| PDB ID | Symmetry | Template<br>_Chain | Template<br>symmetry | Identity<br>(%) | Coverage<br>(%) | Best Model<br>RMSD (Å) |
|--------|----------|--------------------|----------------------|-----------------|-----------------|------------------------|
| 1dv7   | C2       | 1dqw_A             | C2                   | 25              | 78              | 2.09                   |
| 1muy   | C2       | 2abk_A             | C1                   | 31              | 56              | 2.78                   |
| 2nlv   | C2       | 2nwv_A             | C2                   | 37              | 100             | 1.3                    |
| 3urr   | C2       | 3lf6_B             | C2                   | 29              | 71              | 0.43                   |
| 4zo2   | C2       | 4098_A             | C2                   | 28              | 98              | 1.31                   |
| 1sg4   | C3       | 1ef9_A             | C1                   | 24              | 69              | 0.18                   |
| 2vji   | C3       | 2uve_A             | C1                   | 24              | 32              | 16.92                  |
| 4co0   | С3       | 3ncq_A             | C3                   | 46              | 100             | 0.1                    |
| 4d7y   | C3       | 4dou_A             | C1                   | 35              | 96              | 0.74                   |
| 5i6n   | С3       | 1oe1_A             | C3                   | 70              | 99              | 0.34                   |
| 1ojr   | C4       | 1dzu_P             | C4                   | 18              | 60              | 4.42                   |
| 1p5b   | C4       | 1kbj_A             | C4                   | 32              | 93              | 0.14                   |
| 206n   | C4       | 1dd5_A             | C1                   | 64              | 57              | 0.16                   |
| 3v9o   | C4       | 2cg9_C             | A2B2                 | -               | -               | 0.88                   |
| 4xti   | C4       | 1nf7_B             | C4                   | 59              | 98              | 0.94                   |
| 1xb9   | C5       | 1dyo_A             | C1                   | -               | -               | 0.2                    |
| 4avs   | C5       | 3pvn_A             | C5                   | 51              | 99              | 0.36                   |
| 4mby   | C5       | 1sie_A             | I                    | 58              | 98              | 0.51                   |
| 4u62   | C5       | 3iys_A             | I                    | 56              | 99              | 0.12                   |
| 5a12   | C5       | 4m05_B             | C5                   | 42              | 99              | 0.64                   |
| 1nlf   | C6       | 1mo4_A             | C1                   | 21              | 21              | 0.19                   |
| 2pmu   | C6       | 2hqr_A             | C2                   | 21              | 79              | 1.05                   |
| 2xf7   | C6       | 2b88_A             | C1                   | -               | -               | 1.54                   |
| 4ox6   | C6       | 3pac_A             | C3                   | 37              | 71              | 0.11                   |
| 4w64   | C6       | 1y12_A             | C6                   | 88              | 31              | 0.73                   |
| 1h64   | C7       | 1ljo_A             | C6                   | 36              | 86              | 0.09                   |
| 4owk   | C7       | 1abr_B             | A1B1                 | 29              | 70              | 0.85                   |
| 3b8o   | C8       | 1jad_A             | C2                   | -               | -               | 9.75                   |
| 4f87   | C8       | 201w_A             | C1                   | -               | -               | 3.19                   |

**Table S1.** Template information and RMSDs of the homology-modeled monomers obtainedfrom sequence using Robetta. Related to STAR Methods.

| 3p9a | С9 | 2pbx_A | C2   | 80 | 3   | 12.67 |
|------|----|--------|------|----|-----|-------|
| 3zqo | С9 | 3kz3_A | C2   | 40 | 55  | 7.35  |
| 1nxq | D2 | 1gco_A | D2   | 34 | 98  | 1.97  |
| 1orr | D2 | 1gy8_C | C2   | 23 | 99  | 0.71  |
| 2bv4 | D2 | 2chh_A | D2   | 62 | 100 | 0.39  |
| 2vqr | D2 | 3ed4_D | C2   | 25 | 73  | 1.99  |
| 4oqc | D2 | 2yzc_A | D2   | 37 | 97  | 0.15  |
| 1gxu | D3 | 2acy_A | C1   | 40 | 47  | 6.05  |
| 2cwl | D3 | 1oq4_A | C2   | 22 | 47  | 3.52  |
| 2j5g | D3 | 1szo_A | С3   | 48 | 96  | 0.16  |
| 3qns | D3 | 2y4d_A | C2   | 22 | 64  | 0.2   |
| 3v4f | D3 | 1gua_A | A1B1 | 58 | 99  | 0.38  |
| 1umg | D4 | 1jkj_B | A2B2 | 34 | 12  | 21.6  |
| 2r8e | D4 | 202x_A | C1   | 31 | 15  | 0.35  |

