

Supplementary Information

Enhanced adsorptive properties and pseudocapacitance of hybrid Polyaniline-activated carbon cloth composites synthesized electrochemically in a filter-press cell

César Quijada 1,*, Larissa Leite Rosa 1, Raúl Berenguer 2 and Eva Bou-Belda 1

- ¹ Departamento de Ingeniería Textil y Papelera, Universitat Politècnica de València. Pza Ferrándiz y Carbonell, E-03801 Alcoy (Alicante). Spain.
- ² Instituto Universitario de Materiales, Departamento de Química Física. Universidad de Alicante (UA). Apartado 99. E-03080 Alicante (Spain).
- * Correspondence: cquijada@txp.upv.es; Tel.: +34-966-528-419

Table S1. Elemental surface composition (in at.%) of a fresh activated carbon cloth and hybrid PAni-ACC composite materials formed by galvanostatic electropolymerization at different electrolysis time.

Time (min)	%C	%O	%N	%S
0 1	90.9	7.7	1.2	0.2
Side in conta	ict to anode			
10	80.4	14.6	2.4	2.6
20	80.1	14.1	3.0	2.8
40	81.7	13.2	2.9	2.2
60	83.8	11.1	3.0	2.2
120	68.2	16.5	9.4	5.9
Side exposed	to electrolyte			
10	84.3	10.4	1.9	2.6
20	82.9	11.7	2.8	2.6
40	80.9	14.2	2.7	2.2
60	83.8	11.9	2.0	2.4
120	71.2	15.5	7.7	5.6

¹ Average of analyses conducted on both sides of the fabric.

Table S2. C1s and N1s peak positions and relative abundance (in at.%) after peak fitting.

Time	C1	L	C2		C3	;		
(min)	(-C=C-/-	-C-C-)	(CO/CN/C	E=N/C=N+)	(C=O/C	C–N+)		
(min)	BE (eV)	%	BE (eV)	%	BE (eV)	%		
0	284.8	83.2	286.4	14.0	288.2	2.9		
10	284.5	71.3	285.7	23.1	287.9	5.6		
20	284.5	66.1	285.7	27.4	287.9	6.5		
40	284.6	67.9	285.8	25,7	288.0	6.4		
60	284.6	68.6	285.6	25,5	287.8	5.9		
120	284.7	62.7	286.0	27.6	287.7	9.7		
	NI	r	N2	2	N3	;	N	4
	(pyridin	L N –NI)	(pyrrolic/py	ridone, –	(quaternaı	y N, N⁺	(pyridinic N	l-oxide, N⁺
	(pyridine	(pyridine, =iv=) N		–) delocalized)		ized)	localized)	
	BE (eV)	%	BE (eV)	%	BE (eV)	%	BE (eV)	%
0	398.1	23.4	399.9	25.8	400.7	41.9	401.7	8.9
10	398.1	6.2	399.6	28.8	400.8	46.2	402.1	18.8
20	398.4	4.9	399.7	31.2	400.6	50.3	402.2	13.5

40	398.2	10.2	399.7	34.6	400.8	34.2	402.3	21.0
60	398.4	13.4	399.8	29.4	400.5	34.8	401.8	22.4
120	398.3	4.0	399.4	40.1	400.2	49.3	401.9	6.6

Figure S1. Isotherm linearized fittings for Acid Red 27 adsorbed on activated carbon cloth (adsorbent dose: 0.04 *g*, liquid phase volume: 50 mL, temperature: 25 °C) (**a**) Langmuir isotherm; (**b**) Freundlich isotherm.

Figure S2. Pseudo-first order ln (q_e –q) vs. t plots for the adsorption of Acid Red 27 on activated carbon cloth at different initial dye concentrations: 25 mg/L (\blacksquare), 50 mg/L (\blacklozenge), 75 mg/L (\blacktriangle), 100 mg/L (\bigcirc), 150 mg/L (\bigcirc), 200 mg/L (\bigstar); adsorbent dose: 0.04 g, liquid phase volume: 50 mL, temperature: 25 °C.

Figure S3. Pseudo-second order t/q vs. t plots for the adsorption of Acid Red 27 on activated carbon cloth at different initial dye concentrations; adsorbent dose: 0.04 g, liquid phase volume: 50 mL, temperature: 25 °C.

Figure S4. Boyd plots for the adsorption of Acid Red 27 on activated carbon cloth at different initial dye concentrations; adsorbent dose: 0.04 g, liquid phase volume: 50 mL, temperature: 25 °C.

Со	B (×103)	Y-intercept	R ²	De (×1017)
25	1.51	-0.084	0.999	6.34
50	0.74	-0.066	0.999	3.14
75	0.52	-0.025	0.998	2.20
100	0.43	-0.027	0.993	1.82
150	0.78	-0.017	0.994	3.30
200	0.80	-0.057	0.990	3.38

Table S3. Boyd plot parameters for the adsorption of Acid Red 27 on ACC (C_0 : mg·L⁻¹; B: min⁻¹; D_e : m² s⁻¹).

Figure S5. Boyd plots for the adsorption of Acid Red 27 on hybrid PAni-ACC composites formed at different electropolymerization time; initial dye concentrations: 50 mg L⁻¹; adsorbent dose: 0.04 g, liquid phase volume: 50 mL, temperature: 25 °C.

Time	B (×10 ³)	Y-intercept	R ²	De (×1017)
0	0.74	-0.066	0.999	3.14
10	1.93	-0.096	0.999	8.16
20	2.04	-0.087	0.989	8.59
40	3.06	-0.262	0.990	12.9
60	1.37	-0.086	0.983	5.77
120	0.08	0.087	0.957	_

Table S4. Boyd plot parameters for the adsorption of Acid Red 27 (50 mg L⁻¹) on hybrid PAni-ACC composites synthesized at different electropolymerization time (time: min; *B*: min⁻¹; *D*_e: m² s⁻¹).