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Figure 1: Proportions P, and P;gg for individual patients. aS (resp. IES) propor-
tion P,(t) (yellow) (resp. Prgs(t) (dashed red)) estimated for single patients without IES
(left) and with IES (right) (See also Main text, Fig. 1D, E, G).



Comparaison of normalized curves for patient with IES (Avg.)
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Figure 2: aS variable and IES proportion time course A. Comparison of aS duration
Dur, (magenta) (Fig. 2B) and IES proportions Prgs (dashed red)(Fig. 1G). B. aS occurrence

frequency F,, (magenta) (Fig. 2C), aS proportion (yellow) (Fig. 1G) and IES proportions
Prgs. C. Area per aS duration A, (magenta) (Fig. 2D) and IES proportions Prgs.
Curves from panels A-C has been normalized to their respective value averaged over
20, 35]min. D-E. Schematic representation of signal S, (t) power estimated for an oS
(yellow, D) and an Inter-aS (blue, E). F-G. Comparison between patient groups with
(magenta) and without IES (grey) of the S, (t) power time course of estimated for aS (F)
and an Inter-aS (G).
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Figure 3: Hyper-parameters and variable separability. Random Forest (RF) classifiers
hyper-parameters (Split criterion, bootstrap, maximal tree depth, minimum samples required
for splitting a tree node) distributions for the 100 classifiers obtained by the grid search op-
timization under the repeated nested k-fold procedure for A the classifiers using all variables,
B the classifiers using only S,-related variables and C the classifiers using only age, height,
weight and AMAP variables. D Hyper-Parameter (re-normalization constant C') distributions
for the 100 uni-variate logistic regression classifiers obtained by grid search optimization under
the repeated nested k-fold procedure for each considered variable: Age, AMAP, slope a, F,, Aq
and Ar,s. E Optimal hyper-parameters obtained for the classification trees using either only
pre-clinical and AMAP or all variables. F Distribution of the height and weight variables for
the 79 patients depending on their class (IES and non-IES) showing non-separability of the two
classes for these variables.
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Figure 4: ROC curves associated to RF classifiers where IES are evaluated in various
time windows A ROC curves for different RF classifiers obtained varying the time window in
which IES are detected: 25, 35 (as presented in the main text) and 45 minutes. B AUC values
associated to the ROC curves presented in A.
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Figure 5: Proximity plots and classification tree based on non-EEG variables
A. Two dimensional representations of the distance metric induced by the optimal RF
classifiers using either only S,-related variables (top, same as Fig. 3E) or only pre-clinical
and AMAP variables (bottom). B. Optimal classification tree obtained from a similar
procedure as the tree presented in Fig. 3F but using only pre-clinical and AMAP variables.



D Univariate classification (Logistic)
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. OR Classification
Variables [p-value [95% CI] AUC Accuracy Variables Age a-9 Ratio
1.041
Age 0.008 [1.011; 1.071] 0.676 61.25% Age 1 0.421 0.394
- . 1.127
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<0.001| 1 41200321 | 0901 85% p<0.001 | p<0.001 |

Figure 6: IES prediction (first 35min) based on Alpha to Delta Ratio (ADR).
A. Power spectral density computed over the induction period and averaged for the IES
(magenta) and no IES (grey) groups. B. Distribution of ADR between the IES and no
IES groups. C. Univariate ROC curves (logistic model) for predicting TES occurrence
during the 35 first min using the age (green), ADR (blue) and the asS slope (yellow). D.
Table summarizing model parameters from panel C. E. Correlation matrix between the
age (green), ADR (blue) and the asS slope (yellow).



A Univariate Logistic model

. p-value OR AUC Classification
Variable [CI 95%] Accuracy
é-power 0.004 0.816 0.734 73.75%
[0.709; 0.938]
aS amplitude 0.001 0.269 0.767 75%
[0.123; 0.586]
<0.0001 1.775 0.901 85%
[1.412;2.232]

Correlation matrix (Pearson)

B as
Variables Age amplitude d-power
Age 1 0.394 -0.192 -0.369
p <0.001 1 -0.298 -0.364
a$S amplitude 1 0.091
p=10.088 p=0.007
S-power 1
p=10.001 p=0.001 | p=0.420
. Multivariate analysis (logistic)
C Variable | p-value OR OR CI 95%
as
amplitude |  0.002 0.271 [0.119; 0.17]
d-power 0.014 0.831 [0.718; 0.963]

Figure 7: Statistics of IES prediction (first 35min) based on the j-power A.
Univariate analysis (logistic model) for the § power (blue), the a.S amplitude (red) and the
P, proportion slope a (yellow). All predictors are evaluated during the induction period.
B. Correlation matrix for variable shown in table A. C. Significance analysis obtained
from a multivariate logistic regression with two predictors: «S amplitude (red) and the 0

power (blue).
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Figure 8: Distribution of the averaged Propofol TCI for patient with and with-
out IES. The distribution is estimated during the entire maintenance phase of GA.



A Daubechies' db2 filter
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Figure 9: Daubechies wavelets decomposition of the EEG Signal A. Daubechies
wavelet subband filtering scheme for an input signal S initially sampled at 64Hz, where
a0, al, a2 are the first approximation coefficients and d1, d2 the two first detail coefficients
2]. B. Unfiltered EEG signal. C-E Filtered signals for subbands [16,32]Hz (C), [0, 8]Hz

(D) and [8, 16]Hz (D).



2 Supplementary Tables

’ Model \ Hyper-parameter \ Range ‘
| Logistic Regression | Renormalization coef. C' | 10%, k = [-5,5] |
Random Forest Max. depth 2,3,4,5,00
Min. sample split 12, 9]
Bootstrap Yes / No
Criterion Gini / Entropy
Classification Tree | Max. depth 2,3,4,5,6,7,00
Min. sample split [2, 11]
Min. sample leaf I3, 7]
Criterion Gini / Entropy

Table 1: Hyper-Parameter ranges used in the grid-search optimization
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3 Supplementary Notes, Discussion, Methods

3.1 Classification analysis
3.1.1 Classification variables

To classify patients with and without IES, we constructed classification variables com-
puted from monitored MAP and alpha-band statistics. We defined the MAP variable as
the difference between the reference MAP,.; (measured before GA) and the minimal MAP

(estimated during induction): AMAP = ’MAPTG ;- lrglin (MAP)‘. The four classification

variables related to aS events statistics were 1)the slope 7 of P, (named a hereafter), 2) A,
and 3)Ajas estimated with y(t) = vt + b (b is a constant) on the first 10min, while for 4)
the occurrence frequency F,,, we took the maximum evaluated over the same period.

3.1.2 Random Forest and Logistic Regression training procedures

For the training and evaluation of the generalization capabilities of the Logistic Regression
(LR) and Random Forest (RF) classifiers, we used a stratified k-fold (k=5) cross-validation
scheme (stratification ensures a balance between classes in each folds) on the np = 79
patients dataset.

To set the classifiers parameters, the hyper-parameters, we used a grid search opti-
mization under a nested stratified k-fold cross-validation scheme [1], where k& = 5 for
both inner (training/validation) and outer (generalization) cross-validations. The hyper-
parameter ranges used for each type of classifier are presented in Supplementary Tab. 1
and the resulting parameter distributions in Supplementary Fig. 3A-E. To reduce the
variance resulting from the random splits occurring in the cross-validation procedure,
we repeated the outer cross-validation 20 times and the inner cross-validations 10 times,
which resulted for each setup in an ensemble of 100 classifiers. The reported ROC curves
and AUC values (Fig. 3B-C, Supplementary Fig. 4) correspond to an average over the
100 individual ROC curves.

3.1.3 Random Forest validation

To assess the goodness of the variables and RF models applied on our dataset, we com-
puted two metrics: variable importance and two-dimensional proximity plot. The former,
presented in Fig. 3D consists in counting the number of times a split in a tree of the
forest uses a given variable weighted by the corresponding impurity decrease [4]. The
later, presented in Fig. 3E, uses a MultiDimensionnal Scaling (MDS) algorithm to obtain
a set of 2D coordinates for each patient such that their Euclidean distance respects the
dissimilarity measure computed from the RF classifier [3, p.570]. In our nested k-Fold
cross-validation setup, we reported the average and standard deviation of the individ-
ual variable importance values from the 100 trained RF classifiers, while we present the
proximity plots obtained for each setup from the RF classifier with the highest AUC value.
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3.1.4 Classification tree training procedure

The classification trees obtained in Fig. 3F and in Supplementary Fig. 5, were obtained
using the Classification And Regression Trees (CART) algorithm applied to the entire
dataset of patients. We used the same nested k-fold cross-validation procedure as for the
other classifiers to find the optimal set of hyper-parameters with respect to the accuracy
score, using a grid-search optimization (Supplementary, Tab. 1).

