SUPPLEMENT

Supplement 1: Weighting of the domains and use of indicators from the 'German Index of Multiple Deprivation' (GIMD).

Domains	Domain weight (%)	Indicators (reference)
Income deprivation	25	- Total earnings
		(Number of Taxpayers)
Employment deprivation	25	- Total number of unemployed
		(Population, 15 to 65 years)
Educational deprivation	15	- Persons without vocational training
		(Employees subject to social security
		contributions at the place of residence)
Municipal revenue deprivation	15	- Tax revenue of municipalities
		(Total population)
Social capital deprivation	10	- Migration balance*
		(Total population)
		- Electoral participation in %
		(Federal parliament)
Environment deprivation	5	- Commercial, industrial and traffic areas **
		(Total area)
Security deprivation	5	- Number of road accidents(Total
		population)
		- Number of crimes(Total population)

^{*} People moving into a municipality or a district minus people leaving a municipality or a district.

^{**} Indicator for soil sealing.

Supplement 2: Calculation of the standardized mortality rates (SMR):

- 1. SMR 'total mortality' per district = total deaths per district / expected total deaths per district
- 2. Expected total deaths per district = total population size per district * total mortality rate per 100,000 per district / 100,000
- 3. Total mortality rate per 100,000 per district = total deaths per district/total population size per district*100,000
- 4. SMR 'premature mortaltiy' per district = premature (before 65 years) deaths per district / expected premature (before 65 years) deaths per district
- 5. Expected premature deaths per district = premature population size per district * premature mortality rate per 100,000 per district / 100,000
- 6. Premature mortality rate per 100,000 per district = premature deaths per district/premature population size per district*100,000

Supplement 3: Working steps of the greedy weighting algorithm.

- The vector P containing the greedy solution of the non-normalized weighted sum in each step is initialized with zero elements.
- All column weights and the total number of weights are also initialized to zero. In each iteration, first, the total number of weights is incremented.
- Then, all sums of P with a column of X are normalized by the total number of weights and evaluated separately on the evaluation metric (correlation).
- The column corresponding to the highest value is assigned one weight factor and added to P. This procedure is repeated 100 times.
- The algorithm returns a vector of length N, with the number of columns of X, containing weights for each column, summing to 1.

Supplement 4: Results of the linear regression: Outcome: deprivation proxy, Covariables: domains of the GIMD10.

Deprivation of living space = Income + Employment + Education + Municipal income + Social capital + Environment + Security

Income	0.014
	(0.051)
Employment	0.067*
	(0.029)
Education	-0.048*
	(0.023)
Municipal income	-0.094***
	(0.025)
Social capital	0.035**
	(0.014)
Environment	0.045***
	(0.011)
Security	-0.006
	(0.008)

Model

R-squared = 0.34

adj. R-squared = 0.33

F = 30.01

p < 0.001

Log-likelihood = -1050.76

Deviance = 3959.74

AIC = 2117.52

BIC = 2149.69

N = 412

Source: R-Output, regression results conducted with R-package 'stargazer'

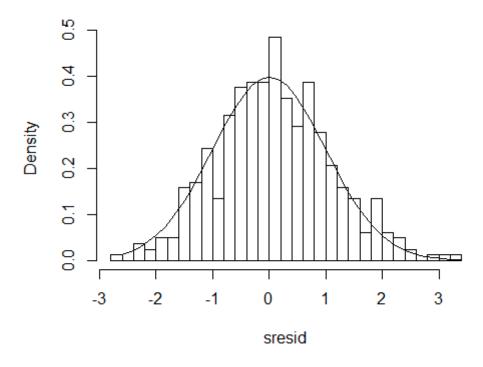
(Hlavac M. stargazer: Well-Formatted Regression and Summary Statistics Tables. R package version 5.2. 2015.)

- → All domains have a significant effect on the proxy, except security and Income
- \rightarrow Overall model explains the variance of living space deprivation significantly, $R^2 = 0.34$

^{***} p < 0.001; ** p < 0.01; * p < 0.05; n.s. not significant

Test of the assumptions of the linear regression model:

1. Normality of the residuals


Shapiro-Wilk normality test of the residuals of the model:

W = 0.99668, p-value = 0.5588

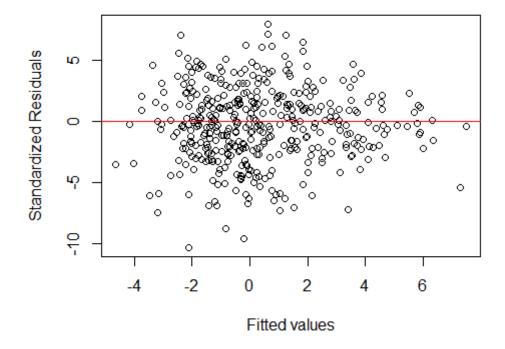
→ Distribution of residuals of the model differ not significantly from normal distribution

Figure 1: Histogram of the distribution of the residuals:

Distribution of Studentized Residuals

2.

→ Distribution of residuals of the model differ not significantly from normal distribution


2.Homoscedasticy

Non-constant Variance Score Test

Chi-square = 5.910324 Df = 1 p = 0.0150524

→ assumption of constant variance violated

Figure 2: Plot of the standardized residuals vs. fitted values

- → Visually no violation of the homoscedasticy assumption
- → Due to the results of the Non-constant Variance Score Test, we conducted robust standard errors for the model

3. Multicollinearity

Variance inflation factors of the independent variables:

Income: 10.01, Employment: 8.79, Education: 2.49, Municipal Income: 5.75, Social Capital:

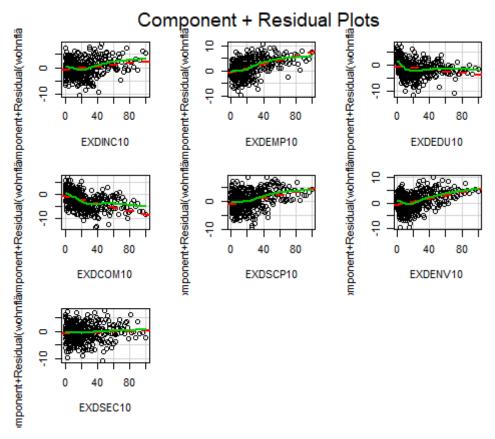
7.86, Environment: 3.96, Security: 2.88

 \rightarrow Only Income has a value above the critical value of 10

→ Some minor multicollinearity regarding Income

4. Autocorrelation

Durbin Watson Test


Autocorrelation D-W Statistic p-value

Alternative hypothesis: rho != 0

→ Autocorrelation is present

5. Nonlinearity

Figure 3: Partial residuals plot

→Linearity assumption violated for domains of education(EXDEDU10), municipal income (EXDCOM10) and Environment (EXDENV10)

→ But domain weights should be obtained, so we use the untransformed variables

Supplement 5: Results of an exploratory factor analysis of the deprivation domains with the extraction of one factor, method = principal axis factor analysis.

Standardized loadings	Factor 1	Communality (u ²)	Specific variance (1– u²)
Income	0.92	0.85	0.15
Employment	0.76	0.58	0.42
Education	-0.36	0.13	0.87
Municipal income	0.87	0.75	0.25
Social capital	0.80	0.64	0.36
Environment	-0.23	0.06	0.94
Security	-0.05	0.01	0.99

Model	Factor 1
Variance, explained by the factor (SS loadings)	3.01
Proportion of total variance	0.43

Model fit measures				
Root mean square of the residuals (RMSR)	0.17			
Likelihood chi square	584.65 (p < 0.001)			
Tucker-Lewis index of fact oring reliability	0.50			
RMSEA index (confidence interval)	0.32 ([0.30; 0.34])			
BIC	500.35			

Source: Tables output from R and own presentation

Supplement 6: Test¹ of the differences in the Spearman correlation coefficients for the relationship of the GIMD² versions and both total and premature mortality

Total mortality	Original	Equal	Linear	Maximization	Factor
	weighting	weighting	regression	algorithm	analysis
Original	0	0.043**	0.014 ^{n.s.}	-0.037***	-0.020**
weighting		[0.015, 0.074]	[-0.006, 0.034]	[-0.060, -0.016]	[-0.038, -0.005]
Equal weighting	-0.043**	0	-0.029*	-0.080***	-0.063***
	[-0.074, -0.015]		[-0.059, -0.001]	[-0.122, -0.041]	[-0.105, -0.025]
	-0.014 ^{n.s.}	0.029*	0	-0.051***	-0.034**
Linear regression	[-0.034, 0.006]	[0.001, 0.059]		[-0.080, -0.024]	[-0.059, -0.011]
Maximization	0.037***	0.080***	0.051***	0	0.016**
algorithm	[0.016, 0.060]	[0.041, 0.122]	[0.024, 0.080]		[0.003, 0.031]
Factor analysis	0.020**	0.063***	0.034**	-0.016 **	0
	[0.005, 0.038]	[0.025, 0.105]	[0.011, 0.059]	[-0.031, -0.003]	
Premature					
mortality					
Original	0	0.068***	0.028***	-0.065***	$-0.005^{\text{n.s.}}$
weighting		[0.044, 0.097]	[0.012, 0.049]	[-0.093, - 0.043]	[-0.021, 0.019]
Equal weighting	-0.068***	0	-0.040***	-0.133***	-0.073***
	[-0.097, -0.044]			[-0.174, -0.098]	[0.110, -0.040]
Linear regression	-0.028***	-0.040***	0	-0.094 ***	-0.034***
	[-0.049, -0.012]			[-0.128, -0.066]	[-0.014, -0.057]
Maximization	0.065***	0.133***	0.094***	0	0.060***
algorithm	[0.043, 0.093]	[0.098, 0.174]	[0.066, 0.128]		[0.037, 0.088]
Factor analysis	0.005 ^{n.s.}	0.073***	0.034***	-0.060***	0
	[-0.019, 0.021]	[0.040, 0.110]	[0.014, 0.057]	[-0.088, -0.037]	

^{***} p < 0.001; ** p < 0.01; * p < 0.05; n.s. not significant, 95% confidence intervals in square brackets

Original weighting: Spearman correlation between GIMD (weighting according to Maier et al. [8]) and both total and premature mortality;

Equal weighting: Spearman correlation between GIMD (domains equally weighted) and both total and premature mortality;

Linear regression: Spearman correlation between GIMD (weighting of the domains with regression coefficients with a deprivation proxy as dependent and domains as independent variables) and both total and

¹Test of the significance of the differences with Williams's t-test for paired correlations

² **GIMD:** German Index of Multiple Deprivation

premature mortality;

Maximization algorithm: Spearman correlation between GIMD (weighting of the domains for the maximum Spearman correlation between overall index and mortality) and both total and premature mortality;

Factor analysis: Spearman correlation between GIMD (weighting of the domains with loadings from principal axis factoring) and both total and premature mortality.

Supplement 7: Corrected Test¹ of the differences in the Spearman correlation coefficients for the relationship of the GIMD² versions and both total and premature mortality.

Total mortality	Original	Equal	Linear	Maximization	Factor
(all age groups)	weighting	weighting	regression	algorithm	analysis
Original weighting	0	0.043*	0.014 ^{n.s.}	-0.037**	-0.020*
Equal weighting	-0.043*	0	-0.029*	-0.080***	-0.064**
Linear regression	-0.014 ^{n.s.}	0.029*	0	-0.051 ***	-0.034*
Maximization algorithm	0.037**	0.080**	0.051**	0	0.016*
Factor analysis	0.020*	0.064**	0.034*	-0.016 *	0
Premature mortality (< 65 years)					
Original weighting	0	0.068***	0.028***	-0.065***	-0.005 ^{n.s.}
Equal weighting	-0.068***	0	-0.040**	-0.133***	-0.073***
Linear regression	-0.028***	-0.040**	0	-0.094 ***	-0.034***
Maximization algorithm	0.065***	0.133***	0.094 ***	0	0.060***
Factor analysis	0.005 ^{n.s.}	0.073***	0.034***	-0. 060***	0

^{***} p < 0.001; ** p < 0.01; * p < 0.05; n.s. not significant

Original weighting: Spearman correlation between GIMD (weighting according to Maier et al. [8]) and both total and premature mortality;

Equal weighting: Spearman correlation between GIMD (domains equally weighted) and both total and premature mortality;

Linear regression: Spearman correlation between GIMD (weighting of the domains with regression

¹ Test of the significance of the differences with Williams's t-test for paired correlations

² **GIMD:** German Index of Multiple Deprivation

coefficients with a deprivation proxy as dependent and domains as independent variables) and both total and premature mortality;

Maximization algorithm: Spearman correlation between GIMD (weighting of the domains for the maximum Spearman correlation between overall index and mortality) and both total and premature mortality;

Factor analysis: Spearman correlation between GIMD (weighting of the domains with loadings from principal axis factoring) and both total and premature mortality.