Fig. S1.

www.pnas.org/cgi/doi/10.1073/pnas.1904480116

Fig. S1. Phenotypes of middle-aged WT and viperin KO mice fed RC or an HFD for a long period. (*A-C*) WT and viperin KO mice were fed RC or an HFD from age 15 wk to 30 wk (15 wk on diet). Organ weights (n = 4-7) (*A*), sizes of adipocytes and hepatic lipid droplets from hematoxylin and eosin (H&E)-stained sections of adipose tissues (eWAT, iWAT, and BAT) and liver, respectively (n = 4-7; 5 spots each) (*B*), and oxygen consumption rates (VO₂), carbon dioxide production rates (VCO₂), food intake rates, activity, and respiratory exchange ratios (RER) (n = 4-7; indirect calorimetry) (*C*) of WT and viperin KO mice fed RC or an HFD. Data are represented as mean ± SEM of biologically independent samples. *P < 0.05, ** P < 0.01, and *** P < 0.001 vs. WT on the same diet. eWAT, epididymal white adipose tissue; iWAT, inguinal WAT; BAT, brown adipose tissue. RC, regular chow; HFD, high-fat diet.

Fig. S2.

Fig. S2. Phenotypes of young WT and viperin KO mice fed RC or an HFD for a long period. (*A-F*) WT and viperin KO mice were fed RC or an HFD from age 6 wk to 21 wk (15 wk on diet). Body weights (n = 3-6) (*A*), body compositions (n = 3-6) (*B*), serum metabolites (HDLC, TG, TCHO, and GLU) (n = 3-6) (*C*), organ weights (n = 3-6) (*D*), representative H&E-stained sections from adipose tissues and liver (Scale bar: 200 µm) (*E*), and VO₂, VCO₂, heat production rates, food intake rates, activity, and RER (n = 3-6) (*F*) of WT and viperin KO mice fed RC or an HFD. Data are represented as mean ± SEM of biologically independent samples. * P < 0.05, ** P < 0.01 and *** P< 0.001 vs. WT on the same diet. HDLC, high-density lipoprotein cholesterol; TG, triglyceride; TCHO, total cholesterol; GLU, glucose (*C*).

Fig. S3. Phenotypes of middle-aged WT and viperin KO mice fed RC or an HFD for a short period. (*A-E*) WT and viperin KO mice were fed RC or an HFD from age 16 wk to 20 wk (4 wk on diet). Body weights (n = 5-7) (*A*), body compositions (n = 5-7) (*B*), serum metabolites (HDLC, TG, TCHO, and GLU) (n = 5-7) (*C*), organ weights (n = 5-7) (*D*), and VO₂, VCO₂, heat production rates, food intake rates, activity, and RER (n = 5-7) (*E*) of WT and viperin KO mice fed RC or an HFD. Data are represented as mean ± SEM of biologically independent samples. * P < 0.05 vs. WT on the same diet.

Fig. S4.

Fig. S4. Expression of thermogenesis-related genes in adipose tissues of young mice fed RC or an HFD for a long period. WT and viperin KO mice were fed RC or an HFD from age 6 wk to 21 wk (15 wk on diet). (*A* and *B*) Relative mRNA levels of thermogenesis- and fatty acid β -oxidation-related genes in adipose tissues of mice fed RC (*A*) or an HFD (*B*) (*n* = 3-4). Data are represented as mean ± SEM of biologically independent samples. * *P* < 0.05, ** *P* < 0.01 and *** *P* < 0.001 vs. WT on the same diet.

Fig. S5.

Fig. S5. Expression of thermogenesis-related genes in adipose tissues of middle-aged mice fed RC or an HFD for a short period. WT and viperin KO mice were fed RC or an HFD from age 16 wk to 20 wk (4 wk on diet). (*A* and *B*) Relative mRNA levels of thermogenesis- and fatty acid β -oxidation-related genes in adipose tissues of mice fed RC (*A*) or an HFD (*B*) (*n* = 3-4). Data are represented as mean ± SEM of biologically independent samples. * *P* < 0.05, ** *P* < 0.01 and *** *P* < 0.001 vs. WT on the same diet.

Fig. S6.

Fig. S6. Expression of cytokines in adipose tissues of middle-aged mice fed RC or an HFD for a long period. WT and viperin KO mice were fed RC or an HFD from age 15 wk to 30 wk (15 wk on diet). (*A*) Immunohistochemical staining for viperin in adipose tissues (Scale bar: 200 μ m). (*B*) Immunofluorescence staining of adipose tissues. DAPI, nucleus (blue); viperin (green); F4/80, a marker for macrophages (red). Arrow indicates viperin localized to the macrophage. Closed arrowheads indicate viperin. Open arrowheads indicate macrophage. (*C* and *D*) Relative mRNA levels of cytokines in adipose tissues of mice fed RC (*C*) or an HFD (*D*) (*n* = 3-4). Data are represented as mean \pm SEM of biologically independent samples. * *P* < 0.05 vs. WT on the same diet.

