SUPPLEMENTAL MATERIAL:

Selective activation of G_s signaling in adipocytes causes striking metabolic improvements in mice

Lei Wang, Sai P. Pydi, Yinghong Cui, Lu Zhu, Jaroslawna Meister, Oksana Gavrilova, Rebecca Berdeaux, Jean-Philippe Fortin, Kendra K Bence, Cecile Vernochet, Jürgen Wess

Supplemental Figure 1. Adipo-GsD mice exclusively express GsD in adipose tissues and show unchanged body weight, blood glucose, and plasma insulin levels. (A) Relative GsD mRNA expression levels in different tissues of adipo-GsD mice detected by Taqman qPCR (n=4). (B) Body weight of adipo-GsD mice and control littermates (males) maintained on regular chow (RC) for 8 weeks (n=12 per group). Blood glucose (C) and plasma insulin (D) levels (fed and fasted) of adipo-GsD mice and control littermates (males) maintained on RC for 8 weeks (control, n=12; adipo-GsD, n=7). (E) CNO-induced increase in cAMP levels in iWAT of adipo-GsD mice and control littermates maintained on RC were injected with CNO (10 mg/kg i.p.). Fifteen min later, mice were euthanized and iWAT cAMP levels were determined (n=6 per group). Data are given as means \pm s.e.m. Statistical significance was assessed by two-tailed Student's t test. **P*<0.05, vs. control.

Supplemental Figure 2. Chronic activation of adipocyte G_s signaling promotes the expression of key genes involved in mitochondrial function. iWAT was prepared from male adipo-GsD and control mice that had been maintained on a HFD for 8 weeks and had received daily injections of CNO (10 mg/kg i.p.) during the last 4 weeks of HFD feeding. The expression levels of the indicated genes were studied by qRT-PCR. Cpt1, carnitine palmitoyltransferase 1; Cox-4 β , cytochrome c oxidase subunit 4 β ; Cyt-c, mitochondrial cytochrome c; Mcad, medium-chain acyl-CoA dehydrogenase. Data represent means±s.e.m. Statistical significance was assessed by two-tailed Student's t test. **P*<0.05, ***P*<0.01, vs. control.

Supplemental Figure 3. Total locomotor activity is not significantly affected by chronic CNO treatment of HFD adipo-GsD mice. Locomotor activity measurements were carried out with male adipo-GsD and control mice that had been maintained on a HFD for 8 weeks and had received daily injections of CNO (10 mg/kg i.p.) during the last week of HFD feeding. Data represent mean \pm s.e.m. (control, n=6; adipo-GsD, n=5).

Supplemental Table 1. List of primers/probes used for gene expression analysis

Gene Target	Species	Primer sequence		
GsD	mouse	Probe: 5'-/56-FAM/TTCTCCTCA/ZEN/AACGACACCTCCAGC/3IABkFQ/-3'		
		Primer 1: 5'-GTTGGGCAGCTACAACATTTC-3'		
		Primer 2: 5'-ATGCCAGGAAGCCAGTTAAG-3' (for Taqman analysis)		
β-actin	mouse	Probe: 5'-/56-FAM/TGGCATTGT/ZEN/TACCAACTGGGACGA/3IABkFQ/-3'		
		Primer 1: 5'-GAGGTATCCTGACCCTGAAGTA-3'		
		Primer 2: 5'-CACACGCAGCTCATTGTAGA-3' (for Taqman analysis)		
β-actin	mouse	Forward: 5'-GATATCGCTGCGCTGGTCGTC-3'		
Reverse: 5'-ACGCAGCTCATTGTAGAAGGTGTGG		Reverse: 5'-ACGCAGCTCATTGTAGAAGGTGTGG-3'		
		(for SYBR Green analysis)		
Ucp-1	vp-1 mouse Forward: 5'-ACTGCCACACCTCCAGTCATT-3'			
		Reverse: 5'-CTTTGCCTCACTCAGGATTGG-3'		
18S rRNA	mouse	Forward: 5'-CGGCTACCACATCCAAGGAA-3'		
		Reverse: 5'-GCTGGAATTACCGCGGCT-3'		
Cidea	mouse	Forward: 5'-TGCTCTTCTGTATCGCCCAGT-3'		
		Reverse: 5'-GCCGTGTTAAGGAATCTG CTG-3'		
Serca2b	mouse	Forward: 5'-ACCTTTGCCGCTCATTTTCC-3'		
		Reverse: 5'-GCTGCACACACTCTTTACCG-3'		
Tbx1	mouse	Forward: 5'-GGCAGGCAGACGAATGTTC-3'		
		Reverse: 5'-GCCGTGTTAAGGAATCTG CTG-3'		
Prdm16	mouse	Forward: 5'-CAGCACGGTGAAGCCATTC-3'		
		Reverse: 5'-GCCGTGTTAAGGAATCTG CTG-3'		
Pgc-1a	mouse	Forward: 5'-AGCCGTGACCACTGACAAC GAG-3'		
		Reverse: 5'-GCTGCATGGTTCTGAGTGCTAAG-3'		
CKmt2	mouse	Forward: 5'-GCATGGTGGCTGGTGATGAG-3'		
		Reverse: 5'-AAACTGCCCGTGAGTAATCTT G-3'		
Espt1	mouse	Forward: 5'-ACCCTGATAGCACCAAACGA-3'		
_		Reverse: 5'-AGGTCTGCCAGTTCTTGCTC-3'		
Tmem26	mouse	Forward: 5'-ACCCTGTCATCCCACAGAG-3'		
		Reverse: 5'-TGTTTGGTGGAGTCCTAAFFTC-3'		
Cpt1 mouse Forward: 5'- TTGCCCTACAGCTCTGGCATTTCC-		Forward: 5'- TTGCCCTACAGCTCTGGCATTTCC-3'		
-		Reverse: 5'- GCACCCAGATGATTGGGATACTGT-3'		
Cox4β mouse Forward: 5'- CTGCCCGGAGTCTGGTAATG-3'		Forward: 5'- CTGCCCGGAGTCTGGTAATG-3'		
		Reverse: 5'- CAGTCAACGTAGGGGGGTCATC-3'		
CytC	mouse	Forward: 5'- AAATCTCCACGGTCTGTTCGG-3'		
-		Reverse: 5'- GGGTATCCTCTCCCCAGGTG-3'		
Mcad	mouse	Forward: 5'- ATGACGGAGCAGCCAATGAT-3'		
		Reverse: 5'- TCGTCACCCTTCTTCTCTGCTT-3'		

