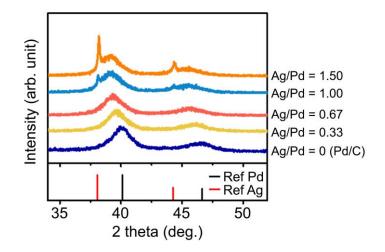
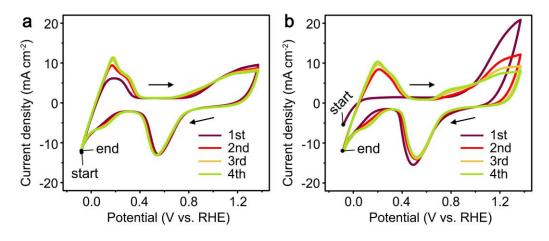
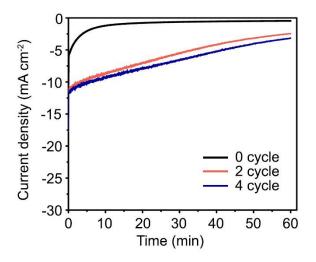
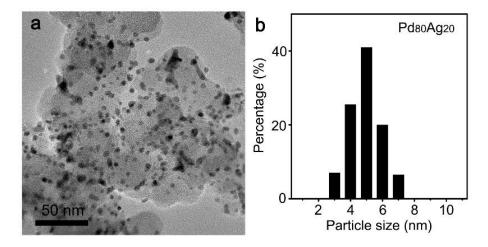

Supplementary Information

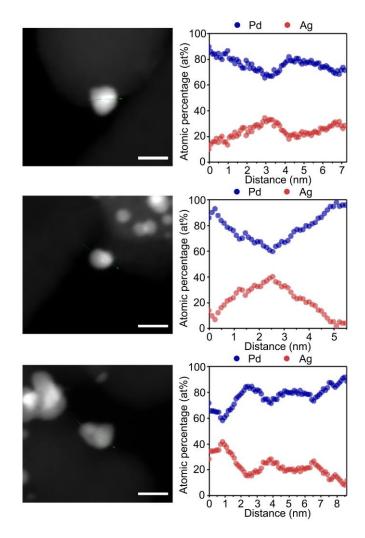

Cyclic two-step electrolysis for stable electrochemical conversion

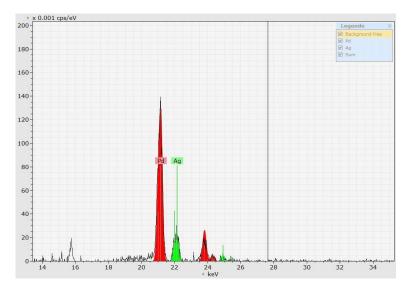
of carbon dioxide to formate

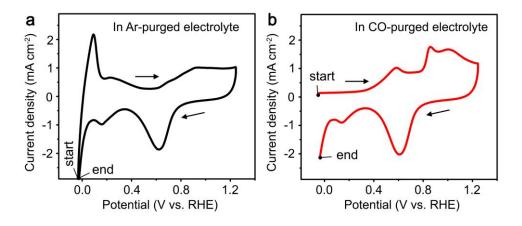

Lee and Cho et al.

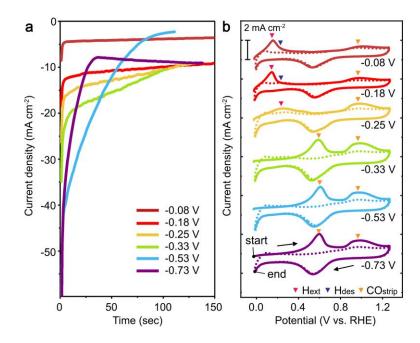

Supplementary Figure 1 The FEs for HCOO⁻ production measured at various potentials on the Pd/C and $Pd_{80}Ag_{20}/C$ catalysts. Liquid product was analyzed using ¹H NMR after electrolysis at various potentials in a gas-tight cell. Error bars: mean±s.d. Source data are provided as a Source Data file.

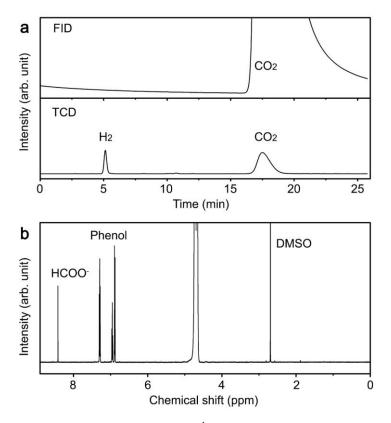

Supplementary Figure 2 XRD patterns of the powders synthesized with different molar ratios of Ag/Pd through the microwave-assisted polyol method. When the input ratio of Ag/Pd was 0.67, the XRD pattern showed the largest peak shift without the formation of pure Ag crystals.

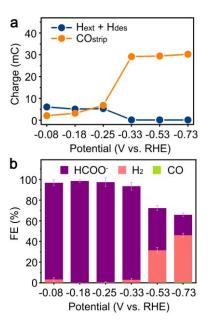

Supplementary Figure 3 CV pretreatment of as-synthesized NPs. The CV spectra of **a** Pd/C and **b** $Pd_{80}Ag_{20}/C$ were scanned at a scan rate of 50 mV s⁻¹ in Ar-purged 0.1 M HClO₄ solution for 4 cycles. For as-synthesized $Pd_{80}Ag_{20}/C$ NPs, an irreversible oxidation peak at approximately 1.2 V vs. RHE was observed due to anodic dissolution of excessive Ag from the as-synthesized alloy.

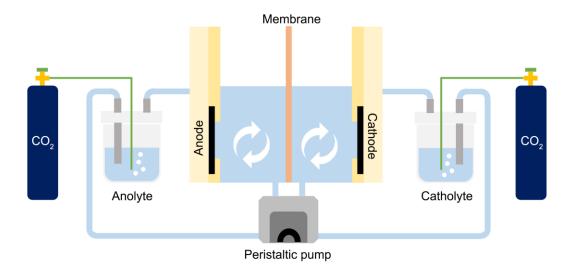

Supplementary Figure 4 Current density vs. time curve of $Pd_{80}Ag_{20}/C$ catalysts prepared with different cycle numbers of CV pretreatment. Chronoamperometry was conducted at -0.18 V vs. RHE in CO₂-saturated 0.5 M NaHCO₃/NaClO₄ solution.

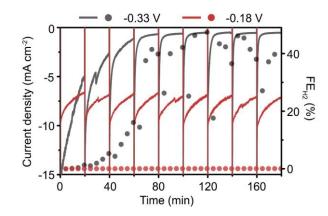

Supplementary Figure 5 TEM analysis results. **a** TEM image and **b** particle size distribution of $Pd_{80}Ag_{20}/C$ catalysts taken after CV pretreatment. The average particle size of the $Pd_{80}Ag_{20}/C$ catalysts was approximately 5.0 nm.

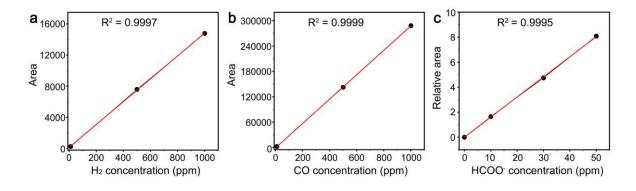

Supplementary Figure 6 HAADF-STEM images and STEM-EDS line scan profiles of the $Pd_{80}Ag_{20}/C$ catalysts taken after CV pretreatment. From EDS analysis, the average elemental ratio of Pd:Ag was measured to be 78.2:21.8. Scale bar = 8 nm.


Supplementary Figure 7 Typical EDS spectrum of the $Pd_{80}Ag_{20}/C$ catalysts taken after CV pretreatment. The compositional information was obtained from the K α and K β lines of Pd and Ag elements to sufficiently separate the EDS signals of Pd and Ag.


Supplementary Figure 8 Anodic CV spectra of Pd/C estimated after applying -0.20 V vs. RHE for 6 min in **a** Ar-purged and **b** CO-purged electrolyte. CV scans were conducted at a rate of 10 mV s⁻¹. By comparing the CV spectra, it can be identified that three additional peaks centered at approximately 0.60, 0.86 and 1.00 V vs. RHE appear in a CO-purged electrolyte condition.


