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SUMMARY

Here, we determined the relative importance of
different transcriptional mechanisms in the genome-
reduced bacterium Mycoplasma pneumoniae, by
employing an array of experimental techniques under
multiple genetic and environmental perturbations.
Of the 143 genes tested (21% of the bacterium’s
annotated proteins), only 55% showed an altered
phenotype, highlighting the robustness of biological
systems. We identified nine transcription factors
(TFs) and their targets, representing 43% of the
genome, and 16 regulators that indirectly affect tran-
scription. Only 20% of transcriptional regulation is
mediated by canonical TFs when responding to per-
turbations. Using a Random Forest, we quantified
the non-redundant contribution of different mecha-
nisms such as supercoiling, metabolic control, RNA
degradation, and chromosome topology to transcrip-
tional changes. Model-predicted gene changes
correlate well with experimental data in 95% of the
testedperturbations, explaining up to 70%of the total
variance when also considering noise. This analysis
highlights the importance of considering non-TF-
mediated regulation when engineering bacteria.

INTRODUCTION

Transcription factors (TFs) are key players in gene regulatory net-

works. Accordingly, classical studies have generally focused on

uncovering their function. Such studies rely on genome annota-

tion and comparative sequence analysis to first identify the TFs

(Hecker and Völker, 2001; Mitrophanov and Groisman, 2008;

Schmidl et al., 2011), and then, through bottom-up approaches,

individually or systematically analyze the TF targets or regulons

(Minch et al., 2015), (Lee et al., 2002). These approximations
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are limited by the fact that many non-canonical regulators and

proteins with moonlighting functions (metabolic enzymes (Com-

michau and St€ulke, 2008; Jeffery, 2015) and structural proteins

(e.g., nucleoid-associated proteins (NAPs)) (Dillon and Dorman,

2010) are often neglected in such studies.

Transcriptional regulation in bacteria depends on more than

just TFs. For example, even in the case of well-studied bacterial

models such as Escherichia coli and Bacillus subtilis, less than

40% and 52% of the genes, respectively, seem to be regulated

by TFs (not including the targets of the housekeeping sigma-70)

(Salgado et al., 2013), (Michna et al., 2016), (Leyn et al., 2013).

This is even more remarkable in streamlined genomes such as

those of endosymbionts (Brinza et al., 2013). Other factors

including structural proteins and NAPs have been shown to pro-

vide an additional layer of regulation by affecting DNA topology

(Hatfield and Benham, 2002), (Travers and Muskhelishvili,

2005). DNA supercoiling plays an important role in transcriptional

regulation. Supercoiling depends on the opposite actions of

ATP-independent topoisomerase I and ATP-dependent gyrase.

In this way, ATP concentrations regulate supercoiling and gene

transcription (Baranello et al., 2012) (Dorman and Dorman,

2016). Local chromosome interacting domains have a role in

transcriptional coordination (Dekker et al., 2013; Trussart et al.,

2017) and the co-expression of genes in M. pneumoniae (Junier

et al., 2016) and other bacteria (Junier and Rivoire, 2016).

Cell signaling in bacteria is often related to small metabolites

and second messengers (Shimizu, 2013). Thus, the overall phys-

iology, growth rate, andmetabolic activity of a cell aremajor con-

tributors to transcriptional status (Berthoumieux et al., 2013;

Klumpp and Hwa, 2014). For example, in Gram-negative bacte-

ria, the alarmone (p)ppGpp can regulate transcription by inter-

acting with the RNA polymerase core complex (RNAP) (Potrykus

and Cashel, 2008). Furthermore, the concentration of certain

nucleoside triphosphates (NTPs) regulates transcription in

some promoters whose transcript starts with the corresponding

NTP (Schneider et al., 2003), (Sojka et al., 2011). Attenuation of

transcription by riboswitches and Rho-independent terminators

also plays an important role (Barrick and Breaker, 2007). For

example, the cold-shock response regulates expression of the
gust 28, 2019 ª 2019 The Author(s). Published by Elsevier Inc. 143
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Figure 1. Schematic Definition of the Workflow to Determine the Mycoplasma pneumoniae Gene Regulatory Network
infB operon inE. coli through an anti-terminator (Bae et al., 2000).

Non-coding RNAs (ncRNAs) are also thought to be involved in

transcriptional regulation (H€uttenhofer et al., 2005), (Costa,

2007). Finally, regulation of RNA half-life by RNases plays a

role in determining RNA levels. The bacterial RNA degradosome

contains the glycolytic enzyme enolase, which depending on the

metabolic status of the cell, may change RNA degradation spec-

ificity (Cho, 2017). The precise contribution of all these non-TF

mechanisms to transcriptional regulation remains unclear and

unquantified.

To quantify the contribution of different mechanisms to tran-

scriptional regulation, we selected the genome-reduced bacte-

rium M. pneumoniae, which has retained the basic regulatory

machinery for sustaining autonomous life (Lluch-Senar et al.,

2015). M. pneumoniae was typically believed to have little

regulation (Knudtson and Minion, 1993). However, recent

studies have suggested that M. pneumoniae exhibits re-

sponses that are known to occur in more complex organisms

(G€uell et al., 2009). Sequence analysis suggests the existence

of 10 putative TFs (HcrA, MPN124; GntR, MPN239; WhiA-like,

MPN241; SpxA, MPN266; MraZ, MPN314; Fur, MPN329;

YlxM, MPN424, YebC, MPN478; alternative sigma MPN626;

and DnaA, MPN686).

Here, we systematically examined the protein-DNA interac-

tome ofM. pneumoniae using classical biochemical techniques.

Together with information from the literature, we compiled a list

of candidate proteins that could have a role in transcriptional

regulation. We identified the DNA-binding sites of each protein

by using chromatin immunoprecipitation coupled to ultra-

sequencing (ChIP-seq). Then, we determined growth pheno-

types of as well as gene expression changes by transcriptomics

in strains in which the candidate proteins had been overex-

pressed or mutated. We confirmed and identified 9 TFs, of which

7 had novel binding motifs. Another 16 proteins not binding DNA
144 Cell Systems 9, 143–158, August 28, 2019
produced significant transcriptional changes when overex-

pressed or mutated. As TFs alone were not able to explain the

observed transcriptional landscape, we investigated the contri-

bution of other elements to regulation, including riboswitches,

supercoiling, intrinsic terminators, ncRNAs, RNA degradation,

and the concentration of the first nucleotide to be incorporated

into a transcript (iNTP). We confirmed the existence of some of

these ancient, basal mechanisms of regulation and quantified

their global contribution to transcriptional regulation in environ-

mental perturbations, showing that these mechanisms play a

more important role in regulation than TFs themselves (see Fig-

ure 1 for a graphical explanation).

RESULTS

Identification of the Complete Set of DNA-Binding
Proteins
Based on sequence functional annotation, 57 and 106

M. pneumoniae proteins are predicted to interact with DNA

and/or RNA, respectively, either directly or as a part of a complex

(Table S1). To define the complete set of M. pneumoniae DNA-

binding proteins in an unbiased manner, we performed the

following experiments: (1) classic DNA affinity chromatography,

(2) pull-down experiments with short DNA sequences, and (3)

subcellular fractionation to isolate chromatin (Figures 1 and

S1A; Table S1; see STAR Methods).

We identified 174 putative DNA and/or RNA-binding proteins

that passed the cutoff criteria (see STAR Methods and Figure 1)

in at least two different experiments. Out of the 57 proteins pre-

dicted to interact with DNA, 11 were not detected bymass spec-

trometry under any circumstance (see Table S1) (Miravet-Verde

et al., 2019). Nine of these eleven are gene duplications of

components of the type I restriction enzyme complex, suggest-

ing they are pseudogenes or splinted pieces of an adenine



methylase. The other two not found are the alternative sigma fac-

tor MPN626 and its target (MPN536, ruvB). These two proteins

are not expressed under normal in vitro growth conditions (Bur-

gos and Totten, 2014) (Torres-Puig et al., 2015). 40 passed the

selection criteria. Out of the remaining 6 proteins 3 of them

(MPN341, pcrA; MPN529, HU; and MPN551, yqaJ) were found

to bind to DNA in one experiment. The probable DNA helicase

I homolog (MPN340, uvrD1) was not found because it eluted

from the RNA and DNA columns at a different salt concen-

tration than themajority of DNA-binding proteins. Only 2 proteins

that should interact directly with DNA—the putative TF YebC

(MPN478) and the predicted NAP YbaB (MPN275)—were not

found to interact with DNA in any of the experiments done.

Additionally, we identified previously described moonlighting

proteins with DNA-binding properties, including leucine amino-

peptidase (Charlier et al., 2000), Lon protease (Lin et al., 2009),

and some metabolic enzymes that can bind DNA or RNA (Com-

michau and St€ulke, 2015) (Table S1). Our approach also identi-

fied 73 out of 106 ribosomal and RNA-binding proteins, and is

therefore unlikely unable to distinguish effectively between

RNA- and DNA-binding proteins. Nonetheless, we cannot rule

out the possibility that some ribosomal proteins also bind DNA

(Warner and McIntosh, 2009).

Selection of Putative DNA-Binding Proteins for Further
Characterization
The preliminary set of 174 putative DNA and/or RNA-binding

proteinswas reduced to 65 proteins by removing: (1) chaperones

known to appear in pull-down approaches (K€uhner et al., 2009);

(2) surface-exposed proteins that could bind to and/or degrade

DNA; and (3) membrane-associated proteins with ATPase activ-

ity (we kept some as controls, see Table S1). In addition, we

removed housekeeping proteins that are involved in DNA and

RNA metabolism. As M. pneumoniae has several duplicated

genes, we only kept some representative proteins per duplicated

family (see Figure S1B and Table S1). To the remaining 65 pro-

teins, we added the three putative DNA-binding proteins

mentioned above (MPN626, YebC, and YbaB).

Finally, we included 79 proteins that could have an indirect

effect on transcriptional regulation (signaling proteins and meta-

bolic regulators) or RNA levels (RNases), as well as two negative

controls (the surface nucleaseMPN133and the yellowfluorescent

protein, YFP). In total, 147 genes were cloned into a minitranspo-

son to overexpress them with a tag inM. pneumoniae (see Table

S2). Protein expression was verified by western blot and mass

spectrometry (see STAR Methods). As expression was not de-

tected for 3 of these proteins (MPN302, MPN429, and MPN470),

144 proteinswere retained for further analysis (21%of the 689 an-

notated open reading frames) along with YFP (Table S2).

Identification of Protein-DNA-Binding Sites
DNase protection assays reveal all regions of the genome that

are covered by protein, ChIP-seq identifies the binding sites of

the selected proteins (see STAR Methods and Figures S2A–

S2D for reproducibility and validation assays).

We identified 156 unique protection peaks in the DNase

protection experiments at exponential and stationary phases

(Table S3) and mapped them on transcription start sites (TSSs)

(Lloréns-Rico et al., 2015; Yus et al., 2009) (see STAR Methods
and Table S4). Of the 156 protected DNA regions, 103 (66%)

correspond to promoters (see Figure 2 for examples).

128 of the 144 proteins were analyzed with ChIP-seq (we

excluded membrane proteins and RNases; Table S2). We found

specific peaks for 23 proteins (18% of the total tested and 24%

of the candidate RNA-/DNA-binding proteins; Table S4). These

proteins are either part of the RNAP, RNAP-associated proteins

(K€uhner et al., 2009), TFs, part of the DNA replication machinery,

or structural proteins (Figure 2; Table S3). Analyses with the

RNAP core subunits revealed that many of the promoter-

proximal DNA sites occupied in the DNase protection assay

are bound by RNAP (see Figure 2 and Table S3). In total, 146

of the 156 protected DNA regions were found in at least one of

the ChIP-seq experiments, indicating that we have achieved a

comprehensive coverage of the DNA-binding sites within the

M. pneumoniae chromosome. Out of the ten putative TFs

mentioned in the introduction, we found specific peaks at pro-

moters for six of them (SpxA, MraZ, DnaA, Fur, HcrA, and

WhiA; see Table S3 and Figure 2; for details see below).

For some moonlighting proteins that bind DNA in other organ-

isms, like Lon (MPN332), we identified several small peaks

outside promoter regions without a clear motif. This is probably

because they do not have a high DNA specificity (Lin et al., 2009)

(Charlier et al., 2000). Other non-RNAP-associated proteins

(e.g., MPN555) mimicked the RNAP profile, but with only a few

peaks in promoters of highly expressed genes, likely to be arti-

factual or phantom (Jain et al., 2015). The rest of the tested pro-

teins did not have any significant peaks.

Potential binding sites and the binding motifs of structural pro-

teins are shown in Figure 2 and Table S3. We found DnaA at the

oriC as previously suggested (Blötz et al., 2018), as well as at

different sites in the first quarter of the chromosome (Figure S2E).

We also found specific peaks at the promoters of genes related to

nucleotidemetabolism and DNA replication (Table S3). The 3 pro-

teins that form the condensin complex (Smc, MPN426; ScpA,

MPN300; and ScpB,MPN301) were found to bind to the oriC (Fig-

ure 2 and Table S3) as described in B. subtilis (Wilhelm et al.,

2015), aswell as to a site at the opposite side of the chromosome.

This site is close to the attachment organelle (Trussart et al., 2017)

and could be the terminus of replication, ter. Thus, it seems that in

M. pneumoniae the condensin complex plays the same role as in

B. subtilis, aligning the left and right arms of the chromosome. At

the oriC, we also found a clear peak for the DnaB1 protein

(MPN525) and for the paralog (MPN554; SsbB) of the single-

stranded binding protein SsbA (MPN229), suggesting a role for

these proteins in chromosome replication. We found specific

peaks for the histone-like protein (HU, MPN529) scattered

through the chromosome and generally in the middle of genes

(HU induces negative supercoiling in circular DNA with the assis-

tance of the topoisomerase). For the ATPase component of the

phosphate transporter, PhoU (MPN608), peaks concentrated

opposite the oriC, suggesting it could play a role in anchoring

the chromosome to the cell membrane (Figure 2).

Characterization of the Transcriptional Changes
Induced by Overexpression and/or Mutation of the
Selected Proteins
To unveil a regulatory effect of the 143 selected proteins, we

analyzed their impact on the global transcriptome using
Cell Systems 9, 143–158, August 28, 2019 145



Figure 2. ChIP-Seq Results for Validating DNA Binding

ChIP-seq selected tracks for different proteins: TFs, RNAP complex, structural, and proteins involved in DNA replication, as well as DNA regions protected from

DNase digestion (POD). Vertical lines indicate annotated TSSs and the origin of replication region (OriC). The regions or peaks bound by the studied protein or

protected from DNase digestion are shown in the color of the corresponding category. The x axis shows the base position in the genome. The y axis shows the

read coverage per base. Binding motifs found for some of the structural proteins are shown in the right.
microarrays and/or RNA-seq. We used strains that overex-

pressed the proteins aswell as transposon or dominant-negative

point mutant strains (Table S2; Figure S3). On average, overex-

pression (OE) of the candidate genes resulted in a 4-fold increase

in the corresponding protein levels (see STAR Methods, Table

S2, and Figure S4A). OE and/or mutation of 24 of the selected

DNA-binding proteins led to significant changes in global gene

expression (Table S5), but no correlation was found between

protein OE levels and the number of transcriptional changes (Fig-

ure S4B). 8 of the 10 potential TFs in M. pneumoniae (YebC and

SpxA as exceptions) control gene expression when overex-

pressed as wild-type (WT) or dominant-negative mutants (Fig-

ure 3A and Table S5). Regarding the putative TF YebC (Brown

et al., 2017), we did not observe any change in the transcriptome

upon OE, nor did it bind DNA in the biochemical assays or

display specific ChIP-seq peaks, suggesting it is not a TF.

SpxA is an essential protein in M. pneumoniae. In B. subtilis it

directs the RNAP to specific promoters upon oxidative stress or

redox changes (Nakano et al., 2003). Our ChIP-seq experiment

revealed that SpxA is found at promoters (see above and Fig-

ure 2), but we were unable to detect any transcriptional changes

upon OE. In B. subtilis, drugs that promote disulfide formation

(e.g., diamide) were used to identify SpxA targets (Leichert
146 Cell Systems 9, 143–158, August 28, 2019
et al., 2003; Nakano et al., 2003). Addition of diamide to

M. pneumoniae revealed that SpxA regulates itself and a regulon

involved in the oxidative stress response (mpn607, msrA;

mpn625, osmC; and mpn662, msrB) (Zhang and Baseman,

2014) as well as other genes (Table S5).

To identify theDNA recognitionmotifs of the TFs,we combined

three sets of data: (1) the ChIP-seq data, (2) upstream sequences

of the TSSs of the target genes detected in the transcriptome

analysis, and (3) sequence conservation with the closely related

species M. genitalium (see STAR Methods and Figure 3A).

We confirmed that HcrA represses the genes involved in heat-

shock response (G€uell et al., 2009) and that MraZ regulates the

cell division operon (Fisunov et al., 2016). Our findings include

(1) repression of the DNA polymerase III subunit dnaN and activa-

tion of genes involved in nucleotide metabolism, by DnaA. (2) Fur

repression of different genes (mpn043, glpF; mpn162; mpn433;

mpn561, udk; mpn363, and mpn408). (3) WhiA and YlxM

each repress one single ribosomal operon (mpn164-185 and

mpn656-660, respectively). (4) GntR regulates metabolic genes

involved in arginine metabolism, fermentation, and the pentose

phosphate pathway (Fisher’s enrichment test, p = 0.01; 1e�4,

and 1e�4, respectively) and (5) the targets of SpxA involved in

oxidative stress (see above; Figure 3A).
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Figure 3. Classification of the Candidates and DNA Motifs Using the Phenotypic Analyses

(A) The sequence motifs for 9 TFs analyzed in this study (in orange hexagons), as well as their main regulated targets (arrows indicate activation and crosses

repression) are shown. We also show the proteins identified as regulators in this study (orange diamonds) and the functional category of the genes they

significantly affected (if a regulator affects a single gene in a functional category, we do not show it; see Table S5).

(legend continued on next page)
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Regarding proteins that do not bind DNA, 16 of them (hereafter

called regulators) produced major transcriptome alterations

(R 10 genes showing significant changes; see STAR Methods

and Figure 3A). GlpQ (MPN420) catalyzes the hydrolysis of glyc-

erophosphocholine (GPC) and leads to the production of glyc-

erol-3-phosphate, a building block for lipids that enters into

glycolysis, producing peroxide. The inactivation of glpQ affects

the Fur regulon as previously shown (Schmidl et al., 2011), as

well as other genes (see Figure 3A and Table S5). Our findings

include: (1) the correlation between the changes induced by

the inactivation of lactate dehydrogenase (MPN674, Ldh) and

of the putative redox chaperone MPN294 (r = 0.72; p <

2.2e�16) (Figure S4C). The majority of changes observed in

these strains are related to nucleotide metabolism and overlap

with the genes upregulated upon OE of DnaA (Figure 3A and

below on Figures 4B and 4C). This suggests that the redox state,

which determines the equilibrium between NTP and dNTPs, reg-

ulates DnaA. (2) the inactivation of the Mg2+ transporter MPN159

(CorB), the transition metal-binding protein, MPN162, and the

recombination protein MPN490 (RecA) correlate significantly

(r > 0.67, p < 2.2e�16) (Figure S4D), thus linking metal transport

and binding to recombination and expression of surface pro-

teins. The major effect of CorB inactivation is the downregulation

of lipoprotein gene expression (p = 1.4e�5; Table S5; Figure 3A).

Second Messenger-Mediated Signaling in
M. pneumoniae

M. pneumoniae uses three major second messenger nucleo-

tides, (p)ppGpp, c-di-AMP, and AppppA (Ap4A). The stringent

response-related alarmone (p)ppGpp is synthesized and

degraded by the SpoT enzyme (MPN397). C-di-AMP is synthe-

sized by the essential diadenylate cyclase CdaM (MPN244)

and degraded by the phosphodiesterase PdeM (MPN549) (Blötz

et al., 2017). The alarmone Ap4A is produced by some tRNA syn-

thases (e.g., those for Ser and Lys) when the corresponding

amino acid is missing (Belrhali et al., 1995) and degraded by

the Hit1 (MPN273) enzyme. In many bacteria, analogs of serine

and valine, serine hydroxamate (SHX) and norvaline (NVAL),

respectively, induce the stringent response. This response

induces the synthesis of (p)ppGpp, concomitant repression of

ribosomal proteins and rRNA operons, and induction of peptide

and amino acid transporters (Geiger et al., 2012). In

M. pneumoniae, however, the addition of either amino acid

analog did not result in a repression of the ribosomal protein op-

erons but rather in the upregulation of themain ribosomal protein

operon (mpn164-183) and induction of the oppA gene (mpn456,

and its duplicates, mpn457-458) and the oppBCDF operon

(mpn215-218), which encodes an ABC peptide transporter.

Inactivation of SpoT did not affect the induction of the main ribo-
(B)M. pneumoniae phenotypes. Experiments were classified into three groups ac

For each group, bar charts show the percentage of genes that display a growth

respect to the total.

(C) Inferelator results on the genetic perturbations. The Venn diagram depicts

common to both methods.

(D) Network of the transcriptional phenotypes induced by OE, KO and/or mutants

Lines represent correlations between the experiments above 0.45. Colors represe

different functional categories are represented in shaded circles. Perturbations are

The sign of fresh medium addition was reversed for visualization in the growth-a
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somal protein operon or opp genes upon SHX andNVAL addition

(Table S6). Thus, (p)ppGpp does not seem to be implicated in the

classical amino acid starvation-mediated response. On the other

hand, while mild glucose starvation results in the repression of

the main ribosomal operons (without affecting the opp operons,

[(G€uell et al., 2009), see below], this was not the case for the spoT

mutant strain (Table S5). This suggests that SpoT regulates

expression of ribosomal proteins upon glucose deprivation (as

seen in other bacteria (Traxler et al., 2006; Zhang et al., 2016),

see below and Figure 3A), agreeing with its role as a hub that

integrates various stress signals including fatty acid, iron, and

carbon starvation (Hauryliuk et al., 2015).

With respect to the Ap4A alarmone, we overexpressed the

Ap4A-degrading enzyme Hit1 and analyzed the transcriptome

of the cells in the presence and absence of SHX and NVAL. In

contrast to the WT strain, no upregulation of the first genes of

the main ribosomal operon or the opp genes was observed

(Table S5). This observation suggests that Ap4A and Hit1,

rather than (p)ppGpp and SpoT, are involved in the response

to amino acid starvation in M. pneumoniae. According to this,

Ap4A can be generated by loading defects of some amino-

acyl-tRNA synthetases (Belrhali et al., 1995). Indeed, we

observed that expression of the hit1 gene and expression of

the serS gene, which encodes the Ap4A-producing serine-

tRNA synthetase, were significantly anticorrelated (r =

�0.36, p = 4.39e�7) (see Figure S4E). This reinforces the

functional link between the Ap4A-synthesizing and Ap4A-

degrading enzymes.

Phosphorylation-Mediated Signal Transduction in
M. pneumoniae

Signal transduction and the resulting transcription regulation

may also involve post-translational modifications of proteins, in

particular phosphorylation and acetylation. M. pneumoniae has

two annotated protein kinases, the HPr kinase HprK (MP223)

and the Ser/Thr kinase (PrkC, MPN248) and one protein phos-

phatase (PrpC, MPN247). Inactivation of either PrkC or PrpC

resulted in significant transcriptional changes in some of the

previously described targets identified by proteomic analysis

(Schmidl et al., 2010) (van Noort et al., 2012). We observed a

negative correlation between the transcriptional changes (r =

�0.19; p = 6.93e�7) of the prkC and prpCmutants (Figure S4F).

Targets included the cell division operon (mpn314–317) and

adhesion genes (Table S5; Figure 3A). This indicates that PrkC

and PrpC do not only regulate protein levels as previously

described (van Noort et al., 2012) but also affect transcriptional

regulation in some of their targets. Inactivation or OE of HprK,

as well as of the protein acetylase MPN114, resulted in no signif-

icant transcriptional effects.
cording to the number of identified transcriptional changes that they displayed.

curve phenotype (faster or slower growth and/or medium acidification) with

the interactions retrieved manually, those found using Inferelator, and those

of all genes selected in this study, as well as by environmental perturbations.

nt different clusters of highly interconnected experiments. Clusters enriched in

shown in square boxes and overexpressed,mutated or deleted genes in ovals.

ssociated cluster (with which it correlates negatively).
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Figure 4. Network of Co-regulated Genes in M. pneumoniae

(A) Network of co-expressed genes inM. pneumoniae. Nodes of the network represent genes, and the edges between two nodes indicate co-expression (r > 0.5).

Colors of the network nodes represent different clusters of highly interconnected genes (i.e., highly co-expressed). We show the functional categories signifi-

cantly enriched in each group (Benjamini-Hochberg adjusted p < 0.05). Inset shows the twomain expression clusters determined by k-means clustering analysis.

(B) TFs partly explain some of the different clusters of co-regulated genes. Genes targeted by different TFs are marked with different colors.

(C) Transcriptional changes induced by the Ldh and MPN294 (disulfide chaperone) genes are, in the case of upregulation (blue nodes), mainly explained by the

DnaA TF and involve genes related to nucleotide metabolism. Red nodes indicate downregulated genes.

(D) Supercoiling driven by heat or cold shock explain the two major clusters of co-regulated genes. Blue nodes: genes upregulated in cold shock and down-

regulated in heat shock. Red nodes: genes downregulated in cold shock and upregulated in heat shock.

(E) An initial GC dinucleotide at the TSS (blue nodes) explains a large part of the ribosome-associated cluster.
Phenotypic Analysis
To assess the gross phenotypic effects of OE, inactivated genes

(KO), and mutant strains, we determined their growth profiles

(in total, 169 strains corresponding to the 143 studied

M. pneumoniae genes and YFP; Table S2) by measuring cell

metabolism (medium acidification) and protein biomass (Table

S7). Out of the 143 genes studied, only 42 caused an altered

phenotype in at least one mutant strain (in total, 48 strains

showed significant changes). The remaining 101 genes did not

result in significant growth differences in any condition, suggest-

ing that M. pneumoniae, despite being a genome-reduced bac-

terium, is a rather robust system. These percentages are similar

to those found in the transcriptomics analysis, with those strains

showing larger changes in gene expression also exhibiting more

severe growth phenotypes (Figure 3B).

Reconstruction of the Gene Regulatory Network
Integration of the different experimental datasets mentioned

above revealed a gene regulatory network for M. pneumoniae
(hereafter called experimental network), which comprises 1,062

interactions between 25 regulatory proteins (9 TFs and 16 regula-

tors) and the 689 M. pneumoniae genes (Figure 3A). To uncover

potential additional levels of regulation, we performed an auto-

mated network reconstruction analysis using Inferelator (see

STAR Methods) (Bonneau et al., 2006). As input for this analysis,

we used the list of 1,062 curated interactions as prior knowledge,

as well as the transcriptomics fold changes from all genetic per-

turbations. The network recovered by Inferelator consisted of

1,036 interactions, 668 (63%) of which were present in the exper-

imentally recovered Gene Regulatory Network (GRN; Figure 3C).

394 interactions from the experimental network were missed by

Inferelator, 28% of which involve the TF SpxA. The reason for

this is probably that SpxA activity does not rely on its mRNA

levels, but rather on redox changes as discussed above. On the

other hand, 368 interactions found by Inferelator were not present

in our experimental network. These likely correspond to regulato-

ry interactions that are below the threshold we used to specify

relevant associations (Figure S4G). Taken together, the
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application of Inferelator to our dataset expanded our original

network to 1,430 regulatory interactions (expanded gene regula-

tory network) (see STAR Methods; Figure 3C).

The Impact of Environmental Perturbations on
Transcription Regulation
To test whether we could explain transcriptional regulation in

M. pneumoniae with the expanded gene regulatory network,

and to identify environmental conditions that could affect the ac-

tivity of the TFs and regulators, we exposed cells to 37 environ-

mental perturbations (see Table S6). For 31 cases, we observed

major transcriptional changes (R10 genes showing significant

changes in their expression level). For example, heat shock up-

regulated the HrcA targets but also caused numerous other

gene changes that negatively mirror those found under cold-

shock conditions (r =�0.3, p = 3.2e�16), indicating a secondary

effect not related to HrcA. Medium acidification resembles

glucose starvation (Wodke et al., 2013), reducing expression of

genes involved in amino acid metabolism and translation (i.e.,

a growth arrest phenotype) (Yus et al., 2009). Relaxation of

DNA supercoiling by novobiocin-induced gyrase inhibition upre-

gulates gyrA (mpn003), gyrB (mpn004), and other genes involved

in DNA replication (Figure S5C; Table S6) (El Houdaigui et al.,

2019). Antibiotics that target the ribosome and affect protein

synthesis, such as macrolides or tetracyclines, caused major

changes even at sub-lethal concentrations and short exposure

times (less than 15% of generation time). These changes are

similar to those caused by thiolutin, a Zn2+ chelator with anti-

biotic properties (Lauinger et al., 2017) and diamide (Table S6;

Figure 3D). This suggests that as reported for other bacteria, an-

tibiotics trigger a redox and/or oxidative stress response (Kohan-

ski et al., 2010). Perturbations affecting the redox state (e.g.,

diamide, glycerol, hydrogen peroxide, etc.), as well as the inac-

tivation of Ldh and MPN294 (related to redox balance) and GlpQ

(related to peroxide production), significantly affect the targets

of Fur. The Zn2+ chelator thiolutin (Lauinger et al., 2017) provokes

a major upregulation of Fur targets, suggesting that Fur is regu-

lated by Zn2+ (see Table S6). Moreover, addition of the iron

chelator bipyridine did not induce the Fur-controlled genes.

Taken together, these observations suggest that this TF has

been mis-annotated and should therefore be regarded as a

member of the Fur-family that uses Zn2+ for signaling (Zur).

To determine whether the phenotypes found in the different

perturbations were similar to those caused by OE or mutation

of some of the genes studied in this work, we performed a corre-

lation and clustering analysis of all the transcriptomics experi-

ments in this study (see STAR Methods). We found large groups

of experiments where we overexpressed or mutated specific

genes clustering around specific perturbations (Figure 3D).

Hydrogen peroxide treatment is found together with the ex-

periments where we added GPC or phosphatidylcholine (PC)

to the medium. Both compounds are converted to glycerol-3-

phosphate, which upon being metabolized produces H2O2

(Hames et al., 2009). In addition, we found the inactivated Ldh

or MPN294 mutants, which have a redox phenotype (see above)

and the transporter for GPC (glpU; MPN421) (Großhennig et al.,

2013) in the same group, representing phenotypes related

to oxidative stress. A second major cluster encompasses the

heat-shock response and several experiments addressing
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growth phenotypes (stationary versus exponential phase, or

pH 6 that prevents glucose metabolism; addition of fresh

medium to the stationary phase provokes exactly the opposite

effect). These growth phenotypes could be related to changes

in ATPwhen cells lack a carbon source because ofmedium acid-

ification. A third major cluster contains the cold-shock response

that promotes transcriptional read-through (Junier et al., 2016),

which includes OE of one of the gyrase components (GyrA,

MPN004). The fourth major cluster includes the mutants of metal

transporters, CorB and MPN162, as well as of the RecA gene

and it does not have any associated perturbation. The fifth one

includes the treatment with puromycin. Then, we have two

smaller clusters. One contains the glucose starvation condition

that produced a general decrease in the levels of RNA. The sec-

ond one contains all treatments with ribosome antibiotics as well

as the treatment with diamide and the antibiotic thiolutin. Finally,

we found some small isolated clusters of experiments such as

the one including the novobiocin treatment. At high concentra-

tions, novobiocin releases the RNAP from the chromosome,

halting transcription (see Figure S2D).

This analysis showed that although OE or inactivation of the

putative regulatory factors provoked only small changes in

global gene expression, some tend tomimic the stronger pheno-

types produced by environmental perturbations.

The Recovered Gene Regulatory Network Does Not
Explain the Changes Found in the Environmental
Perturbations
Adaptation to several perturbations was not fully explained by

the effects of OE or mutation of the regulatory factors. To

address this apparent discrepancy, we tested the ability of the

gene regulatory network to explain the changes observed in

the environmental perturbations. For this purpose, we used the

expanded gene regulatory network encompassing 1,430 regula-

tory interactions as prior information for Inferelator. For the data-

set of environmental perturbations, Inferelator yielded a network

with only 230 interactions between any TF or regulator and their

respective targets.

We determined the overlap between this network, derived

from the environmental perturbations and the expanded gene

regulatory network extracted from the OE and mutant experi-

ments. A total of 196 (85%) of the 230 interactions were present

in the expanded network. Nevertheless, 1,234 of the original

1,430 interactions from the expanded gene regulatory network

were missing (Figure S4H), and this network explains only 21%

of the total gene variance in the environmental perturbation ex-

periments. In contrast, the expanded gene regulatory network

could explain 53% of the variation in the OE and mutant

experiments.

These results suggest that even though the gene regulatory

network may be accurate in predicting changes upon gene OE

or knock out of TFs and regulators, it cannot be used to predict

the transcriptional response to changes in the environment.

A Gene Co-expression Network Highlights the Role of
Alternative Mechanisms
To compare the influence of TFs and regulators with that of po-

tential alternative regulatorymechanisms, we performed a global

co-expression analysis of all the genes. First, we performed a



k-means clustering analysis of all protein-coding genes in this

bacterium, using all transcriptomics datasets from this study,

including the genetic and environmental perturbations. We first

estimated the optimal number of clusters in this dataset, which

was estimated to be 2 (see STAR Methods and Figure 4A inset).

One of these clusters is enriched in growth-related proteins

(p = 6.8e�11), which increase their expression levels in the expo-

nential phase of the growth curve, while the other cluster is en-

riched in stationary phase proteins that are poorly expressed

during exponential growth (p < 2.2e�16).

To find smaller clusters representingmore tightly co-regulated

genes, we calculated pairwise gene correlation across all condi-

tions tested in this study to assemble a gene correlation network

(see STAR Methods). Genes linked together in this network are

likely to be co-regulated. We applied community clustering to

the network to find groups of highly interconnected genes (see

STAR Methods). Some of the resulting groups are enriched in

functional categories (adjusted p < 0.05; Figure 4A). The two

clusters from the k-means analysis overlap with groups of the

smaller clusters from the correlation network (Figure 4A).

