Supplemental Material

GDF10 blocks hepatic PPARy activation to protect against diet-induced liver injury

Khrystyna Platko^{1*}, Paul F. Lebeau^{1*}, Jae Hyun Byun¹, Samantha V. Poon¹, Emily A. Day²,

Melissa E. MacDonald¹, Nicholas Holzapfel¹, Aurora Mejia-Benitez¹, Kenneth N. Maclean³,

Joan C. Krepinsky¹ and Richard C. Austin^{1,†}

Antibody	Manufacturer and Product Number	Application	Dilution
C/EBP	sc-7273, Santa Cruz Biotechnology	IHC	1:50, HIER
CD36	NB400-144, Novus Biologicals	IHC	1:100, no retrieval
GRP78	sc-1050, Santa Cruz Biotechnology	IHC	1:40, no retrieval
GRP94	ADI-SPA-850, Enzo Life Sciences	IHC	1:100, HIER
Perilipin	ab3526, Abcam	IHC	1:100, HIER
PPARy	sc-7273, Santa Cruz Biotechnology	IHC	1:50, HIER
pPERK	ab192591, Abcam	IHC	1:50, HIER
GAPDH	2118, Cell Signaling Technology	IB	1;1000
GDF10	16630, Novus Biologicals	IHC, IB	1:50, 1:1000
Histone H3	9715, Cell Signaling Technology	IB	1:1000
C/EBPa	sc-150, Santa Cruz Biotechnology	IF, IB	1:50, 1:200
PPARy	sc-7273, Santa Cruz Biotechnology	IF, IB	1:50, 1:200
Smad2/3	3102, Cell Signaling Technology	IB	1:500

Table 1: List of antibodies used for IHC and immunoblotting.

Phospho-Smad2/3	8828, Cell Signaling Technology	IB	1:500
Smad1/5/9	12656, Cell Signaling Technology	IB	1:500
Phospho-Smad1/5/9	13820, Cell Signaling Technology	IB	1:500

IB, immunoblot; IHC, immunohistochemical staining; IF, immunofluorescence; HIER, heatinduced epitope retrieval

Gene	Species	Forward	Reverse
ANGPTL4	Mouse	CATCCTGGGACGAGATGAACT	TGACAAGCGTTACCACAGGC
ACOX1	Mouse	GGGAGTGCTACGGGTTACATG	CCGATATCCCCAACAGTGATG
ACOT2	Mouse	GTTGTGCCAACAGGATTGGAA	GCTCAGCGTCGCATTTGTC
Acadm	Mouse	AGGGTTTAGTTTTGAGTTGACGG	CCCCGCTTTTGTCATATTCCG
ATF4	Mouse	ATGGCCGGCTATGGATGAT	CGAAGTCAAACTCTTTCAGATCCATT
BBC3	Mouse	TGTGGAGGAGGAGGAGTGG	TGCTGCTCTTCTTGTCTCCG
CEBPa	Mouse	CAAGAACAGCAACGAGTACCG	GTCACTGGTCAACTCCAGCAC
CD36	Mouse	GATGACGTGGCAAAGAACAG	TCCTCGGGGTCCTGAGTTAT
СНОР	Mouse	CTGCCTTTCACCTTGGAGAC	CGTTTCCTGGGGATGAGATA
Casp3	Mouse	CCTCAGAGAGACATTCATGG	GCAGTAGTCGCCTCTGAAGA
Casp7	Mouse	GGACCGAGGGCCCACTTATC	TCGCTTTGTCGAAGTTCTTGTT
CRCT2	Mouse	ATGAACCCTAACCCCCAAGAC	CGTTCTCCTCAATAGCAGGGA
FOXO1	Mouse	CCCAGGCCGGAGTTTAACC	GTTGCTCATAAAGTCGGTGCT
FGF21	Mouse	AGATCAGGGAGGATGGAACA	TCAAAGTGAGGCGATCCATA
FN1	Mouse	CGAGGTGACAGAGACCACCA	CTGGGAGTCAAGCCAGACACA
FSP27	Mouse	ATGGACTACGCCATGAAGTCT	CGGTGCTAACACGACAGGG
FATP5	Mouse	GAATCGGGAGGCAGAGAACT	AGCGGGTCATACAAGTGAGC
GRP78	Mouse	GTCCTGCATCATCAGCAAAG	GGTAGCCACATACTGAACACC
GRP94	Mouse	GATGGTCTGGCAACATGGAG	CGCCTTGGTGTCTGGTAGAA
GDF10	Mouse	AATGATCGACCAAAAGCCTGT	CTTGCAGAATACCTCACGAGC

