SUPPLEMENTARY INFORMATION

	SMC2	Cyclophilin-B	Ratio SMC2/Cyclo-B	Normalized Ratio
Lane 1	39228.472	30035.877	1.306	0.97
Lane 2	40285.087	29878.007	1.348	1.00
Lane 3	1680.418	28583.392	0.059	0.04
Lane 4	630.225	32239.309	0.020	0.01
Lane 5	894.205	26993.066	0.033	0.02
Lane 6	1983.397	52685.513	0.038	0.03
Lane 7	2063.468	34110.551	0.060	0.04

Figure S1: Raw data of western blots from Figure 3.

Western blots of SMC2 (top) and Cyclophilin-B (bottom) in HCT116 cells. Densitometry analyses for SMC2 and Cyclophilin-B were performed using Image J and are indicted. The ratios of SMC2/Cyclophilin-B is shown for each lane, as are the normalized ratios, which are presented relative to the siControl (Lane 2).

Сус	1 2 3 4 SMC2►	Lane 1 Lane 2 Lane 3 Lane 4	SMC2 29051.43 3214.20 2296.40 4147.98	Cyclophilin-B 24352.95 22618.36 27091.41 24628.46	Ratio S/C 1.193 0.142 0.085 0.168	Norm. Ratio 1.00 0.12 0.07 0.14
Сус	1 2 3 4 NCAPD3►	Lane 1 Lane 2 Lane 3 Lane 4	NCAPD3 32046.38 2837.33 5495.66 5991.02	Cyclophilin-B 21990.53 17384.10 18498.61 26787.02	Ratio D3/C 1.457 0.163 0.297 0.224	Norm. Ratio 1.00 0.13 0.25 0.27
С	1 2 3 4 NCAPG2	Lane 1 Lane 2 Lane 3	NCAPG2 34358.48 16547.17 11642.15	Cyclophilin-B 17706.90 18255.94 19191.74	Ratio G2/C 1.940 0.906 0.607	Norm. Ratio 1.00 0.47 0.31
Сус	clophilin-B 🏲 🚥 🚥 🚥	Lane 4	10103.22	13310.17	0.000	0.20

Figure S2: Raw data of western blots from Figure 5.

(A) Western blots of SMC2 (top) and Cyclophilin-B (bottom) in hTERT cells. Densitometry measurements are presented for SMC2 and Cyclophilin-B along with the SMC2/Cyclophilin-B ratios and normalized ratios, which are presented relative to the siControl (Lane 1). (B) Western blots of NCAPD3 (top) and Cyclophilin-B (bottom) in hTERT cells. Densitometry measurements are presented for NCAPD3 and Cyclophilin-B, while the SMC2/Cyclophilin-B ratios and normalized ratios, which are presented relative to the siControl (Lane 1). (C) Western blots of SMC2 (top) and Cyclophilin-B (bottom) in hTERT cells. Densitometry measurements are presented for SMC2 and Cyclophilin-B (bottom) in hTERT cells. Densitometry measurements are presented for SMC2 and Cyclophilin-B (bottom) in hTERT cells. Densitometry measurements are presented for SMC2 and Cyclophilin-B (bottom) in hTERT cells. Densitometry measurements are presented for SMC2 and Cyclophilin-B (bottom) in hTERT cells. Densitometry measurements are presented for SMC2 and Cyclophilin-B (bottom) in hTERT cells. Densitometry measurements are presented for SMC2 and Cyclophilin-B (bottom) in hTERT cells. Densitometry measurements are presented for SMC2 and Cyclophilin-B along with the SMC2/Cyclophilin-B ratios and normalized ratios, which are presented relative to the siControl (Lane 1).

Figure S3: Establishing the Silencing Efficiencies of Condensin Gene Silencing in HCT116 Cells.

Western blots presenting the residual condensin protein levels (indicated) following silencing with either individual (si*Gene-*1, -2, -3 or -4) or pooled (si*Gene-*P) siRNA duplexes, with Cyclophilin B used as the loading control. Semi-quantitative image analyses were performed whereby residual protein levels were normalized to the respective loading control and are presented relative to the siControl for each gene (1.00).

Figure S4: Assessing Residual Protein Expression Following Condensin Gene Silencing in hTERT Cells.

Western blots presenting the residual condensin protein levels (indicated) following silencing with the two most efficient individual (as determined in HCT116; see Supplementary Figure 1), or pooled (si*Gene-P*) siRNA duplexes, with Cyclophilin B used as the loading control. Semiquantitative image analyses were performed whereby residual protein levels were normalized to the respective loading control and are presented relative to the siControl for each gene (1.00).

