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Figure 1: Proportions Pα and PIES for individual patients. αS (resp. IES) propor-
tion Pα(t) (yellow) (resp. PIES(t) (dashed red)) estimated for single patients without IES
(left) and with IES (right) (See also Main text, Fig. 1D, E, G).
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Figure 2: αS variable and IES proportion time course A. Comparison of αS duration

Durα (magenta) (Fig. 2B) and IES proportions PIES (dashed red)(Fig. 1G). B. αS occurrence

frequency Fα (magenta) (Fig. 2C), αS proportion (yellow) (Fig. 1G) and IES proportions
PIES. C. Area per αS duration Aα (magenta) (Fig. 2D) and IES proportions PIES.
Curves from panels A-C has been normalized to their respective value averaged over
[20, 35]min. D-E. Schematic representation of signal Sα(t) power estimated for an αS
(yellow, D) and an Inter-αS (blue, E). F-G. Comparison between patient groups with
(magenta) and without IES (grey) of the Sα(t) power time course of estimated for αS (F)
and an Inter-αS (G).
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Figure 3: Hyper-parameters and variable separability. Random Forest (RF) classifiers

hyper-parameters (Split criterion, bootstrap, maximal tree depth, minimum samples required

for splitting a tree node) distributions for the 100 classifiers obtained by the grid search op-

timization under the repeated nested k-fold procedure for A the classifiers using all variables,

B the classifiers using only Sα-related variables and C the classifiers using only age, height,

weight and ∆MAP variables. D Hyper-Parameter (re-normalization constant C) distributions

for the 100 uni-variate logistic regression classifiers obtained by grid search optimization under

the repeated nested k-fold procedure for each considered variable: Age, ∆MAP, slope a, Fα, Aα
and AIαS . E Optimal hyper-parameters obtained for the classification trees using either only

pre-clinical and ∆MAP or all variables. F Distribution of the height and weight variables for

the 79 patients depending on their class (IES and non-IES) showing non-separability of the two

classes for these variables.
3



False positive rate

T
ru

e 
po

si
ti

ve
 r

at
e

0.2

0.4

0.6

0.8

1

00 0.2 0.4 0.6 0.8 1

Duration
25 min
35 min

pre+ΔMAP

45 min
25 min
35 min
45 min

All 25 min
35 min
45 min

-related

AUC 
AVG±STD

Duration
(min)

Classifier
variables

pre+ΔMAP

-related

All

25 
35 
45 
25 
35 
45 
25 
35 
45 

0.92±0.07
0.93±0.06
0.88±0.08
0.93±0.07
0.92±0.06
0.88±0.07

0.57±0.12
0.57±0.15
0.55±0.13

BA

Figure 4: ROC curves associated to RF classifiers where IES are evaluated in various

time windows A ROC curves for different RF classifiers obtained varying the time window in

which IES are detected: 25, 35 (as presented in the main text) and 45 minutes. B AUC values

associated to the ROC curves presented in A.
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Figure 5: Proximity plots and classification tree based on non-EEG variables
A. Two dimensional representations of the distance metric induced by the optimal RF
classifiers using either only Sα-related variables (top, same as Fig. 3E) or only pre-clinical
and ∆MAP variables (bottom). B. Optimal classification tree obtained from a similar
procedure as the tree presented in Fig. 3F but using only pre-clinical and ∆MAP variables.
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A B C****

Variables p:value OR
[952 CI]

AUC Classification
Accuracy

Ratio

0.008

0.021

<0.001

1.041
[1.011; 1.071] 0.676

0.721

0.901

61.25%

65%

85%

1.127
[1.019; 1.247]

1.775
[1.412; 2.232]

Univariate classification 6Logistic8D E
Variables

1

p<0.001

1
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p<0.001
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p<0.001

0.368
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Correlation matrix 6Pearson8:

