Supporting Information

Mixed-charge pseudo-zwitterionic mesoporous silica nanoparticles with

low-fouling and reduced cell uptake properties

Noemí Encinas^a, Mercedes Angulo^a, Carlos Astorga^a, Montserrat Colilla^{a,b}, Isabel Izquierdo-Barba^{a,b*}, María Vallet-Regí^{a,b*}

^a Chemistry in Pharmaceutical Sciences Department, Inorganic and Bioinorganic Chemistry Unit,, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain ^bCIBER Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Madrid, Spain

Equipment

Solution state nuclear magnetic resonance (NMR) spectra were recorded on a Bruker AVANCE AV-250 and a Bruker AVANCE AV-500 spectrometers. Chemical shifts (δ) are reported in ppm. ¹H and ¹³C resonances were measured relative to internal deuterated solvent peaks considering TMS = 0 ppm.

HR-MAS NMR spectra were obtained on a Bruker AMX500MHz spectrometer equipped with a semisolid state probe. Measurements were performed in the solid state, by suspending the hybrid materials in a small amount of D2O.

Solid state magic angle spinning nuclear magnetic resonance (MAS NMR) and cross polarization magic angle spinning nuclear magnetic resonance (CP MAS NMR) spectra were obtained on a Bruker Avance AV-400WB spectrometer equipped with a solid state probe using a 4 mm zirconia rotor. Typical measurement conditions were as follows: ¹³C NMR experiments were conducted with proton decoupling, the spectrometer frequency was set to 100.62 MHz (¹³C) and 400.13 MHz (¹H) and MAS rotation rate was maintained at 6 kHz. The NMR spectra consisted of 15000 to 17500 acquisitions with cross-polarization contact times of 2 ms, 2.5 µs pulse wide and a 5 s recycle delay. Chemical shift values were referenced at 176.1 ppm to carbonyl carbon of glycine.²⁹Si NMR quantitative spectra were obtained at 79.49 MHz with MAS rotation rate of 12 kHz, a pulse wide of 4.5 µs, a recycle delay of 5 s, and the number of scans was 17000 to 20000. ²⁹Si CP MAS NMR experiments were done setting the transmitter frequency to 79.49 MHz (²⁹Si) and 400.13 MHz (¹H), samples were spun to 12 kHz and a 5 s recycle delay, a 4.5 µs pulse wide and a cross-polarization contact time of 3.5 ms were employed. All chemical shift values reported were externally referenced at 0 ppm to 3-(trimethylsilyl)-1-propanesulfonic acid sodium salt (DSS sodium salt).

Fourier transformed infrared (FTIR) spectra were collected in a Thermo Nicolet Nexus spectrometer equipped with a Goldengate attenuated total reflectance (ATR) device.

Chemical microanalyses were performed with a Perkin Elmer 2400 CHN and a LECO CHNS-932 thermo analyzers. Thermogravimetric analysis (TGA) and differential thermal analysis (DTA) were carried out in air between 30 and 800 °C with a flow rate of 100 mL/min and a heating rate of 5 °C/min using a Perkin Elmer Pyris Diamond thermobalance.

Ordered mesoporous materials were analyzed using powder X-ray diffraction at small angles (SA-XRD) in a Philips X'Pert Plus diffractometer (Philips Electronics NV, Eindhoven, Netherlands) with Bragg-Brentano geometry, operating with CuK α radiation ($\lambda = 1.5406$ Å) at 40 kV and 20 mA. The diffractograms were collected over the range between 0.6° and 10.0° 20 with a step size of 0.02° 20 and a contact time of 5 s per step.

The surface characterisation of materials was carried out by N₂ adsorption/desorption analysis at -196 °C on a Micromeritics ASAP2020 analyser (Micromeritics Co, Norcross, USA). In all cases, 30-50 mg of the functionalized materials were outgassed under a vacuum lower than 10^{-5} Torr during 24 h at 60 °C prior to the measurements. The Brunauer-Emmett-Teller (BET) equation was used to calculate the surface area S_{BET}. Single-point total pore volume (V_T, cm³/g) was measured at P/P₀ \approx 0.97. The average mesopore size (D_P) between 0.5 and 40 nm was obtained from the maximum of the pore size distribution curve calculated from the adsorption branch of the isotherm using the BJH (Barrett-Joyner-Halenda) method [^{1,2}].

Electrophoretic mobility measurements of the materials suspended in water (0.1 mg/mL) were used to calculate the zeta-potential (ζ) values of the nanoparticles. Measurements were performed in a Zetasizer Nano-ZS instrument (Malvern) equipped with a 633 nm "red" laser. ζ -potential can be described by Smoluchowski's equation [³]: $\zeta = 4\pi\eta U/\epsilon$, where U is the electrophoretic mobility, η is the viscosity of water, and ϵ is the dielectric constant of water. The hydrodynamic size of mesoporous nanoparticles was measured by means of Dynamic Light Scattering (DLS) with the same Malvern instrument. Values presented are mean \pm SD from triplicate measurements.