Next, we addressed the relationship between the obtained

clusters and the expanded gene regulatory network obtained

in the genetic perturbation analysis. This analysis revealed that

genes regulated by the same TF are generally embedded within

the same cluster, with the exception of GntR and SpxA (Fig-

ure 4B). For instance, the targets of DnaA are enriched in the

cluster related to nucleotide metabolism (p = 4.3e�9). This clus-

ter is specifically affected by regulators that change the redox

state (Ldh and MPN294) (Figure 4C; Table S5). However, other

clusters are not associated to any TF or regulator, and hence

point to alternative regulatory mechanisms.

Relevance of DNA Supercoiling and Genome
Organization
DNA supercoiling controls transcription at the global level (Dor-

man and Dorman, 2016). It has been reported that whereas

cold shock promotes DNA supercoiling (Grau et al., 1994)

(López-Garcı́a and Forterre, 1997), heat shock induces DNA

relaxation (Krispin and Allmansberger, 1995). Moreover, DNA is

known to be negatively supercoiled in exponential phases of

growth but more relaxed during the stationary phase (Balke

and Gralla, 1987). Thus, we analyzed our data in light of a poten-

tial role for DNA supercoiling. We found that heat and cold shock

explain the majority of the genes in the two major clusters found

by the k-means approach (see inset in Figures 4A and 4D). We

observed a negative correlation between cold and heat shock

(r = �0.3, p = 3.2e�16; see Figure S5A). In addition, cold shock

anti-correlates with gene expression at the stationary growth

phase (r = �0.51; p < 2.2e�16) (Figure S5B). These results

confirm the association of cold shock and supercoiling through

the different growth phases of this bacterium.

Upon the addition of the gyrase inhibitor novobiocin to

M. pneumoniae, we previously observed the disappearance of

defined borders between chromosomal interacting domains in

the 3D structure of its chromosome (Trussart et al., 2017). This

results in a loss of co-regulation and indicates a direct link

between supercoiling and chromosome structure.

In five cases, we observed a global anticorrelation between

convergent genes considering all conditions tested (r < �0.1;
adjusted p < 0.05), indicating transcriptional interference as a

result of supercoiling (see an example in Figure S5D).

Regulation by transcriptional read-through, probably due to

the anti-terminator function of RNA helicases and cold-shock-

regulated proteins (St€ulke, 2002) (Bae et al., 2000) has been

reported before (Junier et al., 2016). Conversely, we see stronger

termination signals and less read-through in heat shock, as well

as when using macrolides (see Figure S6 for examples).

RNA-Mediated Regulatory Mechanisms
Several potential regulatory mechanisms rely on nucleotide- and

RNA-based signaling. The identity of the initiating nucleotide of a

transcript has a significant impact on the expression levels of the

corresponding genes (Schneider et al., 2003; Sojka et al., 2011).

For the cluster enriched in ribosomal genes (Figure 4A), the TFs

WhiA and YlxM (Figure 4B) can only explain part of the regula-

tion, thereby suggesting that additional factors must also play

a role. In an analysis of the starting nucleotides (+1 and +2 posi-

tions) of all the mRNA transcripts ofM. pneumoniae, the operons

encoding ribosomal proteins seem to be particularly enriched (12

out of 18 operons) with a GC dinucleotide at positions +1 and +2.

Out of these 12 operons, 9 have the position of the GC dinucle-

otide conserved with M. genitalium. The GC sequence is also

found in the rRNA transcript and is conserved in the correspond-

ing B. subtilis operon (Figure S5E). Indeed, ribosomal operons

and genes involved in protein translation having the GC dinucle-

otide correlate significantly, as shown by their proximity in Fig-

ure 4E. In B. subtilis, the production of (p)ppGpp results in a

decrease in the GTP concentration via inhibition of the guanylate

kinaseGmk, and therefore downregulation of rRNAs andmRNAs

that start with a G (Kriel et al., 2012). InM. pneumoniae, the strin-

gent response is caused by glucose starvation (see above). The

resulting accumulation of (p)ppGpp by SpoT activation likely

leads to a decrease in the GTP concentration, and therefore

downregulation of the ribosomal operons with a GC. Thus, it

seems that the translation cluster is mainly regulated by the con-

centration of GTP. The importance of the first base of a transcript

is illustrated when looking at base conservation of promoters in

M. genitalium and M. pneumoniae (Figure S5F).

Furthermore, we identified putative RNA structures that might

regulate premature termination of transcription (Dar et al., 2016)

(see STARMethods). The identified structures could regulate the

expression of 29 genes under certain conditions (see Table S8

and Figure S5G). Interestingly, the co-regulated oppA and

oppBCDF operons share a complex structure at the 50 UTR.
Althoughwe found little sequence conservation when comparing

the oppB 50 UTR region with the equivalent one inM. genitalium,

the overall RNA secondary structure of this region is conserved

(Figure S5G). It is tempting to speculate that this structure is

important for the regulation of the two operons in response to

amino acid limitation (see above).

We did not find any significant anticorrelation between anti-

sense RNAs and their overlapping protein-coding gene. This

agrees with recent work in which we proposed that the majority

of antisense RNAs in M. pneumoniae are the product of tran-

scriptional noise (Lloréns-Rico et al., 2016). In addition, we did

not observe any consistent correlation between a particular

ncRNA and genes that are not adjacent to it. Thus, we did not

find evidence for a transcriptional regulation role for ncRNAs.
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Table 1. Results of the Random Forest Model for Each

Experimental Condition Studied

Experiment

Adjusted R2

(Variance Explained)

Spearman Correlation

(Predicted versus Real)

Thioguanine 0.533 0.775

Sanguinarine 0.454 0.719

Fresh media 0.500 0.717

Thiolutin 0.418 0.680

Chloramphenicol 0.498 0.678

Osmostress 0.507 0.679

Mitomycin C 0.489 0.687

Norfloxacin 0.550 0.673

Macrolides 0.510 0.683

Glycerol 0.455 0.656

Growth 0.546 0.660

Tetracyclines 0.467 0.645

Cytochalasin B 0.478 0.594

Spectinomycin 0.425 0.601

Puromycin 0.505 0.665

Gencitabine 0.338 0.556

Peroxide 0.365 0.591

Shx 0.423 0.563

CCCP 0.352 0.565

Norvalin 0.520 0.562

Triton X 0.405 0.571

pH 6 0.281 0.536

Bipyridine 0.253 0.422
Because of the short half-lives of bacterial mRNAs, RNA

degradation is an important factor controlling gene expression

(Selinger et al., 2003). We observed a mild decrease in RNA

abundance, especially of ribosomal genes (p = 1.4e�5), upon

OE of RNase III. In contrast, the inactivation of the correspond-

ing gene rnc (mpn545) resulted in a very large increase in

the amounts of mRNA (larger for some genes in particular),

indicating that this gene plays a major role in the control of

RNA half-life (Table S5). We did not detect any transcriptional

effect when overexpressing other RNases such as RNase R

(MPN243), RNase J1 (MPN280), RNase J2 (MPN621), or

RNase Y (MPN269). The last 3 RNases formpart of a protein com-

plex, the RNA degradosome, and thus their individual OEmay not

be sufficient to affect RNA stability (Cho, 2017; Commichau

et al., 2009).

Evaluating How Much the Different Regulatory
Mechanisms Contribute to Transcriptional Variation
To study the relative effect of TFs, regulators, and alternative reg-

ulatory mechanisms inM. pneumoniae, we used a Random For-

est regressor (see STAR Methods). To do so, we first associated

each gene with its different regulatory mechanisms as described

above (Table S8). We included its TFs and regulators as defined

by the interactions in the expanded gene regulatory network. In

addition, we also included other features that could contribute to

transcriptional variation: (2) RNA half-life (Junier et al., 2016); (2)

the Pribnow (-10) box (genes with identical Pribnow boxes are

more correlated; p value < 0.05, and Figure S5H); and (3) AT con-

tent of the 50 UTR and the sequences around the Pribnow box

(Yus et al., 2017) (Table S8). With the set of features assigned

to each gene, we fitted a Random Forest to each of the perturba-

tions to predict gene changes in each experiment (Table 1; see

STAR Methods).

To test this approach, for each perturbation included in our

study, we calculated the Spearman correlation coefficient be-

tween the actual fold changes and the ones predicted by the

Random Forest (see STAR Methods and Figures S7A and S7B

for additional validation). The average correlation between the

Random Forest predicted and the observed fold changes across

all experiments was r = 0.62 (sd = 0.07). Moreover, 22 out of 23

analyzed experiments (see STAR Methods) show a correlation

greater than 0.5 (and p < 2e�16). This means that we can deter-

mine the transcriptional variation in these conditions by using a

set of descriptors for each gene (three examples are shown in

Figure 5A). In our dataset, we can explain 45% of gene expres-

sion variability using the Random Forest classifier, and in some

individual experiments this value increases up to 55%

(Figure 5B).

Some of the studied features, such as chromosome organiza-

tion, seem to have a relatively important and constant contribution

across the majority of conditions tested (Figure 5B). Genetic per-

turbations caused by TFs and regulators, can have a different

impactaccording to theenvironmental conditions.Of the total vari-

ance across the 24 perturbations tested, only around 9% can be

attributed to TFs and regulators (see Figure 5B). However, in

some individual experiments the TF response plays amore impor-

tant role, explaining up to 18% of the variance (see Figure 5A).

We validated the results of the RandomForest by exploring the

predictions on the clustered experiments from Figure 3D, to
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determine if different clusters of correlated experiments (formed

by both genetic and environmental perturbations) were regu-

lated by the same mechanisms. First, we observed that the con-

tributions of the different regulatory mechanisms were more

similar in experiments from the same cluster than from different

clusters (p value = 8.9e�12). Then, we observed the specific dif-

ferences between clusters. As in the analysis of the individual

perturbations, we also observed that some factors such as the

CIDs have a constant and important effect in all the clusters.

Others, such as the TFs and regulators, are more variable and

depend on the cluster (Figure S8).

To determine to which extent the different cellular pro-

cesses are regulated by different mechanisms, we classified

the genes into various functional classes (Figure S7C; Table

S1). We observed that different cellular processes have quite

distinct modes of regulation. Some processes such as argi-

nine metabolism, metabolic homeostasis, adhesins and

attachment organelle, protein secretion, oxidative homeosta-

sis, and TFs have a large proportion of non-regulated genes.

In contrast, other processes such as DNA recombination, pro-

tein homeostasis, the pentose phosphate pathway, and

fermentation are largely regulated by TFs. Interestingly, non-

canonical regulation is not distributed equally among the

different processes. Genes related to protein synthesis (i.e.,

ribosomes, rRNA, and ribosomal protein modifications, tRNA

modifications, and protein synthesis factors) share an initi-

ating GC dinucleotide at the transcriptional start site. Many
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Figure 5. Variance Explained in Experi-

mental Perturbations

(A) The upper panel shows correlation plots be-

tween the predicted and the experimental fold

changes for three different perturbations: entry

into stationary phase, glycerol, and thioguanine

addition. The lower panel shows the variance ex-

plained by each canonical or alternative mecha-

nism for these experiments.

(B) The violin plots show, for each experiment, how

much variance (in %) can be explained by each

regulatory mechanism. The total variance ex-

plained in the entire dataset (not accounting for

noise) is 45%.
categories related to metabolism and transport have a num-

ber of genes controlled by RNA structure (see the regulation

of the opp operons above; Table S8). This shows that different

cellular processes have preferentially adopted specific regula-

tory mechanisms to tightly control transcription of their genes

(see Figure S7C).

The Impact of Noise on Transcriptional Variation
An intrinsic feature of each complex system is the existence

of noise. This has also been observed with transcription in

M. pneumoniae (G€uell et al., 2009) (Miravet-Verde et al., 2017).

To estimate the proportion of variance in the environmental per-

turbations that is explained by noise, we performed 2 analyses.
Cell
First, we looked at the RNA-seq control

experiments in which gene expression

of the WT strain with an empty trans-

poson insertion was measured. Any vari-

ance not explained by the model can be

attributed to noise, whether it be biolog-

ical or technical. On average, the non-ex-

plained variance for all genes in our RNA-

seq control experiments (i.e., with no

gene expression changes) was 27.9%

(see STAR Methods).

Measured noise can vary across ex-

periments and can be relatively higher

in conditions that have low or no

changes compared with conditions with

many significant changes. As such, we

further explored the noise observed in

two specific perturbations (addition of

glycerol and addition of diamide), which

had five biological replicates each and

large significant transcriptional changes.

For this, we fitted the Random Forest to

each of the five replicates and calcu-

lated the variance explained in the

same replicate as well as in the remain-

ing replicates. The decrease in the vari-

ance explained in the different repli-

cates, as compared to the same

replicate can be associated to noise. In

the glycerol experiments, this decrease

accounts for 10% of the variance, while
in the diamide experiments, it accounts for 14% of the variance

(Figure S7A).

This means that even in well correlated replicates of experi-

ments, there is a significant contribution of noise to transcrip-

tional variation (10%–14%). The relative contribution of noise

can be even higher (up to 27.9%) in perturbations with low

changes, as shown by the analysis of RNA-seq controls.

DISCUSSION

Here, we comprehensively analyzed the mechanisms involved in

transcription regulation in the genome-reduced bacterium

M. pneumoniae (Figure 6). We first performed an unbiased
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Figure 6. Cellular Processes and Their Respective Regulatory Mechanisms

(A) A simplified version of the gene regulatory network ofM. pneumoniae, incorporating both canonical and alternative regulatory mechanisms. Different cellular

processes preferentially use one regulatory mechanism over another to control the expression of genes.

(B) Simplified schema of the structural proteins and their binding regions in the chromosome of M. pneumoniae.
screen for all possible DNA-binding proteins. We then character-

ized nine TFs (Fur, MraZ, DnaA, HrcA, YlxM, WhiA, GntR, SpxA,

and MPN626) along with their binding motifs, nine structural

DNA-binding proteins (Smc, ScpA and ScpB, PhoU, HU,

SsbB, MraZ, and DnaB1 and DnaA; some of them also TFs),

and 16 regulators. We observed that the majority of our

M. pneumoniae strains did not show any phenotypic or tran-

scriptional changes upon OE or inactivation of different genes,

suggesting great robustness of its gene expression machinery.

Similar robustness has also been observed with other bacteria

(Isalan et al., 2008; Reuß et al., 2017). We found that 296 pro-

tein-coding genes (43% of the genome) were directly regulated

by one of the nine TFs in at least one condition studied. This is

similar to E. coli and B. subtilis, where 40% and 52% of the

genes, respectively, are regulated by TFs (Gama-Castro et al.,

2016; Leyn et al., 2013; Michna et al., 2016; Salgado et al., 2013).

Regarding structural proteins, we found the Smc-ScpA-ScpB

complex (condensin) located at the oriC. In B. subtilis Smc–

ScpAB is recruited to the oriC by the ParB (Spo0J) protein bound

to parS sites (Wilhelm et al., 2015). M. pneumoniae lacks ParB

and Spo0J genes, suggesting that in this bacterium other com-

ponents could recruit the Smc–ScpAB complex, such as the

DnaB1 protein (MPN525), found in the same region. Binding to
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regions in the proximity of the oriC may act as sinks for DnaA

when replication starts (Ishikawa et al., 2007). The single-

stranded protein SsbB is found enriched at the opposite site of

the OriC as well as co-localizing with the Smc-ScpA/B complex,

suggesting a possible role in DNA replication. In Figure 6B, we

show a scheme with the distribution of these proteins.

We observed that a large part of transcription regulation is

determined by non-canonical factors such as DNA supercoiling

and genome organization or RNA-mediated regulation. Previous

comprehensive studies have aimed at quantifying the contribu-

tion of individual TFs to the expression changes of genes (Bon-

neau et al., 2007). Our study revealed that in the majority of

cases, no correlation exists between the expression of a TF or

regulator and the resulting regulation of the target genes. The

reason is that RNA levels of a TF may not change under different

environmental conditions, but instead the protein is (in)activated

by adopting a different conformation (such as HrcA (Susin et al.,

2004)), via effector binding (such as Fur with Zn2+), or by post-

translational modification (such as SpxA with disulfide bond

formation). We found that the actions of TFs and regulators could

explain on average only as little as 9% of the variance of any

of the experiment, while 36% of the experimental variance was

explained by other regulatory mechanisms. In total, we have



assigned 45% of the variance to the regulatory mechanisms

studied here and estimated that up to 28% of the unexplained

variance can be associated with the noise of gene expression.

We cannot discard the possibility that we have missed some

TFs that are only relevant under very special conditions. Howev-

er, a systematic sequence comparison of allM. pneumoniae pro-

moters both with themselves and with those of the closely

related M. genitalium did not reveal additional clear sequence

motifs. Thus, although we could have missed a TF that controls

only one operon, our conclusion that non-TF transcriptional

regulation dominates in M. pneumoniae is still valid.
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Wodke, J.A., Unal, E.B., Yus, E., Martı́nez, S., Nichols, R.J., et al. (2015).

Defining a minimal cell: essentiality of small ORFs and ncRNAs in a genome-

reduced bacterium. Mol. Syst. Biol. 11, 780.
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Th€urmer, A., Guérin, C., Nicolas, P., Steil, L., et al. (2017). Large-scale reduc-

tion of the Bacillus subtilis genome: consequences for the transcriptional

network, resource allocation, and metabolism. Genome Res. 27, 289–299.

Rojas-Tapias, D.F., and Helmann, J.D. (2018). Induction of the Spx regulon by

cell wall stress reveals novel regulatory mechanisms in Bacillus subtilis. Mol.

