Supporting Information

for

Triphenyl Phosphonium (TPP)-Derived Protein Sulfenic Acid Trapping Agents: Synthesis, Reactivity and Effect on Mitochondrial Function

Zhe Li,[†] Tom E. Forshaw, ^{‡,||} Reetta J. Holmila,^{‡,||} Stephen A. Vance, ^{†||} Hanzhi Wu, ^{‡,||} Leslie B. Poole,^{§,||} Cristina M. Furdui,^{‡,||} S. Bruce King^{*,†,||}

[†]Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina, USA

[‡]Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA

[§]Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA

^{II}Center for Redox Biology and Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA

* Corresponding Author: S. Bruce King, Department of Chemistry, Wake Forest University,

Winston-Salem, NC, USA 27101. Tel: 336 702 1954, Fax: 336 758 4656, e-mail:

kingsb@wfu.edu

Table of contents

General Considerations	S3
Spectroscopic Characterization of Synthetic Intermediates and Final Products	S3
<u>Figure S1</u> . Proton NMR of 3	S3
Figure S2. Carbon NMR of 3	S4
<u>Figure S3</u> . Phosphorus NMR of 3	S5
<u>Figure S4</u> . MS of 3	S6
Figure S5. Proton NMR of 1	S7
Figure S6. Carbon NMR of 1	S8
Figure S7. Phosphorus NMR of 1	S9
<u>Figure S8</u> . MS of 1	S10
Figure S9. Proton NMR of 2	S11
Figure S10. Carbon NMR of 2	S12
Figure S11. Phosphorus NMR of 2	S13
<u>Figure S12</u> . MS of 2	S14
UV-Vis Kinetics; Fries Acid + 2	S14
<u>Figure S13</u> . UV-Vis Kinetics; Fries Acid + 2	S15
Reactivity of BCN-OH with C165A AhpC-SSH	S16

General Considerations

All chemicals were purchased from commercial vendors and used as received. TLC was performed on Sorbent polyester-backed Silica G plates with UV254 indicator. Visualization was accomplished with UV light unless otherwise indicated. Solvents for extraction and purification were of technical grade and used as received. Liquid chromatography–mass spectrometry (LC-MS) solvents were HPLC grade. For small molecule experiments, ESI-MS was performed on an Agilent 100 Series LC/MSD ion trap. ¹H and ¹³C NMR spectra were recorded using a Bruker Avance 300 or 500 MHz NMR spectrometer. Chemical shifts are given in ppm (δ); multiplicities are indicated by s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet). UV–vis spectroscopy was performed on a Cary 50 UV-vis spectrophotometer.

Figure S1. ¹H NMR Spectrum of **3**.

Figure S2. ¹³C NMR Spectrum of **3**.

Figure S3. ³¹P NMR Spectrum of **3**.

Figure S4. MS of **3**.

Figure S5. ¹H NMR Spectrum of **1**.

Figure S6. ¹³C NMR Spectrum of **1**.

Figure S7. ³¹P NMR Spectrum of **1**.

Figure S8. MS of 1.

Figure S9. ¹H NMR Spectrum of **2**.

Figure S10. ¹³C NMR Spectrum of **2**.

Figure S11. ³¹P NMR Spectrum of **2**.

Figure S12. MS of 2.

UV-Vis Kinetic Analysis; Fries Acid + BCN-TPP (2)

Stock solutions of Fries acid (1 mM) and BCN-TPP (**2**, 20 mM) in acetonitrile were prepared. In a 1 mL UV-Vis cuvette, the Fries acid stock solution (0.1 mL) was diluted with acetonitrile (0.8 mL) cuvette and lastly the stock solution of BCN-TPP (**2**, 0.1 mL) was added, followed by a quick shake of the cuvette. The cuvette was immediately loaded into a Varian Cary 50 Bio UV-Vis spectrophotometer and measurements began. This experiment was repeated at identical concentrations and twice at half the **2** concentrations (0.05 mL of **2** and 0.85 mL of MeCN). UVvis data was recorded at 453 nm with 6 second intervals over 10 minutes and averaged at each time point. SigmaPlot was utilized to plot data using exponential decay with the equation: $f = y_0+a(e^{(-bx)})$. Data is shown in Figure S13.

Figure S13. Kinetic monitoring of the reaction of Fries acid (0.1 mM) and TPP-BCN (**2**, 1 and 2 mM) in acetonitrile at room temperature at 453 nm.

Reactivity of BCN-OH with C165A AhpC-SSH

Figure S14. Reaction kinetics of BCN-OH with AhpC-SSH. Oxidized protein was reacted with BCN-OH and set timepoints samples were taken, desalted, and species abundance determined using ESI-TOF MS. To account for differences in batches of AhpC-SSH, the plateau of each reaction is normalized to a value of 1 and all data points are expressed as relatives of the plateau.