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Section S1: Portable 2D GC Description and Operation 

S1.1. Materials  

 DB-1ms Agilent J&W, nonpolar column (length 10 m, i.d. 250 μm, film thickness 0.25 μm) 

was purchased form Agilent Technologies (P/N: 122-0162, Agilent Technologies). 

SUPELCOWAX® 10 polar column (length 3 m, i.d. 250 μm, film thickness 0.25 μm) was 

purchased from Sigma Aldrich (P/N: 24077, Sigma-Aldrich). Copper tube (length 10 cm, i.d. 1 

mm, o.d. 1.5 mm) was purchased from Swagelok and glass wool was purchased from Sigma 

Aldrich. Teflon tape was purchased from Grainger (Ann Arbor, MI). Shrink tube was purchased 

form Digi-Key Electronics. Other materials are the same as those described in Ref. [1]. 

 

S1.2. Design, fabrication, and characterization of components 

Various microfabricated components were used in the present portable 1 x 2 channel 2D GC 

device, including thermal desorption tube, micro-fabricated thermal injector (μTI), micro-Deans 

switch (μDS), and micro-photoionization detector (μPID). All of these components were 

fabricated and characterized in-house. The details of μTI, μDS, and μPID can be found in Ref. [1]. 

The detail of the thermal desorption tube is given as follows. 

The thermal desorption tube was made of a 5 cm long copper tube having an inner diameter of 

1 mm. Both CarbopackTM X and B granules, 10 mg each, were loaded into the hollow cylindrical 

copper tube using a diaphragm pump. Glass wool was used to separate the CarbopackTM X and B, 

as well as to seal the copper tube from both ends. Swagelok fittings were used to connect a stainless 

steel tube of i.d. 250 µm at both the ends of the copper tube. For temperature ramping, the nickel 

wire was wrapped around the entire length of the copper tube. The nickel wire was insulated from 

the copper tube using a Kapton tape. A type K thermocouple was attached to the copper tube using 

a Kapton tape to monitor the temperature in real time. Finally, the thermal desorption tube was 

preconditioned at 300 °C for 12 h under helium flow. 

 

S1.3. Device assembly 

The portable 1 x 2 channel 2D GC device is similar to the 1 x 4 channel 2D GC device 

described in Ref. [1]. As illustrated in Fig. 3 in the main text, the 2D GC consisted of a sampling 

module, a 1st-dimensional separation module, and a 2nd-dimensional separation module. The 

sampling module consisted of a sampling tube, a thermal desorption tube loaded with CarbopackTM 
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X and B, valves, and a pump. The 1st-dimensional module consisted of a μTI loaded with 

CarbopackTM X and B, a 10 m long Agilent J&W DB-1ms, and a μPID. The 2nd-dimensional 

module had two identical channels. Each channel consisted of a μTI, a 3 m long SUPELCOWAX® 

10 column, and a μPID. The eluent from the 1D column was transferred to one of the 2D columns 

via a μDS. All the modules and components were connected via tubings, universal connectors, and 

Y-connectors. The entire device was housed in a customized plastic case (see Fig. 2 in the main 

text) and had a total weight less than 5 kg, including the weight of the He gas cartridge (231 g). 

LabVIEWTM based codes were developed in-house for user interface, and device control and 

automation.  

The portable GC can be operated in 1D GC alone (in which case the 2nd-dimensional module 

was disabled or detached) or comprehensive 2D GC. Operation as 1D GC is straightforward. 

Operation as comprehensive 2D GC is described in Section S1.4 below.  

During the measurement, the device was secured on a rolling cart (see Fig. 2) and placed 

outside the ventilated patient’s room. A 2 m long polytetrafluoroethylene (PTFