

Supplementary Information for

BRUTUS-LIKE E3 ligases negatively regulate iron uptake by targeting transcription factor FIT for recycling

Jorge Rodríguez-Celma, Robert T. Green, James M. Connorton, Inga Kruse, Yi-Tze Chen, Yan Cui, Hong Qing Ling, Kuo Chen Yeh, Janneke Balk

Corresponding author: Janneke Balk Email: janneke.balk@jic.ac.uk

This PDF file includes:

Supplementary text (SI Materials and Methods) Figs. S1 to S10 Tables S1 to S3 References for SI reference citations

SI Materials and Methods

Plant Material and Growth Conditions. *Arabidopsis thaliana* ecotype Columbia (Col-0) plants were used as wild type. The T-DNA insertion lines were *btsl1-1* (SALK_015054); *btsl1-2* (SALK_032464); *btsl1-3* (SALK_117926); *btsl2-2* (SALK_048470); and *bts-1* (SALK_016526) from the Nottingham Arabidopsis Stock Centre. All primer sequences used for genotyping are listed in SI Appendix,Table S2.

Plants were grown on half Hoagland solution with 0.8% (w/v) agar. The medium was composed of (in mM): K (3.5), Mg (1), Ca (2.5), NO₃ (7.5), PO₄ (1), and SO₄ (1); and (in μ M): Mn (9.14), B (46.3), Mo (0.12), Zn (2.4) and Cu (0.37). The pH was adjusted to 5.5 with 1 mM 2-(N-morpholino)ethanesulfonic acid (MES). Fe was added as FeEDTA at the indicated concentrations. To induce Fe deficiency, 100 μ M of 3-(2-pyridyl)-5,6-diphenyl-1,2,4-triazine sulfonate (ferrozine) was added. For seed propagation, plants were grown on compost under long-day conditions, 16 h light at 22 °C, 8 h dark at 20 °C, with 80% humidity and a light intensity of 140 – 200 μ mol m⁻² s⁻¹.

Co-expression analysis. The co-expression networks were built using maccu software (http://maccu.sourceforge.net/) and publicly available microarray data (NASCArrays; http://affymetrix.arabidopsis.info/). Data sets from experiments labelled 'roots' were pooled for the root network, and those labelled 'leaves or shoots' for the shoot network. Networks were visualized using Cytoscape 3.0 (http://www.cytoscape.org/). *BTSL1*, *BTSL2* and *BTS* were used as baits to retrieve co-expressed genes with a Pearson correlation coefficient >0.60 for *BTSL1* and *BTSL2*, and >0.50 for *BTS* (SI Appendix, Table S3). Only those genes present in the published ferrome (1) were used for the network in SI Appendix, Fig. S2.

Promoter GUS and GFP Studies. For the *BTSL1* promoter, the whole intergenic region upstream of the ATG was used (-880 nt), and for *BTSL2* we cloned -2097 nt of the 5 kb intergenic region. The promoter fragments were cloned upstream of eGFP-GUS in pBGWFS7 (2). Glucuronidase activity was detected as described in (3), keeping the reaction time constant for equivalent samples. Seedlings were cleared in 100% ethanol, or

fixed with a solution of 3.7% (w/v) formaldehyde, 5% (v/v) acetic acid, 50% (v/v) ethanol, followed by embedding in TechnoVit (Heraeus Kulzer GmbH, Germany), per manufacturer instructions. For confocal imaging, seedlings were incubated for 30 minutes in 2.5 mg/L propidium iodide (PI) and washed with distilled water. Then, GFP and PI fluorescence was imaged using a TCS SP8X confocal microscope from Leica (Germany).

Plant Phenotyping. Chlorophyll was extracted following a modified protocol from (4). Iron content in leaves was determined by a colorimetric assay. Dried and powdered samples (4–8 mg) were mineralized in 150 μ l nitric acid (65%) for 2 days and 150 μ l H₂O₂ (30%) for 2 more days. The volume was adjusted to 500 μ l with sterile water, and 100 μ l were neutralized with 1 ml of 15% (w/v) ammonium acetate and reduced with 100 μ l of 4% (w/v) ascorbic acid. Fe(II) was chelated by adding 100 μ l of 1.5% w/v 3-(2-pyridyl)-5,6-bis(5-sulfo-2-furyl)-1,2,4-triazine (Ferene), and the absorbance measured at 593 nm. To localize Fe in tissues, plants were incubated with Perls' stain solution (equal volumes of 2% [v/v] HCl and 2% [w/v] K-ferrocyanide) for 30 min. Seedlings were washed three times with water, and incubated in 50% ethanol to partially clear the tissue. Fe chelate reductase activity was measured following (5).

Quantitative reverse-transcription PCR. Total RNA was extracted using the Plant RNeasy kit (Qiagen), followed by DNase treatment (Turbo DNase kit, Agilent). RNA (4 μ g) was reverse transcribed to cDNA using Superscript III (Thermo Fisher). RT-qPCR reactions were made using SensiFAST master-mix (Bioline), in 20 μ l volumes, each with 20 ng of cDNA. Reactions were measured in a Bio-Rad CFX-96 real-time PCR system and cycled as per the Bioline protocol. The house-keeping genes *SAND* (*AT2G28390*) and *TIP41-like* (*AT4G34270*) were used as reference genes, as they are unaffected by Fe levels in Arabidopsis (6).

Western Blot Analysis. Roots from ten plants were ground in liquid nitrogen and proteins were precipitated with acetone containing 10% (w/v) trichloroacetic acid. After centrifugation and washing the pellet with cold acetone, proteins were solubilized with 8 M urea, 0.5% (w/v) SDS, 50 mM DTT and 1 mM PMSF. Proteins were separated on 12.5%

SDS-PAGE gels, blotted into nitrocellulose membranes and detected using anti-ferritin, anti-FIT or anti-IRT1 (7) and chemiluminescence substrate. Antibodies against ferritin were produced using purified pea ferritin, and antibodies against FIT were raised against purified MBP:FIT protein, both in rabbits.

Immunoaffinity Purification and Protein Identification by Mass Spectrometry. The coding sequence of FIT was cloned into the pEarleyGate 203 vector, adding a N-terminal Myc tag and placing expression under the control of the CaMV 35S promoter, for Agrobacterium-mediated plant transformation. Plants carrying an integrated copy of Myc-FIT (Myc-FIT plants) and non-transformed plants as negative control, were grown in 1/2 Murashige and Skoog medium for 14 days. Root proteins were extracted in buffer containing 50 mM Tris-HCl pH 8.1, 250 mM NaCl, 0.5% (v/v) Triton X-100, 50 µM MG132, and 1x EDTA-free Protease Inhibitor Cocktail. Myc-FIT was immunoprecipitated using Sigma EZview Red Anti-c-Myc Affinity Gel following the manufacturer's protocol. Myc-FIT and candidate interacting proteins were eluted with loading buffer (250 mM Tris pH 6.8, 4% (w/v) SDS, 20% (v/v) glycerol, 2% (v/v) βmercaptoethanol), boiled for 3 min, then separated by SDS-polyacrylamide gel electrophoresis (PAGE). The lane was divided in gel slices which were subjected to tryptic digestion. Peptide masses were analyzed using a LTQ-Orbitrap Velos and proteins were identified using MACOT engine. The unique peptide EAVPGQNPSYR from BTSL2 (AT1G18910.1) was found in two independent pull down experiments using roots from Myc-FIT plants, but not when using control plants. The MASCOT ion scores for the BTSL2 peptides were 16 and 25, respectively, which are over the threshold of statistical significance (p < 0.05).

Recombinant Protein Production. Full coding sequences of *FIT (AT2G28160)* and *bHLH39 (AT3G56980)* were cloned in frame with a C-terminal Myc tag and inserted into the pET-15b vector using NdeI and BamHI restriction sites, adding a N-terminal His tag. The C-terminal coding regions of *BTSL1* (codons 933-1259) and *BTSL2* (codons 787-1254) were cloned in frame with a C-terminal Strep-tag, into the expression vector pMAL-c5X (New England Biolabs) using NotI-SaII and NcoI-SaII restriction sites, respectively. This generated also an N-terminal fusion with maltose binding protein (MBP). A construct

for MBP:FIT was produced in the same way. Plasmids were transformed into *E. coli* Rosetta strain (New England Biolabs). Cells were grown in LB and protein expression was induced with IPTG (Isopropyl β -D-1-thiogalactopyranoside) for 16 h at 16°C. The recombinant FIT and BTSLc proteins were purified using Ni-NTA (Qiagen) and Streptactin Sepharose (IBA), respectively, following manufacturer instructions. All primers used are listed in SI Appendix, Table S2.

Co-Immunoprecipitation Assays. Purified recombinant FIT protein was mixed with either buffer or purified BTSL1c or BTSL2c proteins and incubated for 2 h at 4°C with Strep-tactin XT® (IBA). Beads were recovered by centrifugation at 1000 x g at 4°C and washed 3 times with coIP-buffer (50 mM Tris HCl pH 8.0, 150 mM NaCl, 0.05% (v/v) IGEPAL and 0.07% (v/v) β -mercaptoethanol). Proteins were eluted with loading buffer (250 mM Tris pH 6.8, 4% (w/v) SDS, 20% (v/v) glycerol, 2% (v/v) β -mercaptoethanol) at 90°C for 10 minutes. The interaction was determined by western blot using anti-Myc (ab18185, Abcam) and anti-MBP (ab23903, Abcam) antibodies, respectively.

Far-Western Blot Analysis. Soluble protein extracts of bacteria expressing Myc-tagged FIT and bHLH39 proteins were separated on a 10% SDS PAGE gel and blotted to nitrocellulose membrane. Membranes were then blocked and incubated with purified MBP, MBP:FIT, MBP:BTSL1c or MBP:BTSL2c at 0.5 μ M in TBS-tween buffer with 5% (w/v) dry milk as blocking agent. After washing, proteins bound to the membrane were detected with anti-Myc (ab18185, Abcam) and anti-MBP (ab23903, Abcam) antibodies, respectively.

In-vitro Ubiquitination. Assays were carried out using a ubiquitinylation kit (ENZO Life Sciences) following manufacturer's instructions. In brief, purified MBP-BTSL1c or MBP-BTSL2c (E3) and FIT (substrate) were incubated with ubiquitinylation buffer, 5 mM Mg-ATP solution, 1 mM DTT, 100 nM human E1, 2.5 mM human E2 (UbcH5b), 2.5 mM biotin-labelled ubiquitin, and 1 unit of inorganic pyrophosphatase (New England Biolabs) at 37°C for 16 h. A sample lacking Mg-ATP served as negative control. Proteins were

separated on a 7.5% (w/v) SDS-PAGE under non-reducing conditions. BTSL and FIT proteins were detected using anti-MBP and and anti-FIT antibodies, respectively.

Cell-Free Degradation Assays. Ten-day-old seedlings of type and the *btsl* double mutants were used for cell-free degradation assays as previously described (8). Briefly, an extract of whole seedlings in a proteasome compatible buffer (25 mM Tris-HCl pH 7.5, 10 mM NaCl, 10 mM MgCl₂, 4 mM PMSF, 5 mM DTT and 10 mM ATP) was made, and recombinant Myc-tagged FIT was added. Reactions were carried out with 160 mM MG132 or without MG132 (dimethyl sulfoxide only) at 22°C. Samples were taken at 0, 30 and 60 minutes, followed by separation on 10% (w/v) SDS PAGE gel. Immunodetection was carried out using anti-Myc antibody as described above.

Transient Protein Expression in Nicotiana benthamiana.

The C-terminal region of *BTSL2_*(codons 787-1254) was cloned in frame with *GFP* in the expression vector pEarleyGate 103. As a negative control, the coding sequence of *GUS* was also cloned in the same way. Each construct was expressed together with Myc-FIT in pEarleyGate 203 in *Nicotiana benthamiana* using *Agrobacterium*-mediated infiltration. In brief, *Agrobacterium* cells were grown in LB, pelleted and resuspended in infiltration buffer (10 mM MES pH5.6, 10 mM MgCl₂, 100 μ M acetosyringone), then infiltrated with a syringe in young leaves of three weeks old *Nicotiana benthamiana* plants. Five days post-infiltration, leaves were re-infiltrated with either a solution containing 50 μ M MG132 or DMSO (mock treatment). Tissue was harvested after 2 h and frozen in liquid nitrogen, Proteins were extracted and separated by10% (w/v) SDS-PAGE. After transfer to a PVDF membrane, proteins were detected using anti-Myc, anti-GFP and anti-BTSL2 antibodies.

Α							
	100	12	0	140		160	
						1	
BISLI Hr2	RSPINGLELF QNATER	DLKD TOEGLOOAKP	DELELDINU	MARLNFL	ADVLUSYSNA	FKKFFHPVLE	360
PTSL1 H/2 KNMDD PM I MD	VKPIDILEEE HKAMKA	DLOV LVCGSTP	LAADEDEL	AFEOOREHMI	KELVOINSDA	EDELAEDALE	079
BTSI2 H/3 KTIGEHLTMD	IKPIDLIEVE HKAMKK	DIDY IVRGSAR	ATDYSEL	GEEOOREHLI	KEL YOLHSDA	EDELAFPALE	673
BTS Hr3A	ERPVATIEKE HKAISK	DLEF LDVESGKL	IDCDGTFI	ROFIGREHLL	WGEYKAHSNA	EDDILEPALE	725
BTSL1 Hr1 GNTKLSDA	PVLFFVYC HKAFRA	QLVE LRRFATDAAE	AD-SESGDLA	VELSRKFEFL	KLVYKYHSAA	EDEVIFLALD	99
BTSL2 Hr1 NNARLSDA	PILLEVYE HKAFRA	OLAE LOFLAGDTVR	SG-SDLA	VELRSKFEFL	KLVYKYHSAA	EDEVIFSALD	107
BTS Hr1 ANSESDDAEE	ISPILIFLEF HKAVCS	ELEA LHRLALEFAT	GH-HVDLR	L-LRERYRFL	RSIYKHHCNA	EDEVIFSALD	117
BTS Hr2 TNFGSSDT	LHPVDEIKLW HKSINK	EMKE IADEARKIQL	SG-DFS-DLS	A-FDERLQYI	AEVCIFHSLA	EDKIIFPAVD	378
FBXL5 Hr	VDVFTAP HWRM-K	QLVG LYCD KLSK	TNFSNNNDFR	ALLQSLYATE	KE - FKMHEQI	ENEYIIGLLO	70
Consensus -ND	P-DL-F-F HKAIRK	DLVE LQRGA-KL	LS - D - L	AE-Q-RFHFL	K-VYK-HSNA	EDEIIFPALE	
Conservation			molelin	Indileman	n-nîn-lihi		
Sequence logo	EEPVEETSEF HRAFER	BLes Lanstelles	#sterdedte	SELBERFERFL	REGEREHSAA	EDEFTFFALE	
	180	20	0	220		240	
BTSL1 Hr2 EMTARR - SST	AKOFNIDDCL E NFO	RLLY		KSAD	DKT K T	DNFLLQLQEE	406
BTSL2 Hr2 DMVDQQHSSS	SKOFTIDGHV E NFK			KSLD	LET RAGS	DNFVITLQEK	414
BTSL1 Hr3 AKGQL KN I	SHSFSIDHEL ETKHFD	KVSF ILNEMSELNM	L	VSTINTTAAD	HDR KMKY	ERLCLSLREI	744
BTSL2 Hr3 AKGKLON I	SQSYSIDHEL EVEHLN	KVSF LLNELAELNM	L	VLD	H - K NVKY	EKLCMSLQDI	731
BTS Hr3 - SKETLHNV	SHSYTLDHKQ EEKLFG	DIYS VLTELSILHE	KLQSDSMMED	IAQTDTVRTD	IDNGDCNKKY	NELATKLOGM	803
BTSL1 Hr1 KRVKN I	VSNYSLEHAG TODLFT	SIFH WLH-V			LEEEIGSRSD	VLREVILCIG	149
BISLZ Hr1 IRVKNV	ACTIVELENCE DENLED	SVFH WEN-V			TETDESYP	PELAPSTO	10/
BIS HIZGE	ESESEEHDE EENOEN	EERC LIENI			KSAGASSTSA	AFEYTKLOSH	424
FRXI 5 Hr	ORSOTLYNVH SDNKLS	EMLS LEEK		G	LKNVKNEYEO	LNYAKOLKER	115
Consensus GR - KN I	S-SYSIDH-L EDNLF-	• VF - LLN		D	LET NRKY	-N-EL-LQEG	
100%				10M0			
Conservation	Relling on long	andia A Alanandan	Deserverses	Deserver	RE		
Sequence loop	- SETTER Z					E Frank	
COULD BOOK MEMERSRORNY	SESYSTOMER EEREF	RECEE CLARGELING	CLOBORMMED	VOW+NTRECD	论是你是来获得需要导	656286828	
	260	28	0	300		320	
BTSL1 Hr2 LESLIIOVTK	OFALORTEVE PLISKN	C-NH EMOKOLLYTS	THVLPLGLLK	CVILWESAHL	SEEESOSILH	FLSLEDSSPK	485
BTSL2 Hr2 LESLILTVAK	QESIEETEVE PIISKN	C-NI EMOROLLYRS	IHFLPLGLLK	CVIMWFSAQL	PEDECQSIIH	YLSSEDSFPN	493
BTSL1 Hr3 CKSMHKLLSE	HIGHEETELW GLF-RN	CESI EEGEKIIGCM	LGRISGEILQ	DMIPWLMESL	TSDEQLAA	-MSLWRQATR	820
BTSL2 Hr3 CKSIHKLLSE	HLHREETELW CLF-RD	CFTI EEQEKIIACM	LGRISGEILQ	DMIPWLMESL	IPDEQHAV	-MSLWRQATR	807
BTS Hr3 CKSIKITLDQ	HIFLEELELW PLFDKH	I-FSI QEQDKIVGRI	IGTTGAEVLQ	SMLPWVTSAL	SEDEQNRM	- MDTWKQATK	879
BTSL1 Hr1 T IQSSICQ	HMLKEERQVF PLLIEK	-FSF REGASLYWOF	ICSVPVMVLE	DFLPWMISHL	SHEEKIEVEN	CIKDVAP-NE	225
BTSL2 Hr1 T IQSSICQ	HMLKEERQVF PLMIEN	-FSF EEQASLVWQF	ICSVPVMVLE	EIFPWMTSLL	SPKEKSEVET	CFKEVVP-NE	233
BIS Hr1 A LQTSVSQ	HLAKEOKOVF PLLIEK	- FKY EEQAYIVWRF	LCSTPVNMLA	VFLPWISSSI	SVDESKEMQT	CLKKIVP-GE	240
EBYIS HE LEASTROSELD	HARREETOVE PLARKN	VETY EELKOLUUUU	LOIMPLELIE	RVLPWLTASL	SOKOTAELLO	NLOAGAPKSD	160
CONTRACT IN LEAFTROFLP	WEETEVE DI SIVE	FOL FEOAK V		D DWI COL	SEDEO EVI	LOUW D TE	109
consensus STQ SQ	HRECIEVE PLETKN	ELGAK-V	ICSIP-E-L-	DPWL-SSL	SEDEQ-EVL-	-LSLW-P-TE	
Conservation	Land all Mant		In and and a	non loon	In notice	nillon-linna	
Sequence loco en of a T	IL OF Shy BT - NH	Env PPA-ITere	tu viewal e	ATR AFRI	to BE - No.	X.03	

equence logo cam 운동ST2225548 H&222EAEVY PL449KRC+SY EEUxx2160648 1847PCB67L6 867PW49581 SHDL8x86649 205828889x78

В

Fig. S1. Sequence analysis of hemerythrin motifs in BTSL and BTS proteins. (*A*) Amino-acid alignment of the 3 hemerythrin (Hr) motifs in BTSL, BTS proteins with the single Hr motif in FBXL5. Aminoacid sequences from Arabidopsis BTSL1 (AT1G74770, Hr1 aa 25-225, Hr2 aa 294-485, Hr3 aa 604-820), BTSL2 (AT1G18910, Hr1 aa 36-233, Hr2 aa 301-494, Hr3 aa 599-807) and BTS (ATG3G18290, Hr1 aa 42-240, Hr2 aa 304-503, Hr3 aa 659-879) were obtained from TAIR (<u>https://www.arabidopsis.org/</u>). FBXL5 sequence was obtained from Uniprot (Q9UKA1, Hr aa 8-169). Alignment was performed using CLC Main Workbench (Qiagen). (*B*) Predicted structure for the second Hr domain of BTSL1 (Hr2 aa 297-446) using the Phyre2 server.

Fig. S2. Promoter activity of *BTSL1* and *BTSL2* in embryos. Promoter:eGFP-GUS fusions were expressed in Arabidopsis, and the embryos were dissected for staining of GUS activity. The constitutive *CaMV35S:GUS* construct served as a positive control. Data for *promBTS:GUS* are shown for comparison, taken from Selote et al., 2015. Plant Physiol 167:273–286. Scale bar 200 μ m.

Fig. S3. *BTSL* and *BTS* are part of different gene expression networks. Co-expression analysis of Fe-responsive genes that are co-regulated with (*A*) *BTSL1* and *BTSL2* in roots, and (*B*) *BTS* in shoots. The edge thickness relate to the Pearson's correlation coefficient. See SI Appendix Table S1 for descriptions of all genes and numerical values.

Fig. S4. *BTSL1* and *BTSL2* mutant alleles. (*A*) Schematic representation of the *BTSL1* and *BTSL2* genes and mutant alleles. Exons are in black, 5' and 3'-UTRs in grey. T-DNA insertions are indicated by triangles: *btsl1-1*, SALK_015054; *btsl1-2*, SALK_032464; *btsl1-3*, SALK_117926; *btsl2-2*, SALK_048470. Arrows indicate the left border primer used for genotyping. (*B*, *C*) Transcript levels of *BTSL1* (*B*) and *BTSL2* (*C*) in wild-type and mutant plants under standard (+Fe, 50 µM FeEDTA) and Fe-deficient conditions (-Fe, 100 µM ferrozine). RT-qPCR was carried out on biological triplicate samples.

Fig. S5. Iron-associated phenotypes in mutant lines of *BTSL1* and *BTSL2*. (*A*) Growth of wild-type and *btsl* alleles on medium with varying Fe concentrations. Seeds were germinated on medium with 50 μ M FeEDTA, and, after 10 days, transferred to medium depleted of Fe using 100 μ M ferrozine (-Fe) or 50 μ M FeEDTA; or grown in the presence of 200 or 500 μ M FeEDTA for 14 days. (*B*, *C*) Chlorophyll concentration (*B*) under –Fe and control conditions, and iron concentration in shoots (*C*) from wild type (WT) and *btsl* mutant alleles, grown under control and Fe toxicity conditions as in (*A*). The bars represent the mean of n = 3 biological replicates x 10 seedlings ± SD (* p<0.05; ** p<0.01 using a two-tailed *t*-test).

Fig. S6. Ferric chelate reductase activity in *btsl1-1*, *btsl2-2*, *bts-1* mutants and complemented lines (*A*) Ferric chelate reductase activity of *btsl1-1*, *btsl2-2* and *bts-1* single insertion mutants under the indicated Fe treatments. (*B*) Complementation of mutant alleles assessed by ferric chelate reductase activity. Wild-type, *btsl1-1 btsl2-2* double mutant and *btsl1-1 btsl2-2* lines expressing 35S:BTSL1-YFP or 35S:BTSL2-GFP were grown under Fe sufficiency, Fe deficiency and resupplied with Fe for 1 day. The results are the mean value of 3 biological replicates +/- SE (*, p<0.05 using a two-tailed Student *t*-test).

Fig S7. Mutation of *BTS* does not effect the expression of *FRO2*, *IRT1* and *FIT*, or FIT protein levels. (*A*) Quantification of FIT protein in wild type (WT) and the *btsl1-1 btsl2-2* double mutant line under Fe deficiency-resupply treatment. Values are the mean of 4 biological replicates \pm SE (* p<0.05 using a two-tailed t-test). A representative gel is showed in Fig. 4E. (*B*) Schematic representation of the *BTS* gene and the *bts-1* mutant allele (SALK_016526). Exons are in black, 5' and 3'-UTRs in grey. The T-DNA insertion is indicated by a triangle. RT-qPCR analysis confirmed the lack of induction of *BTS* transcript upon Fe deficiency in the *bts-1* mutant, as previously shown (Selote et al., 2015). (*C*) Expression of *FRO2*, *IRT1* and *FIT* in roots from *bts-1* seedlings determined by quantitative RT-PCR. All values are relative to wild type +Fe. (*D*) Representative western-blot and bar chart of FIT protein levels in WT, *btsl1-1 btsl2-2* and *bts-1* lines in the Fe deficiency-resupply treatment. Values are the mean of 3 biological replicates \pm SE (* p<0.05 using a two-tailed *t*-test).

Fig S8. Protein levels of BTSL1 and BTSL2 are low. Immunoblot analysis of seedling protein extracts from wild type, *btsl* double mutant and complemented lines treated with MG132 or DMSO. Ponceau shows protein loading. Blots were developed using rabbit antibodies against the MBP:BTSL2 recombinant protein used for *in vitro* analysis. Antibodies were tested to detect ng amounts of the purified recombinant protein. Anti-GFP antibody was used to detect BTSL:GFP fusion protein. No specific signal was detected present in the wild type or complementation lines not present in the double mutant.

Fig. S9. Expression of *bHLH38* and *bHLH39* in roots from wild-type and *btsl1-1 btsl2-2* seedlings determined by quantitative RT-PCR. All values are relative to wild type +Fe. Values are the mean of 3 biological replicates \pm SE (* p<0.05 using a two-tailed *t*-test).

Fig. S10. E3 ubiquitin ligase activity of BTSL proteins. (*A*) In vitro self-ubiquitination activity of BTSL1c and BTSL2c in the presence of [E1 + E2] and ATP. Proteins were separated by SDS-PAGE and higher molecular weight protein products were detected by western blot analysis using anti-MBP and anti-BTSL2c antibodies. (*B*) Cell-free degradation assay in extracts from *N. benthamiana* leaves expressing Myc:FIT and BTSL2c:GFP in the presence of MG132 or DMSO. FIT protein was detected using anti-Myc antibodies and Ponceau-S staining shows equal loading.

