Supporting Information For

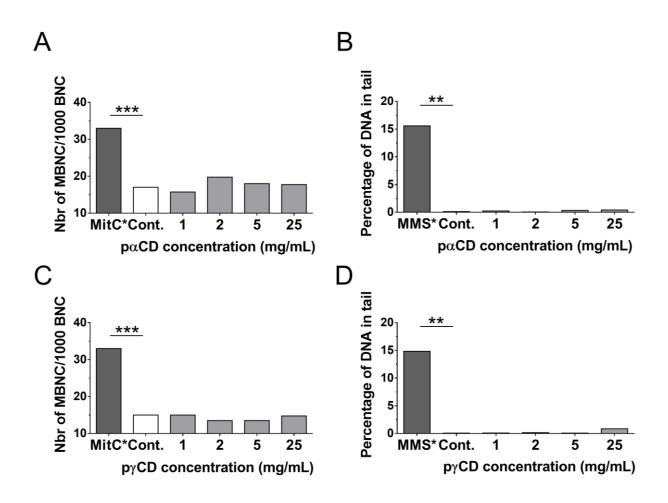
'Intrinsic Antibacterial Activity of Nanoparticles Made of β-Cyclodextrins Potentiates Their Effect as Drug Nanocarriers against Tuberculosis'

Arnaud Machelart¹, Giuseppina Salzano², Xue Li², Aurore Demars³, Anne-Sophie Debrie¹, Mario Menendez-Miranda², Elisabetta Pancani², Samuel Jouny¹, Eik Hoffmann¹, Nathalie Deboosere¹, Imène Belhaouane¹, Carine Rouanet¹, Sophie Simar⁴, Smaïl Talahari⁴, Valerie Giannini⁵, Baptiste Villemagne⁶, Marion Flipo⁶, Roland Brosch⁵, Fabrice Nesslany⁴, Benoit Deprez⁶, Eric Muraille^{3,7}, Camille Locht¹, Alain R. Baulard¹, Nicolas Willand⁶, Laleh Majlessi^{5,8}, Ruxandra Gref^{2*}, Priscille Brodin^{1*}

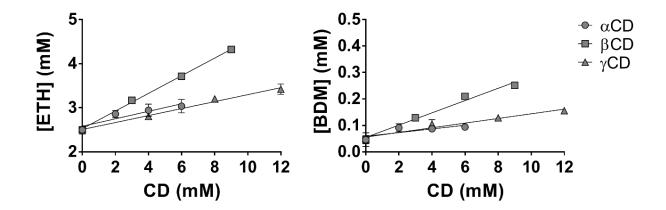
¹Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France

²Univ. Paris Sud, Univ. Paris-Saclay, CNRS, UMR 8214 - Institute for Molecular Sciences of Orsay (ISMO), F-91405 Orsay, France

³Univ. Namur, Research Unit in Microorganisms Biology (URBM), Laboratory of immunology and microbiology, Narilis, B-5000 Namur, Belgium


⁴Univ. Lille, Institut Pasteur de Lille, EA 4483, F-59000 Lille, France

⁵Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, Paris, CNRS UMR 3525, 25 rue du Dr. Roux, F-75015 Paris, France


⁶Univ. Lille, INSERM, Institut Pasteur de Lille, U1177 - Drugs and Molecules for living Systems, F-59000 Lille, France

⁷Univ. Libre de Bruxelles, Laboratory of Parasitology, Faculty of Medicine, B-1070 Brussels, Belgium

⁸Present address : Institut Pasteur, Theravectys Joint Lab, 28 rue du Dr. Roux, F-75015 Paris, France

supporting Figure 1. p α CD and p γ CD are not genotoxic. THP1 cells were incubated for 4 hours with different concentrations of p α CD and p γ CD for evaluation of genotoxicity. The micronucleus assay was used to detect any damage that occurred during cell division (mitomycin was used as positive control) after incubation with p α CD (A) and p γ CD (C), while the comet assay was used to evaluate DNA strand breaks (methylmethane sulfonate was used as positive control) after incubation with p α CD (B) and p γ CD (D).

supporting Figure 2. Solubility properties of ETH and BDM43266 using α CD, β CD and γ CD.

CDs	K _{1:1} (ETH, M ⁻¹)	K _{1:1} (Booster, M ⁻¹)
αCD	24 ± 11	100 ± 13
βCD	100 ± 30	514 ± 21
γCD	47 ± 10	256 ± 11
ραCD	39 ± 11	503 ± 33
pβCD	110 ± 21	1037 ± 35
рүСD	87 ± 12	449 ± 14

supporting Table 1. Binding constants $K_{1:1}$ obtained from the solubility curves for ETH and Booster, according to the results presented in Figure 7B.