3.1.5 Classification tree quality metrics

To ability of the classification trees to correctly separate the two data classes (”pure”
nodes, containing only one class), we used the information entropy measure:

ORI

ce{0,1} leT

Je(l) logy(fe(1)) (1)

where ¢ € {0,1} (0: no IES, 1: IES) represents one class, [ € T is a terminal node of the
tree T', N.(I) is the number of observations of class ¢ at node [, N, is the total number of
observations of class ¢ in the tree and f.(I) is the proportion of observations of class ¢ in
node I: f.(l) = #(%1(” The measure I, = 1 when each terminal nodes have about the
same number of observations of each class and I;, — 0 when the terminal nodes become
pure. The classification analysis was performed using the sklearn module [5] version

0.20.1.
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3.2 Propofol TCI statistics during the entire maintenance pe-
riod

We compare the averaged TCI for groups of patients with no IES vs IES (Supplementary
Fig. 8: we find that the no-IES group had a slightly higher TCI during maintenance
compared to the IES group (median [IQR)]; TCI=3.7 [3.3, 4] ug ml™! no IES vs 3.2
3, 3.6] ug ml~! for TES patients). This result could be understood by an adaption of
the propofol dose to the patients response. This result confirms that here, propofol TCI
cannot be used to predict the appearance of IES.

3.3 aS precedes IES dynamics

To confirm the predictive value of oS, we show here that their statistics preceded the ones
of the TES. We first normalized each variable associated to aS events: the IES fraction
Prgs, aS duration Dur,, frequency F, and average amplitude A,, with their respective
plateau value (trace averaged over [20, 35|/min). For each trace, we then approximated nu-
merically the times t,, to reach 99% of the final value. For that purpose, we approximated
each curve either with a sigmoidal

y(t) = ) : (2)

or with an exponential curve
y(t) = 1-— e*(tfto)/f’ (3)

where ¢y and 7 are constants. We obtained for the sigmoid model (2), (resp. exponential,
(3)) that to = to+1.1487 (resp. to+4.607). Fitting was performed in MATLAB R2018a.

We first computed times for the fraction Prpg (dashed red) of IES in the EEG sig-
nal and aS durations Dur, (magenta) and we found that Dur, plateaus sooner (to, =
13.78min) than Prgg, which equilibrates at t,, = 19.54min (Supplementary Fig. 2A).
This result confirms that the variable Dur,, anticiapte the appearance of IES.

Similarly, we computed for the frequency F, (magenta) that the time to plateau was
too = 7.74min (Supplementary Fig. 2B). The frequency F,, reached its steady-state before
Prps and aS duration Dur,. Interestingly, as estimated above, the average time of the
first IES occurrence was (trgpg) = 11.88min, which thus happens almost 4 minutes after
F, has reached its plateau. Additionally, we remarked that during induction, F,, behavior
followed the increase of aS fraction in the EEG signal P, (yellow). These results show that
F,, steady-state is rapidly established during the induction phase and occurs in average
before first IES. Finally, we found that the average oS amplitude A, reached its plateau
value at t,, = 18.89min, which is similar to the one of IES.

To summarize, these results highlight that oS dynamics precedes IES ones, but also
that oS variables possess different timescales. In particular, both S duration Dur, and
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average amplitude A, had a slow timescale and reached their steady-state value during
the maintenance. However, the occurrence frequency F,, equilibrium was rapidly estab-
lished during the induction phase.

3.4 1IES prediction based on )-power and alpha-to-delta ratio

The depth of anesthesia can be quantified by several markers such as the delta band
power or the alpha-to-delta ratio [6]. The performance of these markers in predicting
the occurrence of IES during the first 35min, can be evaluated by comparing the aS P,
proportion slope a’ to the alpha-to-delta ratio or the delta power. For that goal, we
estimated these parameters during the induction phase.

We computed the power spectrum during the induction phase for each group, present-
ing or not IES. We estimated the alpha-to-delta ratio (Supplementary Fig. 6) and found
that the power spectrum between the two groups (with and with no IES) was significantly
different.

Interestingly, using a univariate logistic model, we show here that aS features ('P,
proportion slope a’) outperformed alpha-to-delta ratio by 20% (85% vs 65%, respectively
(Supplementary Table 6). Similarly, the d-power had an accuracy of 73.75% vs 75% and
85% for aS amplitude (A,) and P, proportion slope a’.

A multivariate analysis shows that the d-power and the aS amplitude are independent
(Supplementary Fig. 7). Yet, using these two variables, we found an accuracy of 76.25%
and an AUC of 0.825 which remains much below the performance obtained with the
'P,, proportion slope a’ variable alone. Finally, when we compare the J-power and P,
proportion slope a’, we found that these variable are not independent: in that case the
d-power was no longer significant (p=0.363), while the 'P, proportion slope a’ is clearly
the most predictive variable with a p-value <0.0001. These results show that aS are most
suited to predict IES occurrences.
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