Supplementary Tables

Cell Line	Condition	$\mathbf{N}^{\mathbf{a}}$	Mean	Standard Deviation	Fold Increase ^b	CDF p ^c
HCT116	siControl	9360	172.6	62.2	N/A	N/A
	siSMC1A-P	3602	210.8	64.6	1.22	< 0.0001
	siSMC2-P	629	325.6	137.8	1.89	< 0.0001
	siSMC4-P	204	289.9	93.6	1.70	< 0.0001
	siNCAPD2-P	2381	228.4	86.6	1.32	< 0.0001
	siNCAPD3-P	5044	202.0	67.0	1.17	< 0.0001
	siNCAPH-P	3648	257.8	83.6	1.49	< 0.0001
	siNCAPH2-P	1108	218.6	60.8	1.27	< 0.0001
	siNCAPG-P	487	224.0	82.5	1.30	< 0.0001
	siNCAPG2-P	5237	218.6	79.1	1.27	< 0.0001

 Table S1: Condensin Gene Silencing Corresponds with Significant Increases in the

 Cumulative Nuclear Area Distribution Frequencies in HCT116 Cells.

^aNumber (N) of nuclei analyzed.

^bFold increase in mean NA relative to siControl (not applicable; N/A).

^cTwo sample KS tests assessing differences in the cumulative distribution frequencies of NAs relative to siControl (N/A, not applicable); p = <0.01 is considered statistically significant.

Table	S2:	Condensin	Gene	Silencing	Induces	Increases	in t	the MI	N F	Formation	in	HCT116
Cells.												

Cell Line	Condition	No. of Replicates ^a	Mean	Standard Deviation	Fold Increase ^b
HCT116	siControl	6	0.418	0.059	N/A
	si <i>SMC1A-</i> P	6	3.487	1.047	8.34
	si <i>SMC2-</i> P	6	4.082	2.309	9.77
	siSMC4-P	6	5.217	3.827	12.48
	siNCAPD2-P	6	3.442	1.190	8.23
	siNCAPD3-P	6	0.990	0.313	2.37
	siNCAPH-P	6	1.735	0.664	4.15
	siNCAPH2-P	6	2.552	2.044	6.11
	siNCAPG-P	6	3.893	7.296	9.31
	siNCAPG2-P	6	1.567	0.865	3.75

^a≥100 nuclei/replicate analyzed. ^bFold increase in mean MN formation relative to siControl (not applicable; N/A).

Cell Line	Condition	$\mathbf{N}^{\mathbf{a}}$	Mean	Standard Deviation	Fold Increase ^b	CDF p ^c
HCT116	siControl	200	158.9	43.3	N/A	N/A
	siSMC2-2	200	266.9	117.6	1.7	<0.0001
	si <i>SMC2-3</i>	200	248.5	95.3	1.6	<0.0001
	si <i>SMC2-</i> P	200	339.2	136.0	2.1	<0.0001

Table S3: *SMC2* Silencing Corresponds with Significant Increases in the Cumulative NA Distribution Frequencies in HCT116.

^aNumber (N) of nuclei analyzed.

^bFold increase in mean NA relative to siControl (not applicable; N/A).

^cTwo sample KS test assessing differences in the cumulative distribution frequencies of NAs relative to siControl (N/A, not applicable); p = <0.01 is considered statistically significant.

Cell Line	Condition	No. of Replicates ^a	Mean	Standard Deviation	Fold Increase ^b
HCT116	siControl	3	0.4333	0.0850	N/A
	siSMC2-2	3	5.3967	2.6799	12.4
	siSMC2-3	3	4.1900	3.7280	9.7
	siSMC2-P	3	4.8333	1.6494	11.2

Table S4: SMC2 Silencing Corresponds with Significant Increases in the MN Formation in HCT116.

^a≥100 nuclei/replicate analyzed. ^bFold increase in mean MN formation relative to siControl (not applicable; N/A).

CDF Percentile 75th 25th Condition N^a 50th **p**^b **Cell Line** Range HCT116 siControl 100 45 45 45 41-90 N/A siSMC2-2 119 40 43 50 35-164 < 0.0001

42

41

51

44

32-166

31-148

< 0.0001

< 0.0001

 Table S5: Condensin Gene Silencing Induces Significant Changes in Cumulative Frequency

 Distributions for Chromosome Numbers in HCT116 Cells.

^aNumber (N) of enumerable mitotic chromosome spreads.