## <u>Legend</u>

- : BLAST did not identify sufficient homology

I : Icosahedral

AnBm: Heteromer stoichiometry

| PDB ID Symmetry |    | Reason for failure |  |  |
|-----------------|----|--------------------|--|--|
| 1muy            | C2 | Input model        |  |  |
| 3urr            | C2 | Scoring (C & A)    |  |  |
| 2vji            | C3 | Input model        |  |  |
| 2pmu            | C6 | Scoring (C & A)    |  |  |
| 2xf7            | C6 | Scoring (C & A)    |  |  |
| 4owk            | C7 | Scoring (C & A)    |  |  |
| 3b8o            | C8 | Input model        |  |  |
| 4f87            | C8 | Input model        |  |  |
| 3p9a            | C9 | Input model        |  |  |
| 3zqo            | C9 | Input model        |  |  |
| 1orr            | D2 | Scoring (C & A)    |  |  |
| 2vqr            | D2 | Sampling           |  |  |
| 1gxu            | D3 | Input model        |  |  |
| 2cwl            | D3 | Input model        |  |  |
| 3qns            | D3 | Sampling           |  |  |
| 3v4f            | D3 | Sampling           |  |  |
| 1umg            | D4 | Input model        |  |  |

**Table S2**. Estimated reasons for failure of targets. Related to Figure 4 and Table 3.

## Legend

*Input model*: In an input model failure, the  $\text{RMSD}_{C\alpha}$  from native of the best input monomer is greater than 2.5 Å.

*Scoring (C)*: In a coarse-grained scoring failure, re-docking the native structure fails to produce models with better (lower) motif dock scores than incorrect non-native docking models.

*Scoring (A)*: In an all-atom scoring failure, native structure refinement fails to produce models with better (lower) interface scores than incorrect non-native docking models.

*Sampling*: In a sampling failure, the input models are adequately close and the native structures are correctly identified during scoring, but no non-native docked model is close enough to the native structure to fall into the binding funnel.



**Figure S1.** Flowchart describing major steps in Rosetta SymDock protocol. In the all-atom phase the structure is minimized along rotational rigid body coordinates (R), translational rigid body coordinates (T), and the dihedrals of the interface residues ({ $\phi_i, \psi_i, \chi_{i,n}$ }, where  $i \in interface$ ). See Methods for filter descriptions. Related to Table 2 and Figure 4.



**Figure S2.** Flowchart describing major steps in Rosetta SymDock 2 protocol. In the all-atom phase the structure is initially minimized along rotational rigid body coordinates (R), translational rigid body coordinates (T), and the dihedrals of the interface residue side chains ( $\chi_{i,n}$ , where  $i \in$  interface). This is followed by four cycles of side-chain repacking and minimization along the dihedrals of all residues ({ $\phi_p, \psi_p, \chi_{p,n}$ }, where  $p \in$  protein). Each cycle is carried out at a different weight of the van der Waals repulsive term starting from 2% of the original weight and ramping up to 100%. See Methods for filter descriptions. Related to Table 2 and Figure 4.



**Figure S3.** Comparison of interface score versus  $\text{RMSD}_{C\alpha}$  plots produced by native refinement of homomers and hetero-dimers. The four example homomers are: (A) 3,2-trans-enoyl-CoA isomerase (1SG4, C3), (B) snRNP Sm-like protein (1H64, C7), (C) gp23.1 chaperone (2XF7, C6), and (D) Cytolysin (4OWK, C7). The four example hetero-dimers are: (E) APR-APRin complex (1JIW), (F) *L. casei* HprK/P - *B. subtilis* HPr (1KKL), (G) Glutamyl-tRNA synthetase (2HRK), and (H) IL-13 and C836 FAB (3L5W). In all plots, the y-axis spans 120 energy units. In general, homomer binding funnels are deeper, steeper and narrower. Related to Figure 2.



**Figure S4.** Count of intra-chain and inter-chain clashes for interface residues of *Xenopus* Nucleophosmin as per CAPRI definition. The 20 lowest RMSD models are chosen. Flexible-backbone refinement of complex starting from homology-modeled monomer reduces inter-chain clashes to be close to that observed after fixed-backbone refinement of the native structure. Related to Figure 3.