SEM-EDS analysis was performed on a JEOL JSM 6335F microscope. For this purpose, samples were dispersed in ethanol and dried onto a copper stud and coated with a film of Cr previous to observation.

Transmission electron microscopy (TEM) was carried out with a JEOL JEM 1400 and JEOL JEM 2100 instruments equipped with a CCD camera (KeenView Camera) and operated at 120 and 200 kV, respectively. Sample preparation was performed by dispersing in ethanol and subsequent deposition onto carbon-coated copper grids.

^{[&}lt;sup>1</sup>] S. J. Gregg, K. S. W. Sing. Adsorption Surface Area and Porosity, 2nd ed. Academic Press, New York, 1982.

^{[&}lt;sup>2</sup>] S. Lowell, J. E. Shields, M. A. Thomas, M. Thommes. Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density. Particle Technology Series, Vol. 16, 2004, Springer Science+Business Media B.V.

^{[&}lt;sup>3</sup>] M. V. Smoluchowski, Handbuch der Electrizitat und des Magnetismus, Barth, Leipzig, Germany 1921, p. 366.

Characterization of the samples:

TGA studies have been carried out in order to determine the organic content (functionalization and LEVO loaded) of the samples. In the case of non-functionalized MSNs (Fig. S1A), a weight loss of approximately 16.1% is observed up to 100 °C, attributed to the calcination of remaining organic matter (i.e. CTAB template). Functionalized ZMSN-1.5 and PEGylated nanoparticles present a first loss step below 100 °C (about 2%) corresponding to the elimination of adsorbed water on the silica surface. Further weight loss takes place in the range of 100-250 °C (22.4% for ZMSN-1.5 and 30.1% for PEG) confirming the effective functionalization of the nanoparticles. Furthermore, drug-loaded nanoparticles increase (Fig. S2B) the weight loss up to 23 and 26% (@MSN and @ZMSN-1.5, respectively). On the contrary, PEGylated NPs present a lower weight loss of about 20%, showing a higher loaded yield in *zwitterionic* materials.

Figure S1. Thermogravimetic (TGA) analysis of the A) unloaded and B) LEVO containing a) pristine MSN, b) *zwitterionic* ZMSN-1.5 and c) PEGylated synthesized systems.

Figure S2. TEM images of A) bare MSNs and B) ZMSN-1.5 (*upper row*). DLS size histograms are displayed (*lower row*) for C) naked and D) modified nanoparticles.

Figure S3. ζ-potential variation with pH values for MSNs (black circles), ZMSN-1.5 (blue squares) and PEGylated (green triangles) systems.

Figure S4. A) ¹H \rightarrow ¹³C CP-MAS NMR (showing the carbon assignment the structure scheme). B) ²⁹Si MAS NMR spectra PEGylated nanoparticles, showing C) the chemical shift and peak area (%) of deconvoluted silicon Q_n and T_n ²⁹Si MAS NMR bands. Single-pulse ²⁹Si MAS NMR spectra of D) MSN, E) ZMSN-1.5 and F) PEGylated systems.

Figure S5. A) Percentage of adsorbed lysozyme (Lys), fibrinogen (Fib) and bovine serum albumin (BSA) on pristine MSNs, ZMSN-1.5 and PEGylated MCM-41 nanoparticles. B) Laemmli buffer gel electrophoresis results performed in fetal calf serum (FCS).

Table S1. Estimation of the ratio of total average fluorescence intensity from LSCM images arising from the nanoparticles (I_{Total}) between those within the cells (I_{Cell}) calculated by image analysis (FiJi software).

Sample	Estimated averaged I_{Total} / I_{cell}		
MSN	37.1 ± 6.5		
ZMSN-1.5	16.8 ± 6.8		
PEG	7.7 ± 2.8		

Table S2. Textural features (S_{BET} : surface area; D_P : pore diameter; V_P : pore volume) of pristine MSN and bi-functionalized zwitterionic ZMSN-1.5 obtained by N_2 adsorption porosimetry.

Sample	$S_{BET} (m^2 g^{-1})^{[a]}$	$\mathbf{D}_{\mathbf{p}}\left(\mathbf{nm} ight)^{\left[\mathbf{b} ight]}$	$V_{P} (cm^{3}g^{-1})^{[c]}$
MSN	1041	2.4	1.20
MSN@LEVO	331	2.3	0.41
ZMSN-1.5	500	2.3	0.48
ZMSN-1.5@LEVO	143	1.9	0.22