Supplementary Figure 9 Electrochemical surface analysis of Pd/C catalysts. **a** Current density vs. time curves at various potentials in a CO₂-saturated electrolyte. **b** CV curves recorded after electrolysis at various potentials. Solid and dotted lines are the first and second cycle of CV curves. In the first cycle, the anodic peaks related with H extraction from the lattice, H desorption from the surface, and CO stripping are indicated with pink, blue, and orange triangles, respectively.


Supplementary Figure 10 Representative GC and ¹H NMR spectra of gas and liquid products. **a** The GC spectra were obtained by injecting a gas mixture in the headspace of a gas-tight cell after electrolysis at -0.53 V vs. RHE. The H₂ was detected in a TCD whereas CO was detected in an FID. **b** The ¹H NMR spectra were measured using the catholyte after electrolysis at -0.18 V vs. RHE. For ¹H NMR analysis, the catholyte was mixed with the D₂O solution containing DMSO and phenol as internal standards.


Supplementary Figure 11 Stripping charges and product selectivity of Pd/C. **a** CO_{strip} and $H_{ext} + H_{des}$ charges measured from the CV curves of Pd/C shown in Supplementary Figure 9b. **b** The FEs for H₂ and HCOO⁻ production measured from GC and ¹H NMR analysis after electrolysis on Pd/C at various potentials in a gas-tight cell. Error bars: mean±s.d. Source data are provided as a Source Data file.

Supplementary Figure 12 Schematic diagram of a flow cell system composed of an electrochemical cell, a peristaltic pump and electrolyte bottles. The catholyte and anolyte were continuously circulated using a peristaltic pump between the electrolyte bottles and the electrochemical cell. The electrolyte was purged with a high-purity CO_2 gas during electrolysis.

Supplementary Figure 13 Current density vs. time curves and H_2 production selectivity recorded during cyclic two-step electrolysis with different reduction potentials. In the reduction step, -0.18 or - 0.33 V vs. RHE was applied with the reduction period fixed at 19 min 50 s. The oxidation potential and period were fixed at 1.22 V vs. RHE and 10 s, respectively. The experiments were conducted in a flow cell system where CO₂-saturated bicarbonate solution was continuously refreshed using a peristaltic pump.

Supplementary Figure 14 Calibration curves for quantitative analysis. The calibration curves of **a** H_2 and **b** CO are obtained by performing GC analyses using standard gases containing 10, 500 and 1000 ppm of H_2 and CO. **c** The calibration curve of HCOO⁻ is obtained by plotting the relative area of HCOO⁻ signal respect to phenol as a function of HCOO⁻ concentration, after ¹H MMR measurements of the standard samples containing 0, 10, 30 and 50 mM HCOO⁻.

Element	Atom%
Pd	80.01
Ag	19.99

Supplementary Table 1 ICP-OES analysis result of Pd₈₀Ag₂₀/C catalysts taken after CV pretreatment.

Supplementary Table 2 Summary on FEs for H_2 evolution, CO production, HCOO⁻ production, H adsorption/absorption and CO adsorption on $Pd_{80}Ag_{20}/C$ catalysts. The FEs for H_2 , CO and HCOO⁻ production were measured from GC and ¹H NMR analysis after electrolysis at various potentials. The FEs for CO adsorption and H adsorption/absorption were calculated by dividing the CO_{strip} and H_{ext} + H_{des} charges by passed charge, respectively.

Potential (V vs. RHE)	FE for H ₂ production (%)	FE for CO production (%)	FE for HCOO [.] production (%)	FE for H adsorption/absorption (%)	FE for CO adsorption (%)	Total FE (%)
-0.08	1.4	0.0	95.1	0.5	0.3	97.3
-0.18	0.1	0.0	97.4	0.5	0.4	98.4
-0.25	0.2	0.0	97.4	1.0	0.4	99.0
-0.33	0.7	0.2	94.5	1.3	0.5	97.2
-0.53	21.3	0.2	71.4	1.1	2.4	96.4
-0.73	42.7	0.1	43.5	0.3	5.5	92.1

Supplementary Table 3 Reported electrochemical HCOO⁻ production performance on Pd-based catalysts. The reported data were extracted or collected from the literature that are listed in the Supplementary References.

