to switch with 

increasing glucose uptake rates. Besides, we can see that if the ratio in E. coli is equal to 

that in S. cerevisiae, i.e., comparing panel B and C, the percentages in the panels are very 

close, which is calculated by the difference between ATP production rate at the critical 

point and the maximal ATP production rate over the maximal ATP production rate. 

Taken together, we can conclude that higher ratio makes E. coli easier to switch from HY 

to LY pathway. The analysis is independent with the protein mass, which has been shown 

in the main text to be correlated with the maximal ATP production rate and also the 

critical point. (A) Simulations of E. coli with the original ratio, which is 2.31. (B) 

Simulations of E. coli with changing the ratio by increasing the protein efficiency of HY 

pathway to the value of S. cerevisiae, which is 1.66. (C) Simulations of S. cerevisiae with 

the original ratio, which is 1.66. 
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