Figure 6: IES prediction (first 35min) based on Alpha to Delta Ratio (ADR).
A. Power spectral density computed over the induction period and averaged for the IES
(magenta) and no IES (grey) groups. B. Distribution of ADR between the IES and no
IES groups. C. Univariate ROC curves (logistic model) for predicting IES occurrence
during the 35 first min using the age (green), ADR (blue) and the αS slope (yellow). D.
Table summarizing model parameters from panel C. E. Correlation matrix between the
age (green), ADR (blue) and the αS slope (yellow).
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Variables Age
𝑷𝜶proportion
slope ‘a’

𝜶𝑺
amplitude 𝜹Ipower

Age f ]5394 -0.192 I]5369

𝑷𝜶 proportion
slope ‘a’ p < 0.001 f I]5298 I]5364

𝜶𝑺 amplitude
p = 0.088 p = 0.007

f 0.091

𝜹Ipower
p = 0.001 p = 0.001 p = 0.420

f

Univariate Logistic model

Variable pIvalue OR
[CI 959]

AUC Classification
Accuracy

𝜹Ipower 0.004 0.816
[0.709; 0.938]

0.734 73.75%

𝜶𝑺 amplitude 0.001 0.269
[0.123; 0.586]

0.767 75%

𝑷𝜶proportion
slope ‘a’

< 0.0001 1.775
[1.412; 2.232]

0.901 85%

Correlation matrix 2Pearson8

Variable pIvalue OR OR CI 959
𝜶𝑺
amplitude 0.002 0.271 [0.119; 0.17]

𝜹Ipower 0.014 0.831 [0.718; 0.963]

Multivariate analysis 2logistic8

A

B

C

Figure 7: Statistics of IES prediction (first 35min) based on the δ-power A.
Univariate analysis (logistic model) for the δ power (blue), the αS amplitude (red) and the
Pα proportion slope a (yellow). All predictors are evaluated during the induction period.
B. Correlation matrix for variable shown in table A. C. Significance analysis obtained
from a multivariate logistic regression with two predictors: αS amplitude (red) and the δ
power (blue).
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Figure 8: Distribution of the averaged Propofol TCI for patient with and with-
out IES. The distribution is estimated during the entire maintenance phase of GA.

8



0 30 60

-20

0

20

40

Signal

Signal

[0,16]Hz

[0,8]Hz

[16,32]Hz

[8,16]Hz

Fs=64Hz

[0,32]Hz

a1

a0

d1
d1

d2a2

S

S

d2a2

0 30 60

0 30 60

0 30 60

-20

0

20

40

-20

0

20

40

-20

0

20

40

Time (s)Time (s)

V
ol
ta
ge

(
V
)

V
ol
ta
ge

(
V
)

V
ol
ta
ge

(
V
)

A

D

B

C

E

Daubechies' db2 filter

Figure 9: Daubechies wavelets decomposition of the EEG Signal A. Daubechies
wavelet subband filtering scheme for an input signal S initially sampled at 64Hz, where
a0, a1, a2 are the first approximation coefficients and d1, d2 the two first detail coefficients
[2]. B. Unfiltered EEG signal. C-E Filtered signals for subbands [16, 32]Hz (C), [0, 8]Hz
(D) and [8, 16]Hz (D).
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2 Supplementary Tables

Model Hyper-parameter Range

Logistic Regression Renormalization coef. C 10k, k = J−5, 5K
Random Forest Max. depth 2, 3, 4, 5,∞

Min. sample split J2, 9K
Bootstrap Yes / No
Criterion Gini / Entropy

Classification Tree Max. depth 2, 3, 4, 5, 6, 7,∞
Min. sample split J2, 11K
Min. sample leaf J3, 7K
Criterion Gini / Entropy

Table 1: Hyper-Parameter ranges used in the grid-search optimization
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3 Supplementary Notes, Discussion, Methods

3.1 Classification analysis

3.1.1 Classification variables

To classify patients with and without IES, we constructed classification variables com-
puted from monitored MAP and alpha-band statistics. We defined the MAP variable as
the difference between the reference MAPref (measured before GA) and the minimal MAP

(estimated during induction): ∆MAP =
∣∣∣MAPref − min

10min
(MAP)

∣∣∣. The four classification

variables related to αS events statistics were 1)the slope γ of Pα (named a hereafter), 2)Aα
and 3)AIαS estimated with y(t) = γt+ b (b is a constant) on the first 10min, while for 4)
the occurrence frequency Fα, we took the maximum evaluated over the same period.