 Table 2: List of primers used for quantitative real time PCR

IRE1a	Mouse	TGAAACACCCCTTCTTCTGG	CCTCCTTTTCTATTCGGTCACTT
ll1b	Mouse	GCACTACAGGCTCCGAGATGAAC	TTGTCGTTGCTTGGTTCTCCTTGT
LPL	Mouse	GGGCTCTGCCTGAGTTGTAG	AGAAATTTCGAAGGCCTGGT
PPARa	Mouse	GAAGGGCACACGCGTGCGAGTTTT CAG	GAAGGGCACACGCGTGCGAGTTTT CAG
Perilipin	Mouse	CTGTGTGCAATGCCTATGAG A	CTGGAGGGTATTGAAGAGCC G
PGC1b	Mouse	TCCTGTAAAAGCCCGGAGTA T	GCTCTGGTAGGGGCAGTGA
PDK4	Mouse	AGGGAGGTCGAGCTGTTCTC	GGAGTGTTCACTAAGCGGTCA
PARP1	Mouse	GGAAAGGGATCTACTTTGCCG	TCGGGTCTCCCTGAGATGTG
PCK1	Mouse	CTGCATAACGGTCTGGACTTC	CAGCAACTGCCCGTACTCC
sXBP1	Mouse	GAGTCCGCAGCAGGTG	GTGTCAGAGTCCATGGGA
STAT3	Mouse	CACCTTGGATTGAGAGTCAAGAC	AGGAATCGGCTATATTGCTGGT
TNFa	Mouse	CATGAGCACAGAAAGCATGATCCG	AAGCAGGAATGAGAAGAGGCTGAG
TGF beta	Mouse	CAACAATTCCTGGCGTTACCTTGG	GAAAGCCCTGTATTCCGTCTCCTT

Figure legends

Fig. S1 GDF10 treatment reduces cytotoxicity in response to TG and TM. **(A)** ORO staining and isopropanol extract quantification of HepG2 cells treated with TG (100 nM), PA (200 μ M) and rhGDF10 (250 ng/mL) for 24 hours. **(B)** LDH release assay in the medium from Huh7 cells treated with TG (100 nM) and TM (2 μ g/mL). Scale bar, 50 μ m. All data are shown as the mean \pm S.D. *, *p*<0.05 by unpaired two-tailed Student's *t*-test or one-way ANOVA.

Fig. S2 GDF10^{-/-} **exhibit a reduction in plasma Leptin.** Plasma content of circulating Leptin in wild type and GDF10^{-/-} mice fed NCD (n=5). All data are shown as the mean \pm S.D. *, *p*<0.05 by unpaired two-tailed Student's *t*-test.

Fig. S3 GDF10 modulates PPAR γ and C/EBP α nuclear abundance. Immunofluorescent staining of PPAR γ and C/EBP α in (A) HepG2 cells and (B) primary human hepatocytes treated with rhGDF10 or CGTZ. Scale bars, 50 μ m.

Fig. S4 TGF β R1 inhibition reduces CGTZ-mediated lipid droplet accumulation in HepG2 cells. ORO staining in HepG2 cells treated with CGTZ (10 μ M), rhGDF10 (250 ng/mL) and IN1130 (100 nM). Scale bar, 50 μ m.

Fig. S5 GDF10^{-/-} mice exhibit increased hepatic fibrosis, apoptosis and gluconeogenesis. (A) PSR staining in the livers of mice fed NCD or HFD. Real time PCR analysis of hepatic mRNA abundance of indicated genes involved in (B) apoptosis and (C) gluconeogenesis (n=5). Scale bars, 200 μ m. All data are shown as the mean ± S.D. *, *p*<0.05 by one-way ANOVA.

Fig. S6. ER stress-inducing agent TM induces the expression of GDF10 in 3T3-L1

adipocytes. Real time PCR analysis of GDF10 mRNA transcript levels in 3T3-L1 adipocytes treated with TM (2 μ g/ml) for 24 hours. All data are shown as the mean ± S.D. *, *p*<0.05 by unpaired two-tailed Student's *t*-test.

Figure S1.

Platko & Lebeau et al., 2019

Α

Figure S3.

Platko & Lebeau et al., 2019

Figure S4.

Platko & Lebeau et al., 2019

Figure S5.

Platko & Lebeau et al., 2019

Figure S6.