Supplemental Table 2. RNA-seq analysis of the expression of G_s-linked GPCRs expressed in mouse inguinal white adipocytes (iWAT), epididymal white adipocytes (eWAT), and brown adipose tissue (BAT)

GPCR	Full name	G protein	Reads Per Kilobase of transcript,
		coupling profile	per Million mapped reads (RPKM)
Adcyap1r1	adenylate cyclase activating polypeptide	$G_s, G_q/G_{11}$	iWAT (1.083), eWAT (3.009), BAT (0.926)
	1 receptor type 1		
Adora2a	adenosine receptor A2a	$G_s, G_q/G_{11}$	iWAT (2.602), eWAT (3.666), BAT (3.872)
Adora2b	adenosine receptor A2b	$G_s, G_q/G_{11}$	iWAT (0.230), eWAT (0.656), BAT (0.030)
Adrb1	adrenergic receptor, beta 1	G _s , G _i	iWAT (1.309), eWAT (0.701), BAT (8.282)
Adrb2	adrenergic receptor, beta 2	G _s , G _i	iWAT (2.200), eWAT (2.734), BAT (1.325)
Adrb3	adrenergic receptor, beta 3	G _s , G _i	iWAT (93.89), eWAT (147.456), BAT (71.26)
Avpr2	arginine vasopressin receptor 2	Gs	iWAT (0.105), eWAT (0.126), BAT (0.137)
Drd1a	dopamine receptor D1	Gs	iWAT (0.294), eWAT (1.083), BAT (0.017)
Fzd3	frizzled class receptor 3	Gs	iWAT (0.711), eWAT (0.696), BAT (0.129)
Gcgr	glucagon receptor	Gs	iWAT (0.081), eWAT (0.230), BAT (0.033)
Gipr	gastric inhibitory polypeptide receptor	Gs	iWAT (0.275), eWAT (0.566), BAT (0.426)
Gpr133	adhesion G protein-coupled receptor D1	Gs	iWAT (0.162), eWAT (0.379), BAT (0.177)
Gpr3	G protein-coupled receptor 3	Gs	iWAT (0.055), eWAT (0.050), BAT (0.011)
Gpr65	G protein-coupled receptor 65	Gs	iWAT (0.257), eWAT (1.313), BAT (0.603)
Htr7	5-hydroxytryptamine (serotonin)	Gs	iWAT (0.015), eWAT (0.051), BAT (0.028)
	receptor 7		
Mc1r	melanocortin 1 receptor	Gs	iWAT (0.022), eWAT (0.014), BAT (0.006)
Mc2r	melanocortin 2 receptor	Gs	iWAT (8.250), eWAT (9.427), BAT (0.607)
Mc5r	melanocortin 5 receptor	Gs	iWAT (0.389), eWAT (0.173), BAT (0.416)
Ptger2	prostaglandin E receptor 2 (subtype EP2)	Gs	iWAT (0.111), eWAT (0.276), BAT (0.232)
Ptger4	prostaglandin E receptor 4 (subtype EP4)	G _s , G _i	iWAT (1.880), eWAT (2.831), BAT (0.839)
Pth1r	Parathyroid hormone 1 receptor	$G_s, G_q/G_{11}$	iWAT (2.479), eWAT (2.830), BAT (7.983)
Tshr	thyroid stimulating hormone receptor	G _s , G _q /G ₁₁	iWAT (34.19), eWAT (36.89), BAT (2.395)
Vipr1	vasoactive intestinal peptide receptor 1	Gs	iWAT (0.010), eWAT (0.042), BAT (0.010)
Vipr2	vasoactive intestinal peptide receptor 2	Gs	iWAT (0.076), eWAT (0.182), BAT (0.124)

Adipocytes/BAT were isolated from 16-week-old male C57BL/6J mice consuming regular chow (n=6). RPKM data are given as mean values (n=6).