Electrolysis method	Catalyst	Electrolyte	Potential (V vs. RHE)	Electrolysis duration	FE _{HCOO} . (%)	Initial current density (mA cm ⁻²)	Final current density (mA cm ⁻²)	Ref
Potentiostatic electrolysis in an H-cell	Pd/C	0.5 M NaHCO ₃	-0.25	1 h	98.0	4.2	3.0	1
Potentiostatic electrolysis in an H-cell	High-index Pd	0.5 M KHCO ₃	-0.20	50 min	97.0	20.0	17.0	2
Potentiostatic electrolysis in an H-cell	B-doped Pd/C	0.1 M KHCO ₃	-0.50	5 h	55.0	6.5	3.6	3
Potentiostatic electrolysis in an H-cell	6.5 nm Pd NPs	0.5 M NaHCO₃	-0.20	1 h	94.0	6.0	2.0	4
Potentiostatic electrolysis in an H-cell	Pd70Pt30/C	pH 6.8 phosphate buffer	-0.40	2 h	57.6	7.0	3.5	5
Potentiostatic electrolysis in an H-cell	3.7 nm Pd NPs	1.0 M KHCO ₃	-0.20	1 h	98.0	18.2	13.9	6
Potentiostatic electrolysis in an H-cell	Electrodeposited Pd	0.1 M KHCO ₃	-0.40	20 min	55.8	2.0	1.4	7
Potentiostatic electrolysis in an H-cell	Pd foil modified by NHC ligand	0.5 M KHCO ₃	-0.57	6 h	<80.0	2.2	2.0	8
Potentiostatic electrolysis in an H-cell	Pd/Pt/C	1.0 M KHCO ₃	-0.20	1 h	91.9	29.7	19.4	9
Cyclic two-step electrolysis in a flow cell	Pd ₈₀ Ag ₂₀ /C	0.5 M NaHCO ₃ /0.5 M NaClO ₄	-0.18 V for 590 s / 1.22 V for 10 s	45 h	97.8	11.0	11.0	Our work

Supplementary References

- Min, X. & Kanan, M. W. Pd-Catalyzed electrohydrogenation of carbon dioxide to formate: high mass activity at low overpotential and identification of the deactivation pathway. *J. Am. Chem. Soc.* 137, 4701–4708 (2015).
- 2. Klinkova, A. *et al.* Rational design of efficient palladium catalysts for electroreduction of carbon dioxide to formate. *ACS Catal.* **6**, 8115–8120 (2016).
- Jiang, B., Zhang, X.-G., Jiang, K., Wu, D.-Y. & Cai, W.-B. Boosting formate production in electrocatalytic CO₂ reduction over wide potential window on Pd Surfaces. *J. Am. Chem. Soc.* 140, 2880–2889 (2018).
- Rahaman, M., Dutta, A. & Broekmann, P. Size-dependent activity of palladium nanoparticles: efficient conversion of CO₂ into formate at low overpotentials. *ChemSusChem* 10, 1733–1741 (2017).
- Kortlever, R., Peters, I., Koper, S. & Koper, M. T. M. Electrochemical CO₂ reduction to formic acid at low overpotential and with high Faradaic efficiency on carbon-supported bimetallic Pd-Pt nanoparticles. *ACS Catal.* 5, 3916–3923 (2015).
- Gao, D. *et al.* Switchable CO₂ electroreduction via engineering active phases of Pd nanoparticles. *Nano Res.* 10, 2181–2191 (2017).
- Zhou, F., Li, H., Fournier, M. & MacFarlane, D. R. Electrocatalytic CO₂ reduction to formate at low overpotentials on electrodeposited Pd Films: stabilized performance by suppression of CO formation. *ChemSusChem* 10, 1509–1516 (2017).
- Cao, Z. *et al.* Chelating N-heterocyclic carbene ligands enable tuning of electrocatalytic CO₂ reduction to formate and carbon monoxide: surface organometallic chemistry. *Angew. Chem. Int. Ed.* 57, 4981–4985 (2018).
- 9. Cai, F. *et al.* Effect of metal deposition sequence in carbon-supported Pd–Pt catalysts on activity towards CO₂ electroreduction to formate. *Electrochem. Commun.* **76**, 1–5 (2017).