Microbiol. 107, 659–674.

Salgado, H., Peralta-Gil, M., Gama-Castro, S., Santos-Zavaleta, A., Muñiz-
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-Flag Monoclonal Antibody Sigma Cat#F3165; RRID: AB_262044

Bacterial and Virus Strains

Mycoplasma pneumoniae M129 Colleague Richard Herrmann

Mycoplasma pneumoniae strains this paper Mendeley: [doi:10.17632/xf6y59gz6c.1]

Chemicals, Peptides, and Recombinant Proteins

6-Thioguanine Sigma Cat#A4882

Azithromycin Sigma Cat#75199

CCCP Sigma Cat#C2759

Ciprofloxacin Sigma Cat#17850

Clarythromycin Sigma Cat#C9742

Cytochalasin B Sigma Cat#C8273

DCCD Sigma Cat#D80002

Diamide Sigma Cat#D3648

Doxycycline Sigma Cat#D9891

Erythromycin Sigma Cat#E5389

Gemcitabine Sigma Cat#G6423

Levofloxacin Sigma Cat#28266

Minocycline Sigma Cat#M9511

Mitomycin C Sigma Cat#M4287

Norfloxacin Sigma Cat#N9890

Plasmocin Invivogen Cat#ant-mpp

Pyocyanin Sigma Cat#P0046

Sanguinarine Sigma Cat#S5890

Spectinomycin Sigma Cat#S4014

Spiramycin Sigma Cat#S9132

Streptomycin Sigma Cat#S6501

T-butyl hydroperoxide Sigma Cat#458139

Tetracycline Sigma Cat#T3258

Thiolutin Fermentek Cat#87-11-6

Valinomycin Sigma Cat#V0627

Critical Commercial Assays

NebNExt Ultra kit New England Biolabs Cat#E7370L

RNA Isolation Kit: RNeasy Mini Kit Qiagen Cat#74004

RNA Isolation Kit: miRNeasy mini kit

TruSeq smallSmall RNA Sample Prep Kit Illumina Cat#RS-200-0012

Phosphopeptide Enrichment kit Thermo Scientific Cat#88301

Deposited Data

RNA-Seq: Phenome analysis of Mycoplasma pneumoniae this paper ArrayExpress E-MTAB-3771

RNA-seq: Transcriptome analysis of Mycoplasma

pneumoniae I

this paper ArrayExpress E-MTAB-3772

RNA-seq: Transcriptome analysis of Mycoplasma pneumoniae II

RNA-seq: Transcriptome analysis of Mycoplasma

pneumoniae III

this paper ArrayExpress E-MTAB-4642

DNase proteccion: Protein occupancy of Mycoplasma

pneumoniae chromosome

this paper ArrayExpress E-MTAB-3783

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

RNA-seq: Transcriptome analysis of Mycoplasma

pneumoniae IV

this paper ArrayExpress E-MTAB-4784

ChIP-seq of Mycoplasma pneumoniae putative

Transcription factors

this paper ArrayExpress E-MTAB-5944

RNA-seq: 5’0-end mapping of totalTotal Mycoplasma

pneumoniae RNA

this paper ArrayExpress E-MTAB-6124

RNA-seq: Transcriptome analysis of Mycoplasma

pneumoniae V

this paper ArrayExpress E-MTAB-6229

RNA-seq: Transcriptome analysis of Mycoplasma

pneumoniae VI

this paper ArrayExpress E-MTAB-7153

Proteomics: Mycoplasma pneumoniae Chromatin isolation this paper ProteomeXchange XD007672

Proteomics: DNA Affinity chromatography on

Mycoplasma pneumoniae extracts I (RNA elution)

this paper ProteomeXchange PXD007674

Proteomics: DNA Affinity chromatography on Mycoplasma

pneumoniae extracts II (cellulose column)

this paper ProteomeXchange PXD007676

Proteomics: DNA Affinity chromatography on Mycoplasma

pneumoniae extracts III (DNA column)

this paper ProteomeXchange PXD007677

Proteomics: TF overexpression and mutant data this paper ProteomeXchange PXD007551, PXD007537,

PXD007545, PXD007557, PXD007558, PXD007560,

PXD007561, PXD007565, PXD007566,

PXD007658, PXD007658.

Oligonucleotides

Oligonucleotides this paper Mendeley: [doi:10.17632/xf6y59gz6c.1]

Recombinant DNA

Plasmids this paper Mendeley: [doi:10.17632/xf6y59gz6c.1]

Software and Algorithms

Xcalibur software v3.0.63 Thermo Fisher Scientific https://www.thermofisher.com/order/catalog/

product/OPTON-30487

Proteome Discoverer software suite v2.0 Thermo Fisher Scientific https://www.thermofisher.com/order/catalog/

product/OPTON-30795

MAQ software Li et al., 2008 N/A

Inferelator software Bonneau et al., 2006 https://github.com/simonsfoundation/

inferelator_ng

R version 3.5.1 R Core Team, 2018

tidyverse (R packages ; version 1.2.1) Wickham et al., 2017 R package

ggpubr (R package ; version 0.2) Kassambara, 2018 R package

Gdata (R package ; version 2.18.0) Warnes et al., 2017 R package

DESeq2 (R package ; version 1.22.2) Love et al., 2014 R package

NbClust (R package ; version 3.0) Charrad et al., 2014 R package

randomForest (R package ; version 4.6-14) Liaw and Wiener, 2002 R package

Cytoscape (Version 3.6.0) Shannon et al., 2003 https://cytoscape.org/

clusterMaker2 (Cytoscape plugin, version 1.2.1) Morris et al., 2011 Cytoscape plugin
LEAD CONTACT AND MATERIALS AVAILABILITY

This study generated the constructs and Mycoplasma cell lines listed in Table S2. These are available upon request with no restric-

tions. Further information and requests for resources and reagents should be directed to andwill be fulfilled by the LeadContact, Luis

Serrano (luis.serrano@crg.eu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

M. pneumoniae strain M129 (passage 33–34) was grown in modified Hayflick medium and transformed by electroporation with the

pMT85 transposon as previously described (Yus et al., 2009). Briefly, cells were split 1:10, washed twice with 10 ml, and collected in
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300 ml Electroporation buffer (8 mM Hepes$HCl, 272 mM sucrose, pH 7.4) after 72 hours. Cells (50 ml) were electroporated with 5 mg

plasmid in 1-mm gapped cuvettes at 1.25 kV, 100 U, and 25 mF (Gene Pulser Xcel Electroporator, Bio-Rad). Cells were recovered in

Hayflick for 2 h at 37 �C, diluted 1:5 in Hayflick with 200 mg ml-1 gentamycin, selected for three days and then maintained with 80 mg

ml-1 gentamycin. The cell lines used are detailed in Table S2. Identity of the inserted material was validated by RNA-seq. All plasmids

used in this work are in Online Table 1.

METHOD DETAILS

Duplicated Proteins and Promoter Alignment with Mycoplasma genitalium

To identify duplicated proteins in Mycoplasma pneumoniae we run Blast for each protein against the rest of the protein

sequences annotated at NCBI. In Figure S1B we show sequence alignment for some of the duplicated genes having the

DUF16 domain.

We aligned the Mycoplasma pneumoniae and Mycoplasma genitalium by identifying the ortologous genes and then doing a

DNA blast alignment using theM. pneumoniae promoter sequences corrected manually when we could identify the Pribnow boxes

(TATAAT, TAGAAT, TAAAAT, TACAAT) (see Online Figure 1).

DNA Affinity Column
M. pneumoniae cells were diluted 1:10 in Hayflick and grown for 3 days at 37�C in a 300-cm2 flask. Cells were washed twice with ice-

cold phosphate buffer saline (PBS: 150 mM NaCl, 10 mM Potassium Phosphate buffer pH 7.4), and collected in 5 ml of lysis buffer

(50 mM Tris$HCl, 1 M NaCl, 1 mM CaCl2, 1 mM EDTA, 0.1% Triton X-100, 1 mM DTT, pH 8) supplemented with a protease inhibitor

cocktail (Roche). The buffer contained 1 M NaCl in order to release the proteins from the DNA. Cell extracts were centrifuged for

30 min at 100,000 3 g and 4�C (Beckman ultracentrifuge), and the soluble fraction was diluted 10 times with 50 mM Tris$HCl,

1 mM CaCl2, 1 mM EDTA, pH 8 (to dilute out salt and detergent) before filtering the lysate through a 22-mm filter. A DNA-cellulose

column was compacted and assembled (2 g, Sigma, D8515, in 8 ml of TE, 10 mM Tris$HCl, 1mM EDTA, pH 7.9) and run on an

Äkta Xpress (GE Healthcare) in equilibration buffer (50 mM Tris$HCl, 0.1 M NaCl, 1 mM CaCl2, 1 mM EDTA, pH 8), before binding

of the cleared cell lysate. Once the protein signal was stabilized at zero, the columnwaswashedwith amoderate ionic strength buffer

(equilibration buffer plus 200 mM NaCl), and then nucleic acid-binding proteins were eluted with 1 M NaCl in equilibration buffer (for

elution of DNA-binding proteins), or 5 mg ml-1 yeast ribonucleic acid (RNA, Sigma, R8501) in 0.1 NaCl buffer (for elution of proteins

with affinity for RNA). Protein elution was monitored at 280 nm and 0.5-ml fractions were collected. Fractions from the elution profile

were run on a 4–12% SDS-PAGE gel. Fractions with greater amounts of protein were concentrated by TCA precipitation before sub-

mission forMS identification (see below). A cellulose resin was used as a negative control for unspecific binding. ‘‘Peak’’ and ‘‘E1’’ are

the two main 1 M NaCl elution fractions from the DNA column; ‘‘A3’’ and ‘‘A6’’ are the main elution peaks after RNA addition to the

DNA column (Online Table 2).

Chromatin Isolation
DNA binding properties were assessed by ultracentrifugation, employing a sucrose cushion according to a previously described

method (Prasad and Dritschilo, 1992) with only minor modifications. Briefly, a 300-cm2 flask was grow for 3 days as above, washed

with PBS and lysis was performed using 2 ml of lysis buffer (10 mM Tris$HCl, 1 mM EDTA, 1% Nonidet P-40, pH 8 plus a protease

inhibitor cocktail from Roche). To follow the chromatin, 0.2 ml of Sybersafe (Invitrogen) was added and 1 ml of lysate was loaded on

top of a 20%–40% sucrose cushion (in TE: 10 mM Tris$HCl, 1 mM EDTA). Chromatin was fractionated by ultracentrifugation in a Ti45

rotor (Beckman) at 30,000 rpm and 4�C for 18 h and collected from the interphase with the assistance of a UV light. After pelleting by

centrifugation at 100,000 3 g for 1 h, the supernatant was discarded and the pellet was resuspended in digestion buffer (50 mM

Tris$HCl, 0.3 M NaCl, 1 mMMgCl2, pH 7.5) plus 8 U rDNase I (Ambion), for 1 h at room temperature (RT) to release the DNA-binding

proteins. After spinning down for 30 min at 14,000 rpm and 4�C in a tabletop centrifuge, both the supernatant and pellet were

analyzed by SDS-electrophoresis. Samples were concentrated by TCA precipitation before submission for MS identification (see

below). ‘‘Supernatant’’ is the supernatant after DNase treatment, ‘‘pellet’’ is that pellet after washing it with PBS and resuspending

it in sample buffer (Online Table 2).

DNA Pull-Down
This protocol was adapted from (Masternak et al., 2000). The oligos can be found here (Online Table 3). First, from a 3-day,

300-cm2 culture flask, cells were washed with ice-cold PBS, scrapped in PBS plus 0.1% glucose at 4�C, and centrifuged for

10 min in a tabletop centrifuge. The pellet was resuspended in 2 ml lysis buffer (1 M NaCl, 50 mM Hepes$NaOH, 0.1% NP

40, 6 mM MgCl2, 1 mM EGTA, pH 7.5) plus a protease inhibitor cocktail (EDTA-free, Roche), and passed throw a G25 needle

10 times prior to clearance by spinning 30 min in a tabletop centrifuge at maximum speed and 4�C. The supernatant was

diluted 1:10 in dilution buffer (50 mM Hepes$NaOH, 1 mM EGTA, 6 mM MgCl2 pH 7.5) and 4.4 ml were used per assay. Sephar-

ose-streptavidin beads (M-280, Invitrogen) were bound to biotinylated oligos as follows. First, forward and reverse oligos at

50 mM were annealed in Annealing buffer (10 mM Tris$HCl, 50 mM NaCl, 1 mM EDTA, pH 8.0) in a PCR machine: 95�C
Cell Systems 9, 143–158.e1–e13, August 28, 2019 e3



2 min, 52�C 10 min, 4�C. Then 20 ml of annealed oligos were mixed and incubated with equilibrated (TE) beads for 30 min at 4�C
in a roller. Beads were washed with binding buffer (50 mM Hepes$NaOH, 1 mM EGTA, 0.1 M NaCl, pH 7.5) and incubated with

lysate for 1 h or O/N at 4�C. Formaldehyde was added to 1% and proteins and DNA were fixed for 10 min at RT. Crosslinking

was stopped with glycine (100 mM final) for 5 min at RT. Beads were washed once with 1 ml binding buffer, 3X with 1 ml wash

buffer 1 (50 mM Hepes$NaOH, 1 mM EGTA, 0.2 M NaCl, 6 M Urea, 0.2% SDS, pH 7.5) and 3X with 1 ml wash buffer 2 (50 mM

Hepes$NaOH, 1mM EGTA, 0.2 M NaCl, pH 7.5). Material was eluted/un-crosslinked with 50 ml of elution buffer (1% SDS, 10 mM

Tris$HCl, 1 mM EDTA pH 8.0) at 65�C for 15 min and 95�C for 5 min more. Finally, the eluent was visualized on an SDS elec-

trophoresis gel after staining with Instant Blue Commassie (Expedeon). Optimal pull-downs were submitted to proteomics (see

below) without the need for additional concentration.

Proteomics
Total protein lysates from M. pneumoniae were obtained by breaking the cells with 200 ml of lysis buffer (4% SDS, 0.1 M DTT and

0.1 M Hepes$NaOH). Total protein extracts (two biological replicates) were digested with trypsin and subsequently analyzed by

MS. Briefly, samples were dissolved in 6 M urea, reduced with DTT (10 mM at 37�C, 60 min), and alkylated with iodoacetamide

(20 mM at 25�C, 30 min). Samples were diluted 10-fold with 0.2 M NH4HCO3 before being digested at 37�C overnight with trypsin

(in a protein:enzyme ratio of 10:1). Peptides generated in the digestion were desalted, evaporated to dryness, and dissolved in

300 ml of 0.1% formic acid.

An aliquot of 2.5 ml of each fraction (amounts ranging from 0.17 to 4 mg) was run on an LTQ-Orbitrap Velos (ThermoFisher)

fitted with a nanospray source (Thermofisher) after a nanoLC separation in an EasyLC system (Proxeon). Peptides were sepa-

rated in a reverse phase column, 75 mm x 150 mm (Nikkyo Technos Co., Ltd.) with a gradient of 5% to 35% acetonitrile in 0.1%

formic acid for 60 min at a flow rate of 0.3 ml min-1. The Orbitrap Velos was operated in positive ion mode with the nanospray

voltage set at 2.2 kV and the source temperature at 325�C. The instrument was externally calibrated using Ultramark 1621 for

the FT mass analyzer and the background polysiloxane ion signal at m/z 445.120025 was used as lock mass. The instrument

was operated in data-dependent acquisition (DDA) mode and full-MS scans were acquired in all experiments over a mass range

of m/z 350–2,000, with detection in the Orbitrap mass analyzer set at a resolution setting of 60,000. Fragment ion spectra pro-

duced via collision-induced dissociation (CID) were acquired in the ion trap mass analyzer. In each cycle of data-dependent

analysis, the top 20 most intense ions with multiple charges above a threshold ion count of 5,000 were selected for fragmen-

tation at a normalized collision energy of 35% following each survey scan. All data were acquired with the Xcalibur 2.1 software.

Total extract (20 mg) was also digested and desalted, and 1 mg of the resulting peptides were analyzed in an Orbitrap Velos Pro

in the same conditions as the fractions but using a longer gradient (120 min).

The data were searched using an internal version of the search algorithmMascot against a database that contained all the putative

M. pneumoniae open reading frames (ORFs) larger than 19 amino acids (MPNHomoContTrans19). The data has been filtered using a

5% false discovery rate (FDR). Protein grouping was not applied in the results and we quantified the proteins using the following pa-

rameters: i) only unique peptides without miss cleavage; ii) only peptides with ‘‘Protein Group=1’’. Protein top 3 area was calculated

using the average of the 3 most abundant unique peptides per protein group. Only unique peptides corresponding to ORFs for which

we could identify an RNA transcript were considered. In Online Table 4 we show the fold changes and p-val per gene, for all prote-

omics experiments done in this study.

ROC Curves
Gold sets of DNA- and RNA-binding proteins were constructed using information from the literature. For instance, even for bona fide

DNA-binding protein complexes, only the protein that was binding directly to the nucleic acid was considered as a true DNA-binding

protein.

For each of the experiments that were performed to identify DNA/RNA-binding proteins, we calculated whether there was any

enrichment in DNA/RNA-binding proteins in the fractions obtained. To do so, first we averaged the areas obtained in MS among bio-

logical and technical replicates.