BTSL1 and BTSL2 root ferrome network			Correlation to		
ATG	Symbol	Description	BTSL1	BTSL2	BTS
AT1G74770	BTSL1	BRUTUS-Like 1, zinc ion binding			
AT1G18910	BTSL2	BRUTUS-Like 2, zinc ion binding			
AT4G19690	IRT1	iron-regulated transporter 1	0.687		
AT3G56980	bHLH39	basic helix-loop-helix (bHLH) DNA-binding superfamily protein	0.607		
AT3G07720	Kelch	Galactose oxidase/kelch repeat superfamily protein	0.600		
AT3G53480	PDR9	pleiotropic drug resistance 9		0.693	
AT5G35580		Unknown		0.646	
AT3G21240	AT4CL2	4-coumarate:CoA ligase 2		0.628	
AT5G03570	IREG2	iron regulated 2	0.765	0.711	
AT1G05700		Leucine-rich repeat transmembrane protein kinase protein	0.742	0.667	
AT3G13610	F6H1	2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase superfamily protein	0.702	0.793	
AT3G60330	AHA7	H(+)-ATPase 7	0.675	0.719	
AT3G58810	MTPA2	metal tolerance protein A2	0.664	0.643	
AT2G29750		Unknown	0.654	0.684	
AT3G61410		Unknown	0.649	0.632	
AT2G28160	FIT	FER-like regulator of iron uptake	0.649	0.748	
AT2G32270	ZIP3	zinc transporter 3 precursor	0.643	0.665	
AT3G18560		Unknown	0.626	0.659	
BTS shoot ferrome network			Correlation to		
ATG	Symbol	Description	BTSL1	BTSL2	BTS
AT3G18290	BTS	BRUTUS, zinc finger protein-related			
AT5G53450	ORG1	OBP3-responsive gene 1			0.734
AT1G23020	FRO3	ferric reduction oxidase 3			0.645
AT5G05250		Unknown			0.644
AT3G47640	PYE	basic helix-loop-helix (bHLH) DNA-binding superfamily protein			0.568

Table S1. ATG numbers and descriptions of genes appearing in the ferrome correlationnetworks shown in Fig. S3.

Table S2. List of primers.

RT-PCR			
ATG	Gene	Primer name	Sequence
AT4G34270	TIP41-LIKE	AtTIP41F	GTGAAAACTGTTGGAGAGAAGCAA (6)
AT4G34270	TIP41-LIKE	AtTIP41R	TCAACTGGATACCCTTTCGCA (6)
AT2G28390	SAND	AtSANDF	AACTCTATGCAGCATTTGATCCACT (6)
AT2G28390	SAND	AtSANDR	TGATTGCATATCTTTATCGCCATC (6)
AT1G01580	AtFRO2	qS-FRO2F	TTACCCGATCGACCACAACAC
AT1G01580	AtFRO2	qA-FRO2R	CCGCACTACAAGTCGCCATTAT
AT4G19690	AtIRT1	qS-IRT1F	CACCATTCGGAATAGCGTTAGG
AT4G19690	AtIRT1	qA-IRT1R	CCAGCGGAGCATGCATTTA
AT5G01600	AtFER1	AtFER1F	TCGTTGAGAGTGAATTTCTGG (9)
AT5G01600	AtFER1	AtFER1R	ACCCCAACATTGGTCATCTG (9)
AT1G74770	AtBTSL1	BTSL1Fnew	GGCAATGAAGATGGATTTGG
AT1G74770	AtBTSL1	BTSL1Rnew	TCATATGGAACCGTTGCTGA
AT1G18910	AtBTSL2	BTSL2Fnew	CGGGGCAGAATCCATCTTAT
AT1G18910	AtBTSL2	BTSL2Rnew	GTTGCAACAAGGAGCAAGAAG
AT2G28160	FIT	FIT1setAF	TCGCGGGTCTTGAAGCTTCT
AT2G28160	FIT	FIT1setAR	GCAGGAGGATTGATACCGCG
AT3G56970	bHLH38	bHLH38_QA	CTGACGAAACAGATACTCCCAAGCT
AT3G56970	bHLH38	bHLH38_QS	TTTCACAAACTTCGGTTGGCC
Genotyping		D :	
AIG	line	Primer name	Sequence
ATIG/4//0	btsl1-1	btsII-I_LP	
ATIG/4//0	btsl1-1	btsII-I_RP	GAACICICIIGCIICCIGAAGC
ATIG/4//0	btsl1-2	btsII-2_LP	GACIAICGICAAGCAGCCAAG
ATIG/4//0	btsl1-2	btsII-2_RP	GATGCICCGGIICITIICIIC
ATIG/4//0	btsl1-3	btsl1-3_LP	GGCIGACICAGCIAAICICCC
ATIG/4//0	btsl1-3	btsl1-3_RP	TGCAACACGAATTTAGACAAGG
ATIG18910	btsl2-2	bts2-2_LP	
ATIG18910	btsl2-2	bts2-2_RP	
AT3G18290	bts-1	bts-1_LP	
A13G18290	bts-1	bts-1_RP	ICAGAIIIACACAAAIIIGCAGC
Promoter-GUS			
ATG	Promoter	Primer name	Sequence
AT1G74770	BTSL1	BTSL1prom GW	GGGGACAAGTTTGTACAAAAAGCAGGCT
	21021	F	AGTATTGATTTTGTGAGCCCAATTAAC
AT1G74770	BTSL1	BTSL1prom GW	GGGGACCACTTTGTACAAGAAAGCTGGGT
		R	TCCACCGCAACAACAATAACGGTG
AT1G18910	BTSL2	BTSL2pro GWF	GGGGACAAGTTTGTACAAAAAGCAGGCT
			AAATTCATATAAGAATTGCTTTATAC
AT1G18910	BTSL2	BTSL2pro GWR	GGGGACCACTTTGTACAAGAAAGCTGGGT
	~ ~	r	CCACCATGAACAGGAGAGGAGGTG
BTSL-GFP			
ATG	Gene	Primer name	Sequence
AT1G74770	BTSL1	BTSL1 B1-F	GGGGACAAGTTTGTACAAAAAGCAGGCT
		-	TGATGGGAGGCGGAAA
AT1G74770	BTSL1	BTSL1 B1-R	GGGGACCACTTTGTACAAGAAAGCTGGGT
		_	TAAGGAGCCTTGAGTT
AT1G18910	BTSL2	BTSL2 B1-F	GGGGACAAGTTTGTACAAAAAGCAGGCT
		-	TGATGGGAGTCGGAGA
AT1G18910	BTSL2	BTSL2 B1-R	GGGGACCACTTTGTACAAGAAAGCTGGGT
		—	TGAAAAGTCTGGTGTT