3.1.2 Random Forest and Logistic Regression training procedures

For the training and evaluation of the generalization capabilities of the Logistic Regression
(LR) and Random Forest (RF) classifiers, we used a stratified k-fold (k=5) cross-validation
scheme (stratification ensures a balance between classes in each folds) on the np = 79
patients dataset.

To set the classifiers parameters, the hyper-parameters, we used a grid search opti-
mization under a nested stratified k-fold cross-validation scheme [1], where k = 5 for
both inner (training/validation) and outer (generalization) cross-validations. The hyper-
parameter ranges used for each type of classifier are presented in Supplementary Tab. 1
and the resulting parameter distributions in Supplementary Fig. 3A-E. To reduce the
variance resulting from the random splits occurring in the cross-validation procedure,
we repeated the outer cross-validation 20 times and the inner cross-validations 10 times,
which resulted for each setup in an ensemble of 100 classifiers. The reported ROC curves
and AUC values (Fig. 3B-C, Supplementary Fig. 4) correspond to an average over the
100 individual ROC curves.

3.1.3 Random Forest validation

To assess the goodness of the variables and RF models applied on our dataset, we com-
puted two metrics: variable importance and two-dimensional proximity plot. The former,
presented in Fig. 3D consists in counting the number of times a split in a tree of the
forest uses a given variable weighted by the corresponding impurity decrease [4]. The
later, presented in Fig. 3E, uses a MultiDimensionnal Scaling (MDS) algorithm to obtain
a set of 2D coordinates for each patient such that their Euclidean distance respects the
dissimilarity measure computed from the RF classifier [3, p.570]. In our nested k-Fold
cross-validation setup, we reported the average and standard deviation of the individ-
ual variable importance values from the 100 trained RF classifiers, while we present the
proximity plots obtained for each setup from the RF classifier with the highest AUC value.
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3.1.4 Classification tree training procedure

The classification trees obtained in Fig. 3F and in Supplementary Fig. 5, were obtained
using the Classification And Regression Trees (CART) algorithm applied to the entire
dataset of patients. We used the same nested k-fold cross-validation procedure as for the
other classifiers to find the optimal set of hyper-parameters with respect to the accuracy
score, using a grid-search optimization (Supplementary, Tab. 1).

3.1.5 Classification tree quality metrics

To ability of the classification trees to correctly separate the two data classes (”pure”
nodes, containing only one class), we used the information entropy measure:

Ih(T ) =
∑

c∈{0,1}

∑
l∈T

Nc(l)

Nc

fc(l) log2(fc(l)) (1)

where c ∈ {0, 1} (0: no IES, 1: IES) represents one class, l ∈ T is a terminal node of the
tree T , Nc(l) is the number of observations of class c at node l, Nc is the total number of
observations of class c in the tree and fc(l) is the proportion of observations of class c in

node l: fc(l) = Nc(l)
N0(l)+N1(l)

. The measure Ih → 1 when each terminal nodes have about the
same number of observations of each class and Ih → 0 when the terminal nodes become
pure. The classification analysis was performed using the sklearn module [5] version
0.20.1.
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3.2 Propofol TCI statistics during the entire maintenance pe-
riod

We compare the averaged TCI for groups of patients with no IES vs IES (Supplementary
Fig. 8: we find that the no-IES group had a slightly higher TCI during maintenance
compared to the IES group (median [IQR)]; TCI=3.7 [3.3, 4] µg ml−1 no IES vs 3.2
[3, 3.6] µg ml−1 for IES patients). This result could be understood by an adaption of
the propofol dose to the patients response. This result confirms that here, propofol TCI
cannot be used to predict the appearance of IES.

