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Supplementary Figure 1: Zoomed-out version of Fig. 1 (c)-(d) from the main text. (a)-(d) Streamlines around the Janus
particles obtained experimentally (left) and analytically (right), in the two situations where the particle is stuck (top) and
freely moving (bottom). The background colors represent the magnitude of the velocity u = |u| rescaled by the swimming

velocity of the Janus particle when it is freely moving.
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Supplementary Note 1: Consistency between the measurements of the flow fields around a stuck colloid and
around a moving colloid

The velocity field around a stuck colloid can be related to the velocity field around a moving colloid through

ustuck = umoving + U ê + umonopole (1)

where ustuck is given by Eq. (15) from the main text, umoving is given by Eq. (17) from the main text, and umono is
given by Eq. (10) from the main text. In order to highlight the consistency between the measurements in the stuck
and in the freely swimming cases, we compute the quantity δu = ustuck−umoving−umonopole. The value of the force
is chosen such that f = 6πηaU (see main text). We present on Supplementary Figure 2 the vector field δu. As δu is
expected to be equal to U ê anywhere around the colloid, we compute 〈δux〉 and 〈δuy〉, where the averages run over
all measurement points, and find

〈δux〉 = (1.14± 0.29)U, (2)

〈δuy〉 = (−0.0011± 0.28)U, (3)

which is a strong indication that Eq. (1) holds experimentally, and which highlights the consistency between the two
sets of experimental measurements.
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Supplementary Figure 2: Vector plot of δu as defined in Eq. (1).



3

Supplementary Note 2: Influence of the solid wall

In this section, the origin of coordinates is a point on the solid wall (see Supplementary Figure 3). Following
Spagnolie and Lauga [1], the flow field created by a squirmer whose centre is at position r0 = (0, 0, h) and with zero
rotational velocity can be decomposed into a sum of singularities which correspond to a far field expansion ([1] Eq.
(2.17)):

ũsing,free(r) = −ê + αGD(r − r0, ê, ê) + βaD(r − r0, ê) + γaGQ(r − r0, ê, ê) +O(|r − r0|−4) (4)

(note that this is dimensionless i.e. the velocity is measured in units of 2B1/3 and Lauga’s result was modified to be
in the frame of reference attached to the colloid). Here α, β and γ are dimensionless coefficients that characterize the
strength of each singularity, and one defines:

• the Stokeslet dipole GD, see [1] Eq. (A2),

• the source dipole D, see [1] Eq. (A8),

• the Stokeslet quadrupole GQ [1] Eq. (A3).

Ishimoto and Gaffney [2] give the relation between α, β and γ and the Legendre coefficients of the slip velocity at
the surface of the colloid (see [2] Eq. (7)):
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They are indeed dimensionless since each of the Bn has the dimension of a velocity. We note that because it relies on
a singularity expansion, the expression of ũ in Eq. (4) only involves the first three Legendre coefficients of the slip
velocity B1, B2 and B3. Any higher-order contribution to the slip velocity won’t have any effect on the computed ũ
at this level of expansion.

Applying the method of images, the flow field in the presence of the wall is obtained from ũ in Eq. (4) by adding
to each of the singularities its image:

ũsing,wall(r) = −ê + αGD(r − r0, ê, ê) + βaD(r − r0, ê) + γaGQ(r − r0, ê, ê)

+ αG∗D(r − r∗0 , ê, ê) + βaD∗(r − r∗0 , ê) + γaG∗Q(r − r∗0 , ê, ê) +O(|r − r0|−4), (8)
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Supplementary Figure 3: Notations for the singularities calculation
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where r∗0 = (0, 0,−h) is the image of the singularity located at r0. Although the image of a Stokeslet has a simple
expression and was computed long ago (see e.g. [3]), the image of the singularities present in Eq. (4) (Stokeslet dipole,
source dipole, Stokeslet quadrupole) have complicated expressions but are given in [1]:

• the image of the Stokeslet dipole G∗D is given in [1] Eq. (B5),

• the image of the source dipole D∗ is given in [1] Eq. (B13),

• the image of the Stokeslet quadrupole G∗Q is given in [1] Eq. (B8).

In the main text, as examples of the influence of the solid wall on the calculated flow field, we plot on Fig. 5 two
components of the flow field around the moving swimmer using the three different analytical expressions, obtained
respectively with the singularities approximation in free space [Eq. (4)], the singularities approximation with the
influence of the wall [Eq. (8)] and the exact solution in free space valid at any point (see Methods section).
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Supplementary Note 4: Flow fields generated by alternative simple slip velocity profiles

Slip velocity with a dipolar symmetry

The flow field generated by the nonzero slip velocity at the surface of the colloid can again be calculated Eqs. (15)
and (17) from the main text, but with another expression for the slip velocity at the surface of the colloid v(θ).

We first consider a slip velocity with a dipolar symmetry, that is peaked at the equator of the particle and vanishes
at its poles:

v(θ) = v0 sin θ (9)

The velocity profiles ux(x, y = 0, z = 0) and uy(x = 0, y, z = 0) can be calculated and fitted to the experimental
measurements using v0 as a fit parameter (Supplementary Figure 4). The results are commented in the main text.
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Supplementary Figure 4: Top: x-component of the velocity measured at y = 0 and as a function of the coordinate x for
the two situations where the swimmer is stuck (a) and freely moving (b). Bottom: y-component of the velocity measured at
x = 0 and as a function of the coordinate y for the two situations where the swimmer is stuck (c) and freely moving (d). The

red line is a fit of the experimental data using a slip velocity with dipolar symmetry [Eq. (9)]. The values of the fit
parameters are Kstuck = 0.80± 0.26 and Kmoving = 1.56± 0.34.
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Constant slip velocity over the Pt hemisphere

We then consider a slip velocity that is constant over the Pt hemisphere:

v(θ) =

{
v0 for π/2 < θ < π,

0 otherwise.
(10)

Although this is not an existing prediction for the system of Pt-PS colloid, we believe its comparison with the model
that is based on current loops will be helpful. The velocity profiles ux(x, y = 0, z = 0) and uy(x = 0, y, z = 0) can be
calculated and fitted to the experimental measurements using v0 as a fit parameter (Supplementary Figure 5). The
results are commented in the main text.

−1.5

−1

−0.5

0

0.5

−40 −20 0 20 40

u
x
(x
)/
U

x (µm)

(a)

−2.5

−2

−1.5

−1

−0.5

0

−40 −20 0 20 40

u
x
(x
)/
U

x (µm)

(b)

−1.5

−1

−0.5

0

0.5

1

1.5

−40 −20 0 20 40

u
y
(y
)/
U

y (µm)

(c)

−1.5

−1

−0.5

0

0.5

1

1.5

−40 −20 0 20 40

u
y
(y
)/
U

y (µm)

(d)

Supplementary Figure 5: Top: x-component of the velocity measured at y = 0 and as a function of the coordinate x for
the two situations where the swimmer is stuck (a) and freely moving (b). Bottom: y-component of the velocity measured at
x = 0 and as a function of the coordinate y for the two situations where the swimmer is stuck (c) and freely moving (d). The
red line is a fit of the experimental data using constant slip velocity over the Pt hemisphere [Eq. (10)]. The values of the fit

parameters are Kstuck = 1.55± 0.14 and Kmoving = 2.55± 0.21.
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