In the DNA affinity column, we determined the ratio between each of the fractions and the extract for each protein, using the

aforementioned averages. In the case of chromatin isolation, we calculated the ratio between the supernatant fractions S2

(only RNase treatment) and S3 (RNase and DNase treatment), and the pellet for each of the candidates. For the oligonucleotide

pull-down experiments, we calculated the ratio between each of the pull-downs and the extract, for each protein, and then we

took the median value.

Once all the ratios were calculated, we used the gold set to calculate ROC curves for each of the ratios. This enabled us

to determine how well they discriminate DNA- and RNA-binding proteins. While a good separation between DNA- and

RNA-binding proteins could not be obtained, four of the fractions displayed area under the curve (AUC) values higher than

0.75: fractions E1 and A6 of the DNA columns, the supernatant/pellet ratio in the chromatin isolation, and the DNA motif

pull-downs (Figure S1A). Thus, these experiments are able to discriminate between the DNA/RNA-binding proteins and the

negative data in our gold set. For each of these experiments, we calculated the threshold in which this separation is maximized

as the threshold maximizing the difference between the true positive rate and the false positive rate. The cutoff values for the
e4 Cell Systems 9, 143–158.e1–e13, August 28, 2019



different experiments are as follows: E1 fraction = 0.56; A6 fraction = 0.69; Supernatant/pellet = 0.19; DNA motif pull-

downs = 1.7.

With these cutoff values, we determined which DNA/RNA-binding proteinsmet the criteria for each of the experiments selected. To

obtain a consensus, we chose as preliminary candidates all those proteins that were regarded as DNA/RNA-binding in at least two

out of the four experiments (probability R0.5).

Protein Expression
In general, proteins were FLAG-tagged (DYKDDDKG) on their N- or C-terminus, and expression was confirmed byWestern blot using

M2 monoclonal anti-FLAG antibodies (Sigma). In some cases, when the tag was foreseen to interfere with the protein function,

proteins were expressed without a tag. In general, theMPN665|tuf promoter was used for overexpression unless otherwise indicated

(for cases in which the protein was toxic, the endogenous promoter was used instead). In a few cases, TAP (Tandem affinity purifi-

cation)-tagged clones from Anne-Claude Gavin’s collection (EMBL) were used (K€uhner et al., 2009) (see Table S2).

Dominant-Negative Mutants or Deletions
In some cases, point mutants were obtained to generate dominant-negative effects on the endogenous genes. In some cases,

such as for SpxA (Nakano et al., 2010) or SpoT (Hogg et al., 2004), these mutations were taken from the literature. For the rest,

if the protein of interest itself dimerizes and the dimeric status is essential for its activity, mutations were introduced into the

DNA-binding site. In this way, the mutant copy could sequester the wildtype copy. To select which residues to mutate, we

inspected the 3D structure of the target protein (or a close orthologue) with DNA and mutated one of the residues that strongly

interacts with the DNA molecule (in general, interacting Lys or Arg residues were mutated to Asp or Glu). Finally, some phospho-

mimetic mutants were generated by changing the phosphorylated Ser or Thr to an aspartic or glutamic acid, respectively. A non-

phosphorylable mutant was created in parallel, replacing the same residue for Ala (see the alignments of the conserved and

mutated positions in Figure S3).

Transposon Insertion Mutants Obtained by Haystack Mutagenesis
For the isolation ofM. pneumoniaemutants, we used a collection of strains carrying insertions of transposon Tn4001 (Halbedel et al.,

2006). The presence of the desired mutant was assayed by PCR using one primer that hybridizes to the transposon (directed

outwards), and a second primer specific for the gene of interest (see the oligos used for the screenings in Online Table 3, the

RNA-seq profile plots in Online Figure 2 and the description of the mutants in Table S2). In Online Table 5 we show the insertion

site for all transposon experiments as well as the changes in gene expression of the adjacent genes.

Environmental Perturbations
A minimum of two replicates were used for each condition.

Novobiocin Treatment (RNA Half-Life)

We pulsedM. pneumoniae cells with 100 mg ml-1 novobiocin for 30 min at 37�C. We then removed the drug by changing to medium

alone, and took samples at the indicated time points after transcription arrest.

Novobiocin Titration (Supercoiling Analysis)

We treated M. pneumoniae cells with increasing concentrations of novobiocin (0, 1, 5, 10, 50 and 100 mg ml-1) for 30 min. After the

treatment, total RNA was extracted, and we performed RNA sequencing as detailed above.

Other Treatments

Diamide catalyzes the formation of disulfide bridges between proximal Cys residues, thereby favoring SpxA conformational change

and revealing its targets (Rojas-Tapias and Helmann, 2018). However, it also affects genes regulated by DnaA and Fur upon redox

stress (these genes were removed as targets of SpxA).

Glucose starvation: cell culture medium was removed completely, and new Hayflick medium without glucose was added. Cells

were incubated for 3–5 h at 37�C to exhaust all the remaining glucose (Hayflick contains approximately 5 mM glucose).

Amino acid starvation: half of the medium was taken, and 200 mg of DL-serine hydroxamate (to 10 mg ml-1) was added to the

medium to dissolve it before adding it back to the cells. Cells were then incubated cells for 15–30min at 37�C. Alternatively, norvaline
was added at 0.5 mg ml-1, or minimal medium without amino acids and peptides was used (Yus et al., 2009).

Temperature: cells were changed to a water bath at 15oC (cold-shock) for 15 min or at 43�C (heat-shock) for 20 min.

Fe2+ depletion: The iron chelator 2,20-bipyridyl was added directly to the flask at 3 mM, and cells were incubated for 30–60 min

at 37�C.
Glycerol: glycerol was added directly to the flask at 0.1% or 1%, and incubated for 30 min at 37�C. In some cases, sucrose was

used as a control.

Low PH: medium was changed to Hayflick at pH 6 and incubated for 1 h.

Osmotic shock: NaCl was added to 300 mM and incubated for 1 h.

Oxidative stress: H2O2 was added directly to the flask to 0.5%, and incubated for 15 min at 37�C.
Antibiotics and other drugs:
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Treatment Perturbant Concentration Duration (min)

G metabolism 6-Thioguanine 200 mg ml-l 30

Protein synthesis inhibition Azithromycin 0.0078 mg ml-1 60

PMF uncoupler CCCP 2 mM 30

Protein synthesis inhibition Chloramphenicol 20 mg ml-1 60

DNA damage Ciprofloxacin 1 mg ml-1 60

Protein synthesis inhibition Clarythromycin 0.015 mg ml-1 60

Cell cycle Cytochalasin B 75 mg ml-1 60

PMF* uncoupler DCCD 0.4 mM 60

Redox balance Diamide 1 mM 30

Protein synthesis inhibition Doxycycline 0.3 mg ml-1 60

Protein synthesis inhibition Erythromycin 0.0156mg ml-1 60

G metabolism Gemcitabine 50 mg ml-1 30

Oxidative stress Hydrogen peroxide 0.1% 20

Oxidative stress Hydrogen peroxide 0.5% 20

DNA damage Levofloxacin 0.75 mg ml-1 60

Protein synthesis inhibition Minocycline 0.3 mg ml-1 60

DNA damage Mitomycin C 5 mg ml-1 60

DNA damage Mitomycin C 0.5 mg ml-1 60

DNA damage Norfloxacin 10 mg ml-1 60

DNA gyrase Plasmocin 1 mg ml-1 60

Oxidative stress Pyocyanin 3 mg ml-1 60

FtsZ inhibitor Sanguinarine 28 mM 60

Protein synthesis inhibition Spectinomycin 5 mg ml-1 60

Protein synthesis inhibition Spiramycin 0.5 mg ml-1 60

Protein synthesis inhibition Streptomycin 5 mg ml-1 60

Oxidative stress T-butyl hydroperoxide 0.1 mM 60

Protein synthesis inhibition Tetracycline 0.3 mg ml-1 60

RNAP inhibitor/Zn2+ chelator Thiolutin 2.5 mg ml-1 60

Membrane integrity Triton X-100 0.01% 60

Potassium ionophore Valinomycin 0.1 mM 60

*PMF: Proton motive force
Chromatin Immunoprecipitation
We adapted the protocol from Buratowski’s lab (Keogh and Buratowski, 2004). From a pre-culture, M. pneumoniae cells were split

1:10 in a 300-cm2 flask and grown for 4 days at 37�C. When indicated, cells were collected at this point (stationary phase), or they

were scrapped and seeded in 40ml of fresh Hayflick in a 150-cm2 flask and incubated 6 h longer at 37�C (exponential phase). In some

cases, a perturbant was introduced prior to fixation (see above). Formaldehyde was added at a final concentration of 1% (16% stock,

Pierce), incubated for 10 min at room temperature and quenched by adding glycine to 100 mM, for 5 min at RT. Cells were washed

twice with ice-cold PBS, scraped in 5ml PBS and spun for 5 min at 4�C and 8,000g. The pellet was lysed by adding 1ml of ysis buffer

(50 mM Hepes$KOH, 150 mM NaCl, 1 mM EDTA, 1% Triton X-100, 0.1% sodium deoxycholate, 0.1% SDS, pH 7.5) plus a protease

inhibitor cocktail (Pierce) at 4 �C for 5 min. Chromatin was sheared by ultrasonication using Covaris with the following settings: Duty

Cycle, 20%; Intensity, 5; Cycles/Burst, 200; Time, 15 min; Water level, 15. Approximately 200-bp fragments were generated and cell

debris were removed by centrifugation at 16,0003 g and 4�C for 10 min. The NaCl concentration of the supernatant was adjusted to

275 mM. The beads (50 ml) were pre-blocked with 0.5% bovine serum albumin (BSA) in PBS for 15 min at RT. Sepharose-protein-G

was bound to either 10 ml of 1 mg ml-1 mouse IgG (control, Sigma), or 10 ml anti-FLAG (M2 monoclonal) for FLAG-tagged proteins. In

the case of TAP-tagged proteins, 50 ml sepharose-IgG was used, and no control was included. About 0.5–1 mg chromatin per reac-

tion was added and incubated over night at 4�C. Then, the following washes were done: 1x FA wash buffer 1 (FA lysis buffer with

275 mM NaCl), 1x FA wash buffer 2 (FA lysis buffer with 500 mM NaCl), 1x FA wash buffer 3 (10 mM Tris$HCl, 250 mM LiCl,

1 mM EDTA, 0.5% Nonidet P-40, 0,5% sodium deoxycholate, pH 8), and finally TE. Then, the immunoprecipitated material was ex-

tracted with 250 ml of FA elution buffer (50 mM Tris$HCl, 1% SDS, 10 mMEDTA, pH 7.5) and incubated for 10 min at 65�C. The beads
were added to a micro-spin column (Bio-Rad) in order to collect the beads’ death volume by centrifugation. Then, 5 ml of 20 mg ml-1

proteinase K was added, and tubes were incubated for 15 min at 55�C and 10 min at 95�C before letting them cool at RT, to elute the

samples. To purify and extract the DNA, we used a phenol/chloroform extraction protocol and ethanol precipitation. Precipitated
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DNA was resuspended in 10 mM Tris$HCl, pH 8.0 and measured with PicoGreen in a Qubit fluorometer (DNA High sensitivity kit,

Invitrogen). At least 8 ng of material was submitted for DNA ultra-sequencing. Briefly, DNA was ligated to DNA paired-end adapters

with the NebNExt Ultra kit (by the CRG Genomics Core facility). Samples were also sequenced at the facility (see below).

All proteins were tested at early exponential phase of growth (6 hours). Reproducibility of ChIP-seq profiles was assessed by

comparing biological replicas performed at different times (6 h and 96h) of the sigma factor SigA (MPN352) and the TF SpxA

(MPN266) (see Methods). In general, all proteins were FLAG tagged at either the N- or C-terminal ends, except some components

of the RNAP that were TAP tagged (see Table S2). The putative effect of tags was assessed by fusing the two tags to the same pro-

tein. Independently of the tag used, peaks associated to proteins from the core RNAP complex (RpoB MPN516 and RpoA MPN191

TAP-tagged; and SigA MPN352 FLAG-tagged) as well as the associated to the component of the RNA polymerase, SpxA (FLAG-

tagged), were found at promoter sites. Both tags yielded similar results, with 199 common peaks between the SigA and at least

one of the two RNAP subunits (Table S3). Similarly, we found 167 common peaks between the SpxA and the RNAP subunits. In

both cases, more than 91% of these common peaks corresponded to annotated promoters (Table S3). When comparing the

ChIP-seq profiles to gene expression, we found a significant correlation between the height of the promoter-associated peaks of

the RNAP subunits and the expression level of those genes (Figure S2B). Some of the promoter-associated RNAP peaks changed

their relative height between 6 h and 96 h, coinciding with changes in gene expression (Figure S2C). Additionally, we observed that all

RpoA promoter-associated peaks disappeared when incubating the cells with a gyrase inhibitor (novobiocin) that reduces DNA

negative supercoiling (Figure S2D). These results validated the RNAP associated peaks.

Transcriptomics
M. pneumoniae cells at various stages of growth, overexpressing different regulators or being exposed to various perturbations were

washed with PBS and collected immediately in lysis buffer. Antibiotics were omitted before the last inoculation to avoid unwanted

phenotypes. In all cases, we have at least two biological replicates per experiment.

As for microarray analysis, cells were collected in RTL buffer plus 143 mM beta-mercaptoethanol (RNeasy kit, Qiagen) and RNA

extraction, cDNA synthesis and labeling were performed as described (G€uell et al., 2009). In the case of RNA-seq, Qiazol was used to

lyse the cells. RNA isolation was performed following the manufacturer’s instructions (miRNeasy kit from Qiagen), and an in-column

DNase I treatment was included. RNA was measured using a Nanodrop (Thermo) and integrity was confirmed on a Bioanalyzer

(Agilent). A paired-end directional strand-specific RNA-seq protocol (Illumina) was applied for sequencing library preparation at

the CRG ultrasequencing facility. Briefly, 1 mg of total RNA was fragmented to ~100–150 nt using the NEB Next Magnesium RNA

Fragmentation Module (EB). Treatments with Antarctic phosphatase and PNK (both from NEB) were performed in order to make

the 5’ and 3’ ends of the RNA available for adapter ligation. Samples were further processed using the TruSeq small RNA Sample

Prep Kit (ref. RS-200-0012, Illumina) for stranded RNA-seq, according to the manufacturer’s protocol. In summary, 3’ adapters

and subsequently 5’ adapters were ligated to the RNA. cDNAwas synthesized using reverse transcriptase (SuperScript II, Invitrogen)

and a specific primer (RNA RT Primer) complementary to the 3’ RNA adapter. cDNA was further amplified by PCR using indexed

adapters supplied in the kit. Finally, size selection of the libraries was performed using 6% Novex TBE Gels (Life Technologies).

Fragments with insert sizes of 100–130 bp were cut from the gel, and cDNA was precipitated and eluted in 10 ml of elution buffer.

dsDNA samples were cluster amplified and sequenced in the HiSeq 2000 platform (Illumina). In Online Table 6 we show the fold

changes and p-val per gene, for all genetic experiments.

Transcriptional analysis was performed at the exponential phase, 32 candidates were also tested at other timepoints (late expo-

nential: 24 hours, or stationary: 48 and 96 hours)(Table S2).

mRNA Quantification by RT-qPCR
To monitor promoter regulation, reporter chimeras with YFP-Venus were built. As YFP seems to be a very stable protein in

M. pneumoniae, gene expression was followed by retro-transcription (RT) followed by real time or quantitative PCR (qPCR). Briefly,

RNA was purified as above, and 1 mg was hybridized to 2 mg random hexamers (Invtrogen) by heating to 65�C for 5 min and quick

chilling on ice in a 11 ml total volume. Retrotranscriptionwas performed by adding 4 ml 5X first-strand buffer, 2 ml 0.1MDTT, 1 ml RNase

OUT (40 units/ml, Promega), 1 ml 10 mMdNTPmix, and 1 ml SuperScript II RT (200 units, Invitrogen), and incubating for 50min at 42�C
before inactivation at 70�C for 15 min. A 2x GoTaq qPCR mastermix was used (Promega) with 0.5 ng cDNA per 10 ml reaction and

0.5 mMoligos, and run on a Lightcycler 480 (Roche). Oligonucleotides can be found in Online Table 3. Ribosomal RNA (16S) was used

as a reference.

Growth Curves
To obtain equal amounts of each sample, initial inocula for the growth curves were quantified. Briefly, cells were grown for 3 days in

25-cm2 flasks, collected in 1mlmedium and 100 ml used for quantification using the BCA (bicinchoninic acid) protein assay kit (Pierce,

see below). Same amounts of total protein (1 mg) were aliquoted per well in a 96-multiwell plate in duplicates. Two hundred ml of

Hayflick medium was added per well and the cells were incubated in a Tecan Infinite plate reader at 37�C. The ‘‘growth index’’

(absorbance 430/560 nm, settle time at 300msec and number of flashes equal to 25) was obtained every hour for 5 days as published

(Yus et al., 2009). To quantify growth, we determined two slopes of the growth curve. The first one is based on the time interval from

10 to 30 h (‘‘early slope’’) and the second one on the whole growth curve (‘‘late’’). The early slope was determined by considering the

maximummedian of the slope between two time points (Equation 1) separated by three timemeasurements over successive periods
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of 30 time points. The late slope was determined by considering the maximum median value of the slope between two time points

separated by four time measurements (Equation 2) over successive periods of 30 time points.
Early Slope = (value (time [i]) – value (time[i+3)]) / (time[i]-time[i+3] (Equa
tion 1)
Late Slope = (value (time [i]) – value
 (time[i+4)]) / (time[i]-time[i+4] (Equa
tion 2)

The early slope is more representative of growth, while the late slope reflects the metabolic activity.

On the other hand, biomass was quantified at 48 h (early stationary phase) by inoculating twin 96-well plates, in the same condi-

tions as above. After incubation for two days at 37�C, medium was aspirated, and cells were carefully washed twice with 200 ml PBS

and lysed with 100 ml lysis buffer (10 mM Tris$HCl, 6 mM MgCl2, 1 mM EDTA, 100 mM NaCl, 0.1% Tx-100, pH 8, and 13 Protease

Inhibitor Cocktail, Roche) at 4�C. In the same first 96-well plate, cell lysates were kept on ice and extracted protein was quantified

using the BCA Protein Assay Kit (Pierce, see below).

The protein concentrations at 48 h and early slope aremore representative of growth, while the late slope and the A430/560 value at

midpoint reflect the metabolic activity. These four parameters of growth and metabolism were analyzed for each batch of experi-

ments. Outliers larger than quartile 3 (Q3) by at least 1.5 times the interquartile range (IQR), or smaller than Q1 by at least 1.5 times

the IQR were removed to calculate the mean and the standard deviation of each of the parameters for each batch. Values larger or

smaller than the mean by at least 2 times the standard deviation of each parameter were considered to determine fast- and slow-

growing/metabolizing clones, respectively.

The data can be found in Online Table 7.

50-RNA End Mapping
To obtain transcriptome-widemRNA5’ ends (TSSs), we amplified cDNA using a randomprimer by RT-PCR. Specifically, RT_read2 at

2.5 mMwas hybridized to 5 mg of total RNA and the RT reaction was carried out as above (see ‘‘mRNA quantification by RT-qPCR’’).

Once the reaction was finished, RNAwas removed by first adding 1 ml of 4 NNaOHduring 5min at 95�C, then neutralizing it with 2 ml of

1 M Tris$HCl (pH 8.0). Then, we added 1 ml of RNase cocktail (Ambion) and incubated the sample at 37�C for 30 min. After this, the

reaction was brought to 50 ml with H2O and the ssDNA was cleaned with 1 volume of AMPure beads as above. Finally, we eluted with

25 ml of EB and proceeded to the ssDNA ligation. We prepared a 50-ml reaction with 5 ml of 10x buffer, 1 ml of ATP, 2.5 ml of MnCl2, 2 ml

of CircLigase (Epicenter), 0.84 ml of 100 mM linker (L_read1_N6) and 15 ml ssDNA (from previously step). This mix was incubated at

65�C for 120 min, and then the ligase inactivated at 85�C for 15 min. The reaction was cleaned with 1 volume of AMPure beads as

above and eluted with 25 ml of EB. The final step involved a PCR reaction to introduce Illumina sequences and thus prepare the

libraries for sequencing. This reaction was performed with 4 ml of 5x Buffer, 0.4 ml of dNTPs, 0.4 ml of Phusion HF polymerase

(NEB), 0.5 mMof primers (F_PEu and indexed R_PE) and 5 ml of ssDNA in a 20-ml final reaction volume. We PCR-amplified this during

20 cycles (elongation at 60�C). Each PCR product was checked on a 2% agarose/TAE gel, and once the correct band was obtained

(approximately 250 bp), we repeated the same reaction but in a 50-ml final volume. The PCR was cleaned and selected by size using

AMPure beads (as above), and libraries were quantified using the Illumina KAPA quantification kit according to the manufacturer’s

instructions (Kapa Biosystems).

Ultrasequencing
A sample of all indexed libraries was prepared at 4 or 10 nM in 10 ml of H2O. All libraries were subjected to quality control using a

Bioanalyzer High Sensitivity DNA Assay chip (Agilent). Twelve ChIP-seq samples, six RNA-seq samples and two 5’-end specific

RNA-seq samples were multiplexed. dsDNA samples was cluster-amplified and sequenced in the HiSeq 2500 platform (Illumina)

at the CRG Genomics Core facility.

Phosphoproteomics
Protein Sample Preparation

260 mg of protein from each sample (in 8 M urea, 50 mM NH4HCO3) were reduced with dithiothreitol (780 nmol, 1 h, 37�C) and alky-

lated in the dark with iodoacetamide (1,560 nmol, 30 min, 25 �C). First, the resulting protein extract was diluted with 200 mM

NH4HCO3 to 2 M urea and digested with 26 mg LysC (Wako, cat # 129-02541) overnight at 37�C, and then to 1 M urea and digested

with 26 mg of trypsin (Promega, cat # V5113) for 8 h at 37�C. The peptide mixture was acidified with formic acid and desalted with a

MacroSpin C18 column (The Nest Group, Inc) prior to LC-MS/MS analysis. Samples were enriched for phosphopeptides with the

Pierce TiO2 Phosphopeptide Enrichment kit (Thermo Scientific, cat # 88301). Finally, the peptide mixture was acidified with formic

acid and desalted with a MicroSpin C18 column (The Nest Group, Inc) prior to LC-MS/MS (liquid chromatography–mass spectrom-

etry) analysis.

Chromatography and Mass Spectrometry Analysis

The peptide mixtures were analyzed using an Orbitrap Fusion Lumos mass spectrometer (Thermo Scientific) coupled to an EasyLC

(Thermo Scientific, Proxeon). Peptides were loaded directly onto the analytical column at a flow rate of 1.5–2 ml min-1 using a wash

volume of four times the injection volume, and were separated by reversed-phase chromatography using a 50-cm column with an

inner diameter of 75 mm that was packed with 2-mm C18 particles (Thermo Scientific). Chromatographic gradients started at 95%

buffer A (0.1% formic acid in H2O) and 5% buffer B (0.1% formic acid in acetonitrile) with a flow rate of 300 nl min-1 and gradually
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increased to 22% buffer B in 120min and then to 35% buffer B in 11 min. After each analysis, the column was washed for 10 min with

5% buffer A and 95% buffer B.

The mass spectrometer was operated in DDAmode, and full MS scans with 1 microscan at a resolution of 120,000 were used over

a mass range of m/z 350–1,500 with detection in the Orbitrap. Auto gain control (AGC) was set to 2e5, and dynamic exclusion to 60 s.

In each cycle of DDA analysis, ions charged 2 to 7 above a threshold ion count of 1e4 were selected for fragmentation at normalized

collision energy of 28%. Fragment ion spectra produced via high-energy collision dissociation (HCD) were acquired in the Ion Trap

with AGC set to 3e4, an isolation window of 1.6 m/z, and a maximum injection time of 40 ms. All data were acquired using Xcalibur

software v3.0.63.

Data Analysis

Proteome Discoverer software suite (v2.0, Thermo Fisher Scientific) and the Mascot search engine (v2.5, Matrix Science) (Perkins

et al., 1999) were used for peptide identification and quantification. Samples were searched against a M. pneumoniae database

with a list of common contaminants and all the corresponding decoy entries (87,059 entries). Trypsin was chosen as the enzyme

and a maximum of three miscleavages were allowed. Carbamidomethylation (cysteine) was set as a fixed modification, whereas

oxidation (methionine), acetylation (N-terminal), and phosphorylation (serine, threonine and tyrosine) were used as variable modifi-

cations. Searcheswere performed using a peptide tolerance of 7 ppm, and a product ion tolerance of 0.5 Da. Resulting data fileswere

filtered by an FDR < 5%.

Total Protein Determination
Fresh seed cultures were inoculated using a 1:100 dilution in 25-cm2 tissue culture flasks containing 5 ml Hayflick medium without

antibiotics. All measurements were performed in duplicates at the indicated time points. To extract total cellular protein at the

selected time points, medium was removed and cells were washed twice with PBS. Subsequently, cells were scraped and pelleted

by centrifugation at 14,100 3 g for 10 min. PBS was removed and pelleted cells were stored at -70�C for further processing. After

collecting samples twice per day for seven days, frozen pelleted cells were suspended in 60 ml of lysis buffer (4% SDS, 0.1 M

Hepes$NaOH). Cell lysates were kept on ice and disrupted using a Bioruptor sonication system (Diagenode, B01010004) with an

On/Off interval time of 30/30 sec at high frequency for 10 min. Finally, cell lysates were spun, pipetted up and down to complete lysis,

and extracted protein was quantified using the Pierce BCA Protein Assay Kit. Cell lysates taken from those time points after 48 h of

growth were diluted five-fold to be within the working range of the assay. The standards were prepared with Pierce bovine serum

albumin (BSA) standard (Thermo Scientific, Cat # 23209) diluted at different concentrations with lysis buffer, following the manufac-

turer’s instructions. For each sample and BSA standard, 25 ml was added in duplicate to a 96-well plate. Then, 200 ml of BCA working

solutionwas added to eachwell, andmixed for 30 sec inside an InfiniteM200 Tecan plate reader. Sampleswere incubated at 37�C for

30 min and, after cooling down to RT, absorbance at 562 nm was measured using the Infinite M200 Tecan plate reader. The known

concentrations of the BSA standards were used to make the standard curve and interpolate the protein concentration for each

sample.

Mapping Ultrasequencing Data
Resulting raw reads from RNA sequencing were mapped to theM. pneumoniae reference genome (NC_000912, NCBI) with Bowtie2

(default parameters, and 1 mismatch allowed) (Langmead and Salzberg, 2012). Only reads mapping to a unique position of the

genome were considered. Counts per gene were extracted from the mapping .sam files using HTSeq-count (Anders et al., 2015)

and our custom genome annotation (Lluch-Senar et al., 2015).

In the case of ChIP-seq, the libraries were single end. The plus and minus strand data were mapped using MAQ software (default

parameters, and 1 mismatch allowed) (Li et al., 2008), and piled separately in order to reconstruct the original peaks (see below).

TSS mapping reads (see ‘‘TSS mapping’’) were mapped using MAQ software (as above) but only the first position of the read (50 of
RNA) was taken into account for further analysis.

QUANTIFICATION AND STATISTICAL ANALYSIS

ChIP-seq Analysis
Two curves were obtained for each ChIP-seq experiment, corresponding to the reads mapped to the plus and minus strand of the

M. pneumoniae chromosome. Additionally, each immunoprecipitation experiment is accompanied by a control experiment (IgG), in

which only the secondary antibody was used for the immunoprecipitation. In the case the IgGwas not available, we used the average

of the remaining IgGs sequenced in the same batch. For each of the experimental curves, we normalized the profile of the IgG using

the signal from the corresponding IP to equate their baseline levels. After normalization, the control signal was subtracted from the

experiment profile. With the resulting profile, noise was modeled to fit a Gaussian distribution centered on zero and with a standard

deviation varying across experiments. According to this distribution, all values with probability larger than 1e-3 of being noise were

set to zero, to remove the noise.

Peak calling was performed separately in each of the profiles for the plus and theminus strand, and was performed with theMatlab

findpeaks function. A custom R implementation of this function was used for our analyses. The parameters used in the peak calling

were manually adjusted, with the following values: slope threshold = 4e-8 (minimum peak slope); amplitude threshold = 10 (minimum

peak width); smoothing width = 15 (number of points to consider when smoothing the curve); and peak group=15 (number of points
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used to fit the peak). Additional filters were used to discard false positive peaks. We removed those peaks that were detected in

the IP-IgG curve, but not found in the IP curve. Furthermore, to find those peaks that significantly differed from the control ones,

we discarded those peaks in which the ratio between the IP-IgG peak and the IgG peakwas smaller than two.We also removed those

peaks that were most likely phantom peaks (Jain et al., 2015), identifying bins of 100 bps for which a peak was identified in at least

75% of experiments.

After peak calling in each of the strands, the data from both of them was merged. In ChIP-seq, the same peaks are expected to be

found in both strands. However, as the DNA fragments whose ends are sequenced are usually larger than the sequencing read

length, their positions tend to be displaced from one another and usually do not overlap. Thus, we associated each peak from the

plus strand to a peak in the minus strand, provided that the distance between them was smaller than 300 bps. The actual peak

position was attributed to the mid-point between the two partner peaks. The average distance between these partner peaks was

calculated for each experiment. Single peaks with no partners in the opposite strand were discarded. Finally, a score was assigned

to each of the peaks, describing how well the pair matches this average distance.

The same procedure was repeated using the IgG as the sample and the IP as a control. The ratio between the number of peaks

found in this analysis and the number of peaks found in the previous one was used as an empirical FDR value. In this way, we could

distinguish between the experiments that yield reliable peaks and those that yield mostly noise.

In all experiments, we found a set of common peaks (‘‘phantom-peaks’’ (Jain et al., 2015)) that, in general, correspond to very high

peaks found in the RNAP ChIP-seq experiments. These peaks were not considered in the analysis of the different ChIP-seq exper-

iments. The genome positions in the bins (100 bases each) in which we identified phantom peaks are the following: 85101, 150651,

172301, 195501, 217501, 261601, 265701, 364101, 385701, 420201, 427501, 470401, 483301, 541701, 543101, 546301, 636401,

636501, 648901, 690401, 715901, 799801 and 799901.

Gene Expression Analysis
Differential expression analysis in RNA-seq experiments was performed using DESeq2, grouping all biological replicates for

each experiment and including the effect of the conditions, time of the experiment (6 h or 96 h) and batch in the experimental

design. For experiments in which RNA decay was observed, we applied a size factor correction based on their rRNA levels, as

rRNA was assumed to be stable. In the remaining experiments, default size factors were determined by DESeq2 (Love

et al., 2014).

Significant changes were considered when the absolute fold change was above 0.6 and the multiple-test corrected p-value was

below 0.01. After this first filtering, we used a more relaxed filter to also consider significant those genes that did not pass our first

criteria but were part of an operon in which at least one gene passed the filters, and the changes of all genes in the operon were in the

same direction (either all upregulated or all downregulated). Finally, wemanually rescued some changes that, despite notmeeting our

stringent criteria, were supported by proteomics data.

Operons were defined by correlation analysis of consecutive genes in the genome, using all the RNA-seq experiments in this study

to define these correlations.We defined operons as groups of consecutive genes fulfilling two conditions. First, all genes in an operon

had to be correlated over a certain value; and second, pairs of consecutive genes in these groups had to be correlated over a certain

threshold, larger than the previous one. Both values were determined empirically to maximize the number of operons having only one

annotated TSS (threshold for consecutive genes = 0.74; threshold for non-consecutive genes = 0.5). Transcription units are listed in

Online Table 8.

Differential expression inmicroarrays was calculated via a two-sided t-test assuming non-equal variance for each gene. Criteria for

assessing biological significance were the same as above.

For experiments with replicates in RNA-seq and microarrays, a consensus was determined for each gene only if in both cases the

direction of the change is the same and in at least one of them the change is statistically significant. The list of datasets used for each

condition can be found in Online Table 9.

To identify regulators, we established a threshold, setting a minimal number of targets in transcriptomics. To establish this

threshold, we calculated the distribution of the number of transcriptomics changes per experiment. This distribution has a large

number of zeros and one large outlier (MPN545-KO, which affects RNA degradation and thus targets the majority of genes in

M. pneumoniae). After removing these extreme values, we observed a bimodal distribution. We fitted a mixture model using the

mixtools package in R (Tatiana Benaglia et al., 2009), which fitted two normal distributions intersecting in N=9 changes. Thus, we

considered all strains with 10 or more changes in transcriptomics as putative regulators (except for the TFs, for which we found a

common motif).

Gene Regulatory Network Reconstruction and Validation
From the ChIP-seq and genetic perturbation transcriptomics data we manually curated a set of 1,062 transcription factor/regulator

target interactions, which we refer to as ‘‘Manual Gene Regulatory Network’’. To verify how well this network recapitulates the

changes observed in these experiments, we used the Inferelator software to reconstruct a gene regulatory network from our data.

As inputs, we used the Manual Gene Regulatory Network as prior information, together with the list of identified transcription factors

and regulators and the set of genetic perturbation transcriptomics experiments.We ran Inferelator with 20 bootstraps, and filtered the

results from the resulting network by the parameters beta.non.zero>10 and ombined_confidences>0.5 to ensure the filtered interac-

tions appeared in at least half of the bootstrap iterations. As a gold standard to validate the performance of the network, we used the
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same manual network from the prior information. The resulting network (‘‘Inferelator Network’’) contained 1,036 interactions, 668 of

which were common to the Manual Gene Regulatory Network.

The Manual Gene Regulatory Network and the Inferelator Network were merged (by pulling the interactions listed in each of them)

to obtain an expanded network with 1,430 interactions. To study howwell this expanded network explained the changes observed in

the perturbation experiments, we ran Inferelator again using the expanded network and the list of transcription factors and regulators

as prior knowledge together with the set of environmental perturbation experiments. From these environmental perturbation exper-

iments, those with no major changes in transcription (<10 genes significantly changing) were excluded. As a gold standard, we

included the same expanded network from the prior knowledge. We ran Inferelator with the same parameters as above, and filtered

the results using the same criteria. The resulting perturbations network contained 230 interactions. The variance recapitulated by the

Inferelator networks is calculated as the sum of the variance explained in each gene by each interaction (the sum of the column var.-

exp.median in the Inferelator output) divided by the total number of genes in M. pneumoniae (688). In Online Tables 10 and 11 we

show the Inferelator output for the genetic perturbations and the environmental perturbations, respectively.

Gene Correlation Network Reconstruction
To identify sets of genes that are co-regulated under a broad set of conditions, we performed correlation analyses of the fold changes

observed in the set of genetic or environmental perturbations. To do so, we used a set of 190 environmental and genetic perturba-

tions. This set comprises all OE/KO/mutant strains together with the perturbation experiments, after removal of those whose mean

change in gene expression is not zero (i.e., novobiocin, as it causes RNA degradation).

First, we performed k-means clustering of the fold-change matrix. We used the NbClust R function first to determine the optimal

number of clusters (resulting to be k=2) and applied k-means clustering to the dataset to map all the genes to 2 major clusters of co-

expression. To explore the sub-structure of our data, we constructed a network of highly co-regulated genes by establishing an edge

between any two genes showing a correlation higher than 0.5 across our experiment set. Using this approach, we obtained a network

comprising 576 nodes and 1,839 edges. To facilitate visualization and interpretation of this network, we clustered it to find groups of

highly interconnected nodes. To do so, we used the Girvan-Newman algorithm, as implemented in the ClusterMaker plugin for cyto-

scape (GLay clustering) (Newman and Girvan, 2004; Smoot et al., 2011; Su et al., 2010). This algorithm finds communities of nodes

that are highly interconnected, and removes the edges between different communities. This is done by computing the betweenness

centrality of all the edges in the network, and removing the edges with the largest values. We identified 28 clusters, ranging from 2 to

140 genes each. We performed Fisher’s exact tests to determine significant enrichments in any functional category for each cluster.

In Online Table 12 we show the overall expression correlation for all gene pairs from experiments done in this work.

RNA Degradation
RNA half-lives were determined from a time-course novobiocin treatment, as previously described (Junier et al., 2016).

Supercoiling Analysis
By inhibiting the gyrase complex, novobiocin is capable of inducing changes in DNA supercoiling. We used the transcriptional

changes that occurred under different concentrations of novobiocin to identify genes that behaved in the same manner, but differ-

ently from a standard RNA degradation-induced decay. After readmapping and gene expression calculation, we normalized the data

considering that the rRNA does not change its expression in these experiments due to its high stability. We scaled the expression

values of each gene by subtracting the mean value of the five experiments and dividing by their standard deviation. With the scaled

values, we computed the correlationmatrix for all the genes ofM. pneumoniae. We performed k-means clustering in our datawith five

centers to find the patterns corresponding to the different groups of genes (Figure S5C shows four of the groups, whilst the fifth one

shows no changes at all; Table S8 contains information regarding the group assignation).

Riboswitch Scan
To find potential riboswitches in the genome ofM. pneumoniae, we analyzed those 5’-UTRs in the genome whose length is between

60 and 500 bases.We analyzed 284 RNA-seq experiments of genetic and environmental perturbations, with two replicates each, and

did not discard any experiment for this analysis. For each experiment, we identified the annotated TSSs and defined three different

regions around each of them: i) the previous region covering 100 bps upstream of the TSS; ii) the riboswitch region spanning the

50-UTR; and iii) the gene region including 150 bps starting at the end of the riboswitch region. If the transcript terminates before

the end of the gene region, this was shortened to match the length of the transcript. We calculated the expression values for

each of these regions in the 284 experiments and in their corresponding control samples.

To annotate a putative riboswitch that regulates premature termination of transcription, we expected to find differential expression

when comparing the riboswitch and the gene regions. Therefore, we calculated the expression ratio between the riboswitch and the

gene for all the selected 50-UTRs in all conditions. We removed any data points in which the expression of the riboswitch or the gene

was smaller than 5 log2 CPKM, as in these points, small fluctuations due to experimental noise leads to large changes in the ratios.

As putative riboswitches, we selected cases in which the riboswitch-to-gene ratio was larger than two standard deviations of the

whole distribution, considering all the experiments and trimming 1% of the observations at both ends to remove outliers. We applied

two further filters to increase the specificity of our search. First, the TSSmust be active in the condition where the riboswitch is found.

Therefore, we compared the riboswitch region with the previous region, and only kept those cases in which the riboswitch expression
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was significantly larger than the one of the previous regions (using a t-test and filtering by fold-change and p-value). Second, the

riboswitch must behave differently between the condition in which it is identified and its corresponding control experiment.

We applied a t-test to compare the riboswitch-to-gene ratio of the sample and the control, and only kept those cases in which

the difference was significant.

After this filtering, we identified a set of 29 riboswitches regulated in specific conditions. We then plotted the RNA-seq profiles of

each of these putative riboswitches in all the conditions tested, to manually curate and validate our results, and to identify further

conditions that did not pass our initial filtering criteria (Online Table 13 and Online Figure 3).

Variance Explained Using Random Forests
To determine the percentage of the variance explained by transcription factors, regulators, and other regulatory mechanisms, we first

compiled all the regulatory information that was relevant for each gene inM. pneumoniae. All features compiled for each gene can be

found in Table S8. Genes were classified as heat- or cold-shock-activated if they were upregulated in the given condition, while

downregulated in the other. Genes changing in the same direction in both conditions remained unclassified. We fitted the Random

Forest to each experiment instead of to each gene becausewe did notmeasure the effectors of some of the studied alternativemech-

anisms (for instance the GTP concentration, or the small variations in temperature) and as a consequence, we were unable to include

these effectors as ‘‘regulatory mechanisms’’ in Inferelator or similar workflows. Even though we did not measure the values of these

effectors in each single experiment, we have evidence (shown above) of the genes affected by them. Thus, fitting the Random Forest

enabled us to estimate the relative contribution of each effector to transcriptional variation in our experiments.

For this purpose, we used the environmental perturbation experiments. Of the 37 perturbation experiments, we discarded those in

which the total RNA amount varied (such as novobiocin addition) and those used to define some of the regulatory features. For this

reason, we discarded cold-shock and heat-shock perturbations, as well as diamide, which was used to define the targets of the tran-

scription factor SpxA. We also discarded those perturbation experiments with no transcriptomics phenotype (<10 significant

changes). After removing these experiments, we were left with a list of 23 experiments that we used for the analysis of the variance.

For each of these experiments, we performed RandomForest regression to fit the observed fold changes to the features extracted for

each gene. This was done using the R package Random Forest (Liaw andWiener, 2002). Random Forests were chosen because they

are not prone to overfitting. The parameters of the RandomForests were the following: number of trees=500; and number of variables

randomly sampled at each split of a tree=14 (a third of the total number of variables in the model). From the Random Forest output,

we scaled the values of variable importance to the pseudo R-squared obtained in the fitting. This pseudo R-squared is calculated

as 1 minus the mean square error (MSE) of the out-of-bag (OOB) samples divided by the variance of the response variable Y

(1-MSE/Var(Y)). The scaled values of variable importance can thus be interpreted as the percentage of variance explained by

each feature. We also calculated the correlation between the actual fold changes and the ones predicted by the model (out-of-

bag prediction, using the samples that were discarded in the model training for each point).

After calculating the variance explained by each feature in each of the 23 experiments, we computed the variability explained in the

entire dataset. We summed the variance explained by each factor across the 23 experiments, and normalized it by the percentage of

variance (over the total dataset) represented by each of the experiments. In this way, we could calculate the total variance explained

by these features, and how much variability could be explained by any of them.

To validate the Random Forest, we defined all changes in the perturbation experiments whose absolute log2 fold change is above

0.6 as ‘‘true regulatory events’’, in an attempt to be stringent and consider only truly regulated changes (even if missing some, we

wanted to make sure that smaller changes due to noise were not included). For the ‘‘true regulatory events’’, the Random Forest

predicts the direction of the change correctly in 88%of the total cases; whilst for changes below 0.6 log2, the accuracy of the Random

Forest in predicting the direction of the change decreased to 68%, suggesting that the Random Forest is indeed capable of predict-

ing correctly the gene regulation.

For two of the features analyzed, Pribnow motif and chromosomal interacting domains, we performed a randomization of their

values across all the genes to determine whether the effect found in this analysis was significant or simply due to the large number

of categories within each of these features. In each randomization, we kept the operon organization, meaning that all the genes of the

same operon kept the same Pribnow motif or CID. For the Pribnow motif, we also maintained the same Pribnow motif in clusters of

duplicated genes. After resampling the Pribnow motif and CID values, we fitted a Random Forest regression to each of the 23 ex-

periments in the analysis, using the randomized Pribnow/CIDs. A total of 100 randomizations were performed for each case. We

then compared the results of the Random Forest using the randomized values to the results of the Random Forest using the original

values. In this way we were able to determine whether the variance explained by these features was or not an artifact resulting from

their large number of categories (Figure S7B).

Variance Explained by Noise
To determine the contribution of intrinsic/experimental noise to the variance, we took the RNA-seq control experiments used in this

study (i.e., gene expression of a WT strain with an empty transposon insertion). A total of 42 different experiments from 23 different

batches were used. In these experiments, RNA-seq counts per gene should be the same, and their differences should only be due to

a batch effect and the different sequencing depths, that can be addressed normalizing by a library size factor. Thus, for each gene, we

fitted a linear model including these two parameters, with the R lm function as lm (counts ~ batch + sizeFactor). The variance not

explained by the model (calculated as 1 – adjusted R-squared) can be attributed to noise, either biological or experimental.
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The variance explained by noise in the above setting represents the observable upper limit in experiments that do not show any

significant change in their expression profile. Since this measurement is relative, in experiments withminor or no changes, the relative

effect of noise will be higher than in experiments with a large number of significant changes. To explore the latter situation, we used

two perturbation experiments with a large number of changes and highly correlated biological replicates: i) the addition of glycerol

and ii) the addition of diamide (5 biological replicates each). In each experiment, and for each of the replicates, we performed the

Random Forest prediction as stated above, and calculated the variance explained in the same as well as in the remaining replicates

not used for the fitting. The decrease in the variance explained in the different replicates as compared to the same replicate can be

attributed to noise.

To test the robustness of the method to the noise this, we repeated the Random Forest analysis on the 23 environmental

perturbations, but discarding the gene changes with absolute log2 fold smaller than 0.4 (which could considered noise). The variance

explained when ignoring these small changes decreases only slightly (3%), suggesting that this method is quite robust to the levels of

noise observed in M. pneumoniae.

Statistics
Unless otherwise stated, the following statistics were used. To determine correlations, a Spearman rank order correlation coefficient

was used. Statistical significance was assessed using Benjamini-Hochberg corrected p-values lower than 0.05. Statistical details

specific for each of the different analyses can be found in the corresponding Methods section.

DATA AND CODE AVAILABILITY

Sequencing data have been deposited in the NCBI Short Read Archive (http://www.ebi.ac.uk/arrayexpress) as datasets E-MTAB-

3771, E-MTAB-3772, E-MTAB-3773, E-MTAB-4642, E-MTAB-4784 and E-MTAB-7153 (RNA-seq), E-MTAB-6124 (50-end RNAmap-

ping), and E-MTAB-5944 and E-MTAB-3783 (ChIP-seq and POD, respectively).

Proteomics data have been submitted to ProteomeXchange via the PRIDE database (http://www.ebi.ac.uk/pride) and assigned

the identifiers: XD007672,Mycoplasma pneumoniaeChromatin isolation; PXD007674, DNAAffinity chromatography onMycoplasma

pneumoniae extracts I (RNA elution); PXD007676, DNA Affinity chromatography on Mycoplasma pneumoniae extracts II (cellulose

column); PXD007677, DNA Affinity chromatography on Mycoplasma pneumoniae extracts III (DNA column). TF overexpression

and mutant data: PXD007551, PXD007537, PXD007545, PXD007557, PXD007558, PXD007560, PXD007561, PXD007565,

PXD007566, PXD007658, and PXD007658.

Additional online figures and tables can be accessed through Mendeley (https://data.mendeley.com/datasets/xf6y59gz6c/draft?

a=17c16d3d-9698-43c8-b791-a036b7c5f9c3).
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Figure S1. Supporting figure for Figure 1 

A. ROC curves of the experiments that were performed to identify DNA/RNA-binding 

proteins (see Methods). We show the curves for those experiments with an area under the 

curve (AUC) higher than 0.7. These experiments distinguish better the gold set of proteins 

that bind either DNA or RNA, from the rest. 

B. M. pneumoniae has six different groups of proteins that are fully duplicated or 

duplicated in part (DUF16, Lipoprotein3, Lipoprotein X, adhesins, hsdS and DUF237). 

The DUF16 group of duplicated proteins includes: MPN010, MPN013, MPN038, 

MPN094, MPN100, MPN104, MPN127, MPN130, MPN137, MPN138, MPN139, 

MPN145, MPN151, MPN204, MPN283, MPN287, MPN344, MPN368, MPN410, 

MPN484, MPN501, MPN504, MPN524, MPN655, and MPN675. Of these genes, the 

following were detected to bind to DNA: MPN013, MPN100, MPN127, MPN137, 

MPN138, MPN287, MPN344, MPN368, MPN484, MPN501, MPN655 and MPN675. 

These genes could be classified into four subgroups, all of which have the DUF16 domain 

(MPN010) in common and possibly other shared regions. MPN094, MPN100, MPN130, 

MPN138, MPN139, MPN204, MPN368, and MPN410 are full duplications containing 

the DUF16 domain (MPN010). From this subgroup we cloned MPN368 for further 

analysis. Another subgroup of duplicated proteins with DUF16 are MPN127, MPN151 

and MPN484. From this group we cloned MPN127 for further analysis. The third 

subgroup comprises MPN013, MPN287, MPN344 and MPN655. MPN287 is lacking an 

N-terminal proline-rich fragment but all three of them bind DNA. For this subgroup we 

cloned MPN287 for further analysis. The fourth group comprises MPN038, MPN137 and 

MPN675, and we cloned MPN038 for further analysis. 

 

Figure S2. Supporting figure for Figure 2 

A. ChIP-seq reproducibility. The ChIP-seq profile for SigA and SpxA with biological 

replicas. 



B. Correlation between gene expression and the extent of binding of the RNAP, as 

determined by ChIP-seq. Phantom peaks were discarded and peak height was normalized 

to the mean peak height of the experiment. 

C. Changes in the ChIP-seq profile of the RNAP subunit alpha (RpoA) at the exponential 

(6 h) and stationary (96 h) phase in a selected region of the chromosome. 

D. Novobiocin treatment leads to the release of RNAP binding as determined by ChIP-

seq analysis, and subsequent RNA degradation. 

E. ChIP-seq peaks of DnaA showing an enrichment of peaks in the first quarter of the 

chromosome 

 

Figure S3. Supporting figure for Figure 3 

To build dominant negative mutants we did multiple sequence alignment of the target M. 

pneumoniae proteins with orthologue proteins from other Mycoplasma species as well as 

other bacteria. The inverted triangles point to the mutated residues based on the structures 

determined for orthologous proteins, biochemical evidence or residue conservation. mge, 

Mycoplasma genitalium. mga, Mycoplasma gallisepticum. mpe, Mycoplasma penetrans. 

bsu, Bacillus subtilis. saa, Staphyloccocus aureus. mss, Mycoplasma suis. mpv, 

Mycoplasma parvum. lla, Lactococcus lactis. aad, Alicyclobacillus acidocaldarius. uue, 

Ureaplasma parvum. bca, Bacillus cereus.  

A. Multiple sequence alignment of the DNA-binding domain of MPN239 with 

orthologous genes from other Mycoplasma family members and the putative PLP-

dependent transcriptional regulator YdfD from B. subtilis.  

B. Multiple sequence alignment of MPN275 and ybaB-ebfC TF family members and 

dominant negative mutant. Conserved Glu,Asp was mutated to Lys, Ala according to 

(Jutras et al., 2012).  

C. Multiple sequence alignment of MPN294 and Ara TF family members. Positively 

charged residues (in red) are the mutations (to Glu) introduced to prevent DNA binding. 

D. Multiple sequence alignment of MPN295 and the LuxR family. The indicated positive 

residues were mutated to Ala to prevent dimerization. 

E. Multiple sequence alignment of MPN329 and Fur family members. The indicated 

residues were mutated to Glu. 

F. Multiple sequence alignment of MPN424 and YxlM members. Shown is a sequence 

alignment with the YlxM protein from S. aureus, whose 3D structure is available (1XSV). 

A structure for the E. coli TRFB transcriptional repressor protein has also been solved 



(with bound DNA: 2W7N). Residues in red are the mutations (to Glu) introduced to 

prevent dimerization.  

G. Multiple sequence alignment of MPN529 and HU family members. The indicated Arg 

residues were mutated to Glu and Ala, respectively. 

H. Multiple sequence alignment of MPN608 and PhoU-family members. The indicated 

negatively charged residues were mutated to Ala. 

 
Figure S4. Supporting figure for Figure 3 

A. Correlation between the fold change in RNA levels (by transcriptomics) and the fold 

change in protein expression (based on proteomics) of the candidate genes for which 

proteomics data is available.  

B. No relationship is observed between the level of RNA overexpression of a candidate 

gene of interest and the number of genes that change in the transcriptomic analysis.  

C. Correlation between the transcriptional changes found in the Ldh KO and the MPN294 

KO. 

D. Correlation between the transcriptional changes found when inactivating (KO) CorB, 

MPN162 or RecA. 

E. Expression of the hit1 gene and the serS gene encoding the Ap4A-producing serine-

tRNA synthetase exhibited a significant anticorrelation (r=-0.37, p=7.45e-8) across all 

experiments in this study. 

F. Negative correlation between the transcriptional changes found in the PrkC and PrpC 

inactivation (KO). 

G. Example of two consecutive operons predicted to be regulated by the CorB protein. 

The first operon (mpn647-mpn641, minus strand) is identified as target of the CorB 

protein by the two independent approaches (the manual gene regulatory network 

reconstruction and the Inferelator network). However, for the next operon (mpn640) the 

fold change between the control and the CorB KO decreases, and is only detected by 

Inferelator but not in our analysis, since the fold change falls below our threshold for 

detection. 

H. Venn Diagram showing the number of interactions in the expanded gene regulatory 

network, and the interactions found by Inferelator using the environmental perturbations 

set. 

 

Figure S5. Supporting figure for Figure 4 and 5.  



A. Negative correlation between cold-shock and heat-shock changes. Correlation was 

determined using RNA-seq datasets. 

B. Negative correlation between the ratio of the stationary and exponential growth phase 

fold changes and the changes occurring in cold-shock. Correlation was determined using 

RNA-seq datasets.  

C. Effect of changes in supercoiling on transcription, as induced by novobiocin inhibition 

of gyrase. All 689 genes in M. pneumoniae were clustered according to their profile upon 

addition of the novobiocin at different concentrations. Upper panel shows the general 

behaviour of the majority of the genes (degradation). The three different clusters (in 

different shades of gray) show different sensitivities to the drug, as genes take shorter or 

longer to decay. Lower panel shows a single cluster in which genes are upregulated upon 

changes in supercoiling.  

D. Anticorrelation between consecutive genes in opposite strands (MPN244 in plus strand 

and MPN245 in the minus strand). 

E. Upper panel: Alignment of M. pneumoniae ribosomal RNA and protein promoters and 

B. subtilis rRNA. The Pribnow box (green) and other functionally relevant elements are 

shown, including the TSS (blue) and the extended Pribnow box (TG, blue). Lower panel: 

Right. GLAM2 motif (Frith et al., 2008) of the ribosomal protein genes in M. pneumoniae 

and M. genitalium. Despite the variable spacer between the Pribnow and the TSS, the first 

two nucleotides of the RNA (GC) are highly conserved across the different ribosomal 

operons in these two species. 

F. Conservation of promoter sequences as seen by alignment with M. genitalium. The 

conservation score for each position represents the fraction of promoters of M. 

pneumoniae and M. genitalium that have that position conserved. In general, the 

conservation at the level of promoters is low except for the Pribnow box and surrounding 

bases. The red arrow marks the theoretical TSS position. Despite the spacer between the 

Pribnow and the TSS being variable across different genes, the theoretical +1 position 

shows higher conservation than the previous positions. 

G. Upper panel shows an example of the RNA-seq profiles of the 5’-UTR riboswitch of 

the oppB gene, which belongs to the peptide transporter operon. Upon exposure to 

glycerol, which induces peroxide production, there is read-through in the 5’-UTR of oppB 

in the corB MPN159 KO. Rather than the sequence of the 5’UTR, its secondary structure 

is conserved with M. genitalium (low panel). Additional examples can be found in Online 

Figure 3 and Online Table 13. 



H. Higher correlation values between genes sharing the same Pribnow box in their 

promoter. The histogram shows an example of a Pribnow box motif (TAAAAT). Genes 

with this Pribnow motif are more correlated to each other (green bars) than to the genes 

with different Pribnow boxes (red bars).  

 

Figure S6. Supporting figure for Figure 4 and 5 

Examples of differential transcriptional read-through in different conditions. 

 

Figure S7. Supporting figure for Figure 6  

A. Quantitation of biological noise in our perturbations. Two perturbations were tested in 

five independent experiments (diamide and glycerol). The Random Forest was calculated 

in each of the independent experiments and tested both in the same (“self”) and in the 

other experiments (“others”). The boxplots depict the variance explained in each case, 

showing a small but significant decrease when the prediction is made on the other 

independent experiments.  

B. Pribnow and CID randomization. Variance explained by the Pribnow motif or CID in 

all perturbations compared to the variance explained randomizing the Pribnow or CID 

100 times (see Methods). Operon structure was maintained in the randomizations in order 

to determine the effect that is not due to operons.  

C. Gene regulation by different mechanisms. All 689 genes of M. pneumoniae have been 

classified into 36 functional categories (Table S1), and each gene has been assigned its 

corresponding regulatory mechanisms (transcription factors, regulators, supercoiling, 

etc.). Different cellular processes can preferentially use one regulatory mechanism over 

another to control the expression of the implicated genes. 

 

Figure S8. Supporting figure for Figures 3D and 5 

Relative importances of the different factors for each group of clustered experiments 

(following clusters of correlated experiments obtained in Figure 3D). We fitted a Random 

Forest model to each experiment in the correlated clusters and observed that the relative 

importances of each of the features studied were more similar in experiments within the 

same cluster than across clusters. Then, we calculated the average relative importance of 

each feature for each cluster. The size and opacity of the dots reflect the variance 

explained by each feature in each group of experiments.  

 



 

Table S1. Putative DNA- and RNA-binding proteins (supporting Table for Figure 

1) 

Gold sets of DNA- and RNA-binding proteins were constructed using information 

from the literature. For the gold set, we did not consider components of large machines 

that need to be assembled in order to bind to DNA (i.e., the DNA replication complex), 

components of DNA-binding complexes that do not contact DNA, and metabolic 

enzymes involved in nucleotide metabolism. We did include all proteins that bind to 

DNA and/or RNA in a direct manner (information from Uniprot or from PDB structures). 

The negative gold set is composed of membrane proteins and lipoproteins exposed to the 

medium. ID: identifier. 1: Protein present in the gold set. 0: Protein not present in the 

gold set. We also indicate those proteins not detected by mass spectrometry. TRUE in 

columns I to L means that the protein passed the ROC curve cut-off as a DNA/RNA-

binding protein. DNA binding probability: the score is calculated by dividing the number 

of times a protein is found in the experiments (TRUE) by 4. Criterion 1, not to be further 

characterized (applied to all proteins with a score equal to or greater than 0.5): RNA-

binding proteins, membrane-associated ATPases, proteins involved in DNA replication 

and maintenance, RNases requiring other components, and chaperones that are usually 

found as contaminants. In the case of duplicated proteins, we only cloned some members 

of the group. Criterion 2, cloned (despite having a score below 0.5, or being a TRUE 

RNA-binding protein): we selected some key metabolic enzymes of the main processes 

(nucleotides, glycolysis, lipids and fermentation) to study the link between metabolism 

and transcription. We also included some proteins as controls, true RNA-binding 

proteins described in the literature that possibly regulate transcription, as well as RNases 

that can specifically degrade RNA transcripts. 

 

Table S2. Experiments for each gene and mutant (supporting Table for Figures 1, 

2, 3) 

Genes and constructs used in this study. ID is the MPN identifier and Name the biological 

name of the gene. Construct indicates which vector was used. pMT85 is the standard 

transposon vector used. Normally we use the Ef-tu promoter (tuf) to drive gene 

expression. The relative position of the FLAG-tag is indicated in the construct name (i.e., 

FLAG-XXX means that the flag is located at the N-terminus, XXX-FLAG means that the 

flag is located at the C-terminus). Tn indicates a knockout strain wehre the transposon 



position has been identified and Tc is resistance to tetracycline. Type of mutant: OE 

overexpression, KO knockout mutant, Mut means point or deletion mutant (the number 

indicates the position of the mutated amino acid and the letters are the wildtype and 

mutated amino acid in one letter codes; if the position is not indicated, it is because there 

were multiple mutations), Fus means fusion and DN: dominant negative mutant (see 

Figure S3, for the description of the mutations). For microarrays, RNA-seq, Proteomics, 

and ChIP-seq conditions we show the different experiments performed: Growth in 

standard medium collected at different times (6 h, 24 h, 48 h, 72 h, 96 h). Addition of 

compounds to the standard medium (Gly: Glycerol; TL: thiolutin; DA: diamide; Px: H202; 

Nvb: novobiocin, Shx: serine hydroxamate). The number in parenthesis shows biological 

replicas (all experiments have at least one technical replica). Growth Curve indicates that 

the growth curve of the mutant was determined. Log2 fold RNA is the fold change in 

RNA expression with respect to the WT strain upon OE. Estimated log2 fold protein: fold 

increase calculated from the mRNA fold change (ND, not determined) with a linear 

interpolation of the existing data. Essentiality (Lluch-Senar et al., 2015): E, essential; NE, 

non-essential; NE*, non-essential because they are duplicated; F, fitness (Lluch-Senar et 

al., 2015). NOTE: TF149 had a mutation in the FLAG-tag. See Online Table 1 for the used 

constructs. 

 

Table S3. ChIP-seq specific peaks (supporting Table for Figures 2 and 3) 

Consensus ChIP-seq peaks of the RNAP subunits and associated proteins, as well as of 

proteins with specific peaks (either structural or mapping to promoters). In total, the 

profiles of the POD (combined results of 6 and 24hours) and 23 DNA-binding proteins 

are shown. In the case of multiple biological replicates, peaks appearing in at least two of 

them are marked with an asterisk (*), and the largest peak height is shown. Different 

peaks located less than 100 bases apart were considered to bind the same region.  

 

Table S4. TSS annotation by 5'-mapping (supporting Table for Figure 2) 

Annotation of TSSs from 5'-mapping data (TSS column numbers indicate the genome 

position). Alternative TSSs are included (TSS2, etc.), as well as the relative position of 

the TSS to the expected canonical +1 base (Start), the ID of the first base, and the 

sequence (including the natural="theoretical" +1 base in red, the identified +1 base in 

bold (=TSS1), and the Pribnow box underlined). The “RNAP/SigA ChIP-seq peak" 



column indicates the binding by Chip-seq of at least one core component of the RNAP 

subunits. 

 

Table S5. Summary of gene changes per regulator or TF (supporting Table for 

Figures 3 and 4) 

Gene changes produced by the OE/KOs/Mut/DN of the TFs and regulators described in 

this study, as well as their adjusted p-values are shown (only significant changes, see 

Methods). In those cases, where the OE and KO or any combination with DN and Mut, 

resulted in similar or mirror results, we determined the consensus (using the reverse 

values of the KO, DN and Mut when they mirrored the OE). For some genes, we could 

only see a phenotype upon addition of drugs (Shx is serine hydroxamate; DA is diamide) 

or after perturbations (glucose starvation). Online Table 6 shows all unfiltered changes 

and p-values for all the candidates tested in this study. 

 

Table S6. Major perturbations and their effect on the transcriptome (supporting 

Table for Figures 3 and 4) 

Thirty-seven major perturbations were defined by their effect (i.e., antibiotics were 

grouped by their type, such as macrolides or tetracyclines), given that they correlate well. 

For each of these major perturbations, we determined a consensus of the changes (see 

Methods). Significant changes are those marked with an asterisk (*). 

 

Table S7. Phenotypic analysis (supporting Table for Figure 3) 

Qualitative phenotype of all generated strains as determined by growth curves 

(quantitative data can be found in Online Table 7). Two indicators were extracted from 

the pH-growth curves: growth (based on the protein biomass and the early slope of the 

growth curve) and metabolism (based the color of the medium at the highest point of the 

curve and the late slope). We also indicate the number of changes in each of the strains 

in transcriptomics experiments. 

 

Table S8. Transcriptional regulation mechanisms (supporting Table for Figure 5 

and Table 1) 

Features regarding the promoter sequence (Start position, Pribnow motif, extended 

Pribnow, and AT% before the Pribnow box), the UTR (length, AT%), the transcript (TSS 

position relative to the Pribnow, -1/+1 nucleotides, +1/+2 nucleotides, and RNA decay 



rate), the gene location in the chromosome (CID) and others (riboswitches, hairpins, 

transcriptional read-through, and behavior in supercoiling) are summarized in this table, 

together with the targets of the TFs and regulators. These features were considered in the 

Random Forest fit of each perturbation experiment to determine how much variance can 

be explained by each factor. The rows without content are genes that we excluded from 

the analysis because they had borderline expression or were too noisy. 
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Table S7. Phenotypic analysis (supporting Table for Figure 3)

Strain (Gene 
overexpressed, mutated 

or KO)
Growth phenotype

Acidification 
phenotype

Changes in 
transcriptomics of this 
strain (<10 considered 

not significant)

MPN002 Slow growth - 0
MPN004 Slow growth - 0
MPN015 Fast growth - 7
MPN020 - Slow acidification 21
MPN024 - - 0

MPN024_Mut - - 0
MPN027 - - 54

MPN027_KO - - 4
MPN030 - - 0
MPN032 - - 0
MPN038 - - 0
MPN051 - Slow acidification 0

MPN051_KO Slow growth Slow acidification 4
MPN053 - - 3

MPN053_Mut - - 7
MPN055 - - 0
MPN063 - - 17
MPN064 Fast growth - 0
MPN067 - - 0
MPN069 - - 0

MPN076_KO - Slow acidification 0
MPN077_KO - - 0

MPN081 - - 0
MPN082 Fast growth Slow acidification 0
MPN106 Slow growth - 0
MPN114 - Slow acidification 0

MPN114_KO - Fast acidification 3
MPN119 - - 0
MPN122 - Slow acidification 0

MPN124_MUT - Fast acidification 24
MPN127 - - 0

MPN133_KO - - 8
MPN140 - - 5
MPN148 Fast growth Fast acidification 0
MPN154 - - 0
MPN159 - - 0

MPN159_KO - - 48
MPN162_KO - Fast acidification 34

MPN164 - Fast acidification 0
MPN165 - - 0
MPN166 - - 0
MPN168 - - 0
MPN173 - - 0
MPN178 - - 0
MPN191 Fast growth Fast acidification 51
MPN192 - - 0
MPN194 - - 0
MPN197 - - 0
MPN208 - - 0
MPN222 - - 0
MPN223 Fast growth - 0

MPN223_KO Slow growth - 0
MPN229 - - 0
MPN239 Slow growth Fast acidification 43



MPN241 Slow growth Slow acidification 40
MPN243 - - 0
MPN244 - - 3
MPN246 - - 0
MPN247 - - 0

MPN247_KO - - 47
MPN248_KO - - 120

MPN250 - - 0
MPN252 Fast growth - 0
MPN255 Slow growth Slow acidification 0
MPN263 - - 4
MPN265 - - 0
MPN266 - - 0

MPN266_Mut1 Slow growth Slow acidification 0
MPN266_Mut2 - - 0
MPN266_Mut3 - - 0

MPN269 - - 1
MPN273 - - 0
MPN275 - - 0

MPN275_DN - - 0
MPN275_KO - - 6

MPN280 - - 0
MPN284_KO - - 0

MPN287 - - 0
MPN294 - - 0

MPN294_DN - - 19
MPN294_KO - - 47

MPN295 - - 2
MPN300 Slow growth Slow acidification 2
MPN301 - - 0
MPN303 Fast growth Slow acidification 0
MPN314 - - 5

MPN314_Mut - - 4
MPN315 - - 0
MPN316 - - 0
MPN329 - - 4
MPN330 - - 0
MPN332 - - 4
MPN348 - - 0
MPN349 - - 4
MPN352 - - 0
MPN368 - - 0

MPN372_KO - - 1
MPN397 Fast growth Fast acidification 2

MPN397_KO - - 27
MPN397_Mut1 - Slow acidification 0
MPN397_Mut2 - - 0
MPN397_Mut3 - - 75

MPN400 - - 0
MPN401 - - 0
MPN420 Fast growth - 17

MPN420_KO Fast growth Slow acidification 151
MPN421_KO Slow growth Slow acidification 3

MPN424 - - 0
MPN424_DNKO - - 5

MPN426 - Slow acidification 0
MPN428 Fast growth Fast acidification 6
MPN430 - - 0
MPN440 - - 0
MPN443 - - 0
MPN446 - - 0



MPN473 Slow growth Slow acidification 9
MPN475 - Slow acidification 0
MPN478 - - 0
MPN481 - - 0
MPN482 - - 0
MPN484 - - 0
MPN485 - - 0
MPN487 - - 0
MPN490 - Fast acidification 57

MPN490_KO Fast growth Fast acidification 26
MPN499 - - 0

MPN506_KO - - 29
MPN507 - Slow acidification 0
MPN516 - - 11
MPN518 - - 0
MPN525 - - 0
MPN526 - - 1
MPN529 - - 0
MPN545 - - 43

MPN545_KO - Fast acidification 587
MPN547 - - 0
MPN549 - - 0
MPN554 - - 0
MPN555 - - 0
MPN559 - - 0
MPN563 - - 0

MPN566_KO Fast growth - 2
MPN568 - - 0
MPN569 - - 0
MPN572 - - 6
MPN574 - - 0
MPN576 - - 3
MPN590 - - 0
MPN606 - - 0
MPN608 Slow growth Slow acidification 0
MPN615 - Slow acidification 0
MPN617 - - 0
MPN621 - - 0
MPN626 - - 25
MPN627 - Fast acidification 0
MPN633 - - 0

MPN633.634 - - 42
MPN634 - - 22
MPN635 - - 0
MPN638 - - 3
MPN651 - Fast acidification 7
MPN663 - - 0
MPN667 - Slow acidification 4
MPN673 - - 0
MPN674 - - 3

MPN674_KO - Slow acidification 51
MPN677 - - 0
MPN683 - - 0
MPN686 - Slow acidification 17

YFP Venus (negative control)  -  - 0
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