3.3 αS precedes IES dynamics

To confirm the predictive value of αS, we show here that their statistics preceded the ones
of the IES. We first normalized each variable associated to αS events: the IES fraction
PIES, αS duration Durα, frequency Fα and average amplitude Aα, with their respective
plateau value (trace averaged over [20, 35]min). For each trace, we then approximated nu-
merically the times t∞ to reach 99% of the final value. For that purpose, we approximated
each curve either with a sigmoidal

y(t) =
1

1 + exp
(
−4 (t−t0)

τ

) , (2)

or with an exponential curve

y(t) = 1− e−(t−t0)/τ , (3)

where t0 and τ are constants. We obtained for the sigmoid model (2), (resp. exponential,
(3)) that t∞ = t0 +1.148τ (resp. t0 +4.60τ). Fitting was performed in MATLAB R2018a.

We first computed times for the fraction PIES (dashed red) of IES in the EEG sig-
nal and αS durations Durα (magenta) and we found that Durα plateaus sooner (t∞ =
13.78min) than PIES, which equilibrates at t∞ = 19.54min (Supplementary Fig. 2A).
This result confirms that the variable Durα anticiapte the appearance of IES.

Similarly, we computed for the frequency Fα (magenta) that the time to plateau was
t∞ = 7.74min (Supplementary Fig. 2B). The frequency Fα reached its steady-state before
PIES and αS duration Durα. Interestingly, as estimated above, the average time of the
first IES occurrence was 〈tIES〉 = 11.88min, which thus happens almost 4 minutes after
Fα has reached its plateau. Additionally, we remarked that during induction, Fα behavior
followed the increase of αS fraction in the EEG signal Pα (yellow). These results show that
Fα steady-state is rapidly established during the induction phase and occurs in average
before first IES. Finally, we found that the average αS amplitude Aα reached its plateau
value at t∞ = 18.89min, which is similar to the one of IES.

To summarize, these results highlight that αS dynamics precedes IES ones, but also
that αS variables possess different timescales. In particular, both αS duration Durα and
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average amplitude Aα had a slow timescale and reached their steady-state value during
the maintenance. However, the occurrence frequency Fα equilibrium was rapidly estab-
lished during the induction phase.

3.4 IES prediction based on δ-power and alpha-to-delta ratio

The depth of anesthesia can be quantified by several markers such as the delta band
power or the alpha-to-delta ratio [6]. The performance of these markers in predicting
the occurrence of IES during the first 35min, can be evaluated by comparing the αS ’Pα

proportion slope a’ to the alpha-to-delta ratio or the delta power. For that goal, we
estimated these parameters during the induction phase.

We computed the power spectrum during the induction phase for each group, present-
ing or not IES. We estimated the alpha-to-delta ratio (Supplementary Fig. 6) and found
that the power spectrum between the two groups (with and with no IES) was significantly
different.

Interestingly, using a univariate logistic model, we show here that αS features (’Pα

proportion slope a’) outperformed alpha-to-delta ratio by 20% (85% vs 65%, respectively
(Supplementary Table 6). Similarly, the δ-power had an accuracy of 73.75% vs 75% and
85% for αS amplitude (Aα) and ’Pα proportion slope a’.

A multivariate analysis shows that the δ-power and the αS amplitude are independent
(Supplementary Fig. 7). Yet, using these two variables, we found an accuracy of 76.25%
and an AUC of 0.825 which remains much below the performance obtained with the
’Pα proportion slope a’ variable alone. Finally, when we compare the δ-power and ’Pα

proportion slope a’, we found that these variable are not independent: in that case the
δ-power was no longer significant (p=0.363), while the ’Pα proportion slope a’ is clearly
the most predictive variable with a p-value <0.0001. These results show that αS are most
suited to predict IES occurrences.
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