ATG	Gene	Primer name	Sequence
AT2G28160	FIT	FITmyc_F	ACTCATATGGAAGGAAGAGTCAACGCTC
AT2G28160	FIT	FITmyc_R	CGCGGATCCCTACAGATCTTCTTCAGAAATA
			AGTTTTTGTTCAGTAAATGACTTGATGAATT
			AAAACC
AT3G56980	bHLH39	39myc F	ACTCATATGTGTGCATTAGTACCTCCATTG
AT3G56980	bHLH39	39myc_R	CGCGGATCCCTACAGATCTTCTTCAGAAATA
			AGTTTTTGTTCTATATATGAGTTTCCACATT(
			CTCATAC
AT1G74770	BTSL1	MBP-1CT F	ACTCCATGGCTCAGAAGGTTAGCCAGTTTG
AT1G74770	BTSL1	MBP-1CT R	TGAGTCGACTTATTTTTCGAACTGCGGGTGG
		—	CTCCAAAGGAGCCTTGAGTTGTAGGAG
AT1G18910	BTSL2	MBP-2CT F	ACTCCATGGAATCTTTGATCCCTGATGAAC
AT1G18910	BTSL2	MBP-2CT_R	TGAGTCGACTTATTTTTCGAACTGCGGGTGG
		_	CTCCAGAAAAGTCTGGTGTTGTAGGAGGC

Recombinant protein production

References

- 1. Schmidt W, Buckhout TJ (2011) A hitchhiker's guide to the *Arabidopsis* ferrome. *Plant Physiol Biochem* 49:462–470.
- 2. Karimi M, Inze D, Depicker A (2002) GATEWAY vectors for *Agrobacterium*-mediated plant transformation. *Trends Plant Sci* 7:193–195.
- 3. Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. *EMBO J* 6(13):3901–7.
- 4. Abadía J, Abadía A (1993) Iron and plant pigments. *Iron Chelation in Plants and Soil Microorganisms*, eds Barton LL, Hemming BC (Acedmic Press, San Diego), pp 327–343.
- 5. Yi Y, Guerinot ML (1996) Genetic evidence that induction of root Fe(III) chelate reductase activity is necessary for iron uptake under iron deficiency. *Plant J* 10:835–844.
- 6. Han B, Yang Z, Samma MK, Wang R, Shen W (2013) Systematic validation of candidate reference genes for qRT-PCR normalization under iron deficiency in Arabidopsis. *BioMetals* 26:403–413.
- Fan H, et al. (2014) SKB1/PRMT5-mediated histone H4R3 dimethylation of Ib subgroup bHLH genes negatively regulates iron homeostasis in *Arabidopsis thaliana*. *Plant J* 77:209–221.
- 8. Selote D, Samira R, Matthiadis A, Gillikin JW, Long TA (2015) Iron-binding E3 ligase mediates iron response in plants by targeting basic Helix-Loop-Helix transcription factors. *Plant Physiol* 167:273–286.
- 9. Bournier M, et al. (2013) *Arabidopsis* Ferritin 1 (*AtFer1*) gene regulation by the phosphate starvation response 1 (AtPHR1) transcription factor reveals a direct molecular link between iron and phosphate homeostasis. *J Biol Chem* 288(31):22670–22680.