Fig. S7. Metabolic phenotypes of WT and viperin KO mice after CL treatment. WT and viperin KO mice were administrated intraperitoneally with CL-316243, a β 3-adrenergic receptor (ADRB3)-agonist (1 mg/kg body weight/d) for 3 d. VO₂, VCO₂, food intake rates, activity, and RER (n = 6, indirect calorimetry) of CL-treated 21-wk-old mice. Data are represented as mean ± SEM of biologically independent samples. * P < 0.05 vs. WT for the same treatment.

Fig. S8.

Fig. S8. Thermogenic phenotypes of WT and viperin KO mice fed an HFD after cold exposure or CL treatment. WT and viperin KO mice were fed an HFD from age 6 wk to 21 wk (15 wk on diet). (*A*) Rectal temperature of 21-wk-old HFD-fed WT and viperin KO mice during chronic cold exposure for 7 d (n = 4-5). (*B* and *C*) Protein expression of viperin and UCP1 in BAT (n = 3) (*B*) and immunohistochemical staining for UCP1 in adipose tissues (Scale bar: 200 µm) (*C*) of cold-exposed 21-wk-old mice fed an HFD. (*D*-*G*) WT and viperin KO mice were injected i.p. with CL-316243 (1 mg/kg body weight/d) for 3 d. I.p. glucose tolerance test (n = 4-5) (*D*), protein expression of viperin and UCP1 in iWAT and BAT (n = 3) (*E* and *F*), and immunohistochemical staining for UCP1 in adipose tissues (Scale bar: 200 µm) C) and viperin adipose tissues (Scale bar: 200 µm) (*G*) of CL-treated 21-wk-old mice fed an HFD. Data are represented as mean ± SEM of biologically independent samples. * P < 0.05 and ** P < 0.01 vs. WT for the same treatment.

Fig. S9. Comparison of viperin expression levels in the brown adipose tissue of WT mice after feeding an HFD and/or cold exposure. WT mice fed RC or an HFD for 15 wk and/or exposed to cold for 7 d. Protein expression of viperin in BAT (n = 3). Data are represented as mean ± SEM of biologically independent samples.

Fig. S10. Cell-autonomous function of viperin in brown adipocytes. SVF is isolated from BAT and differentiated into mature brown adipocytes. (*A*) Relative mRNA levels of adipogenesis- and thermogenesis-related genes in brown adipocytes during differentiation. (*B*) Relative mRNA levels of cytokines in the isolated SVF and the SVF-differentiated brown adipocytes. Data are represented as mean \pm SEM of 2 independent experiments. **P* < 0.05, ** *P* < 0.01 and *** *P* < 0.001 vs. WT for the same treatment.

Fig. S11.

Fig. S11. Cell-autonomous function of viperin in white adipocytes. SVF is isolated from eWAT and differentiated into mature white adipocytes. (*A*) Relative mRNA levels of adipogenesis- and thermogenesis-related genes in white adipocytes during differentiation. (*B*) Relative mRNA levels of viperin and UCP1 in etomoxir (ETO)- or ranolazine (RAN)-treated white adipocytes. Data are represented as mean \pm SEM of 2 independent experiments. **P* < 0.05, ** *P* < 0.01 and *** *P* < 0.001 vs. WT for the same treatment.

Table S1

Primer name	Forward	Reverse
Viperin	GTGAATACTTGGGCAAGCT	CAAATACTCCCCATAGTCC
Ucp1	GGCCTCTACGACTCAGTCCA	TAAGCCGGCTGAGATCTTGT
Pgc1a	CCCTGCCATTGTTAAGACC	TGCTGCTGTTCCTGTTTTC
Prdm16	CAGCACGGTGAAGCCATTC	GCGTGCATCCGCTTGTG
Cidea	TGCTCTTCTGTATCGCCCAGT	GCCGTGTTAAGGAATCTGCTG
Ррагү	GTGCCAGTTTCGATCCGTAGA	GGCCAGCATCGTGTAGATGA
Pparα	TCGGCGAACTATTCGGCTG	GCACTTGTGAAAACGGCAGT
Pparβ/δ	TTGAGCCCAAGTTCGAGTTTG	CGGTCTCCACACAGAATGATG
Cpt1b	TCTATGAGGGCTCGCG	CGTCAGGGTTGTAGCA
IL-6	CCTCTGGTCTTCTGGAGTACC	ACTCCTTCTGTGACTCCAGC
IL-10	ATAACTGCACCCACTTCCCA	GGGCATCACTTCTACCAGGT
IL-13	GCAGCATGGTATGGAGTGTG	TGGCGAAACAGTTGCTTTGT
IL-1β	GTGGCTGTGGAGAAGCTGTG	GAAGGTCCACGGGAAAGACAC
TNF-α	ATGAGCACAGAAAGCATG	AGTAGACAGAAGAGCGTGGT
TGF-β	CCTGCAAGACCATCGACATG	TGTTGTACAAAGCGAGCACC
C/ebpa	CAAAGCCAAGAAGTCGGTGGACAA	TCATTGTGACTGGTCAACTCCAGC
Adiponectin	CCGGGACTCTACTACTTCTCTT	TTCCTGATACTGGTCGTAGGT
Fabp4	ACACCGAGATTTCCTTCAAACTG	CCATCTAGGGTTATGATGCTCTTC
β-actin	GCTCCGGCATGTGCAA	AGGATCTTCATGAGGTAGT

Table S1. Mouse-specific primer sequences used for quantitative real-time PCR.