112

101

39

38

siSMC2-3

siSMC2-P

^bTwo sample KS tests assessing differences in the cumulative distribution frequencies of chromosome numbers relative to siControl (N/A, not applicable); $p = \langle 0.01 \rangle$ is considered statistically significant.

			Percentile				CDF	
Cell Line	Condition	$\mathbf{N}^{\mathbf{a}}$	25 th	50 th	75 th	Range	p^{b}	
HCT116	siControl	100	45	45	45	43-92	N/A	
	siSMC2-P	60	38	41	44	31-148	< 0.0001	
	siSMC4-P	53	38	41	43	32-82	< 0.0001	
	siNCAPD2-P	100	43	45	45	37-199	0.0008	
	siNCAPD3-P	98	43	45	46	35-128	< 0.0001	
	siNCAPH-P	100	44	45	48	33-109	< 0.0001	
	siNCAPH2-P	89	45	45	47	36-198	0.0006	
	siNCAPG-P	100	44	46	49	32-93	< 0.0001	
	siNCAPG2-P	91	45	46	48	38-118	< 0.0001	

 Table S6: Condensin Gene Silencing Induces Significant Changes in Cumulative Frequency

 Distributions for Chromosome Numbers in HCT116 Cells.

^aNumber (N) of enumerable mitotic chromosome spreads.

^bTwo sample KS tests assessing differences in the cumulative distribution frequencies of chromosome numbers relative to siControl (N/A, not applicable); $p = \langle 0.01$ is considered statistically significant.

Cell Line	Condition	$\mathbf{N}^{\mathbf{a}}$	Mean	Standard Deviation	Fold Increase ^b	CDF p ^c
hTERT	siControl	1947	231.1	67.1	N/A	N/A
	siSMC1A-P	705	301.6	85.8	1.31	< 0.0001
	siSMC2-P	1338	278.6	80.8	1.21	< 0.0001
	siSMC4-P	2675	225.8	75.4	0.98	< 0.0001
	siNCAPD2-P	2060	245.9	77.7	1.06	< 0.0001
	siNCAPD3-P	2479	246.8	75.3	1.07	< 0.0001
	siNCAPH-P	1812	258.4	75.8	1.12	< 0.0001
	siNCAPH2-P	1770	241.8	74.1	1.05	< 0.0001
	siNCAPG-P	2291	233.1	72.5	1.01	0.0711
	siNCAPG2-P	2118	243.2	74.5	1.05	< 0.0001

 Table S7: Condensin Gene Silencing Corresponds with Significant Increases in the

 Cumulative Nuclear Area Distribution Frequencies in hTERT Cells.

^aNumber (N) of nuclei analyzed.

^bFold increase in mean NA relative to siControl (not applicable; N/A).

^cTwo sample KS tests assessing differences in the cumulative distribution frequencies of NAs relative to siControl (N/A, not applicable); p = <0.01 is considered statistically significant.

Cell Line	Condition	No. of Replicates ^a	Mean	Standard Deviation	Fold Increase ^b
hTERT	siControl	6	0.978	0.364	N/A
	si <i>SMC1A-</i> P	6	1.798	1.148	1.84
	siSMC2-P	6	3.358	0.804	3.43
	siSMC4-P	6	1.598	0.618	1.63
	siNCAPD2-P	6	1.477	0.640	1.51
	siNCAPD3-P	6	2.730	1.234	2.79
	siNCAPH-P	6	0.832	0.579	0.85
	siNCAPH2-P	6	1.240	0.556	1.27
	siNCAPG-P	6	1.163	0.316	1.19
	siNCAPG2-P	6	2.382	1.444	2.44

Table S8: Condensin Gene Silencing Induces Increases in the MN Formation in hTERT Cells.

^a≥100 nuclei/replicate analyzed. ^bFold increase in mean MN formation relative to siControl (not applicable; N/A).

				Percentile		CDF	
Cell Line	Condition	N ^a	25 th	50 th	75 th	Range	p^{b}
hTERT	siControl	100	46	46	46	41-92	N/A
	siSMC2-P	17	46	48	55	32-88	< 0.0001
	si <i>NCAPD3-</i> P	100	46	50	53	38-104	< 0.0001
	siNCAPG2-P	100	45	46	51	31-98	< 0.0001

 Table S9: Condensin Gene Silencing Induces Increases in the MN Formation in hTERT

 Cells.

^aNumber (N) of enumerable mitotic chromosome spreads.

^bTwo sample KS tests assessing differences in the cumulative distribution frequencies of chromosome numbers relative to siControl (N/A, not applicable); $p = \langle 0.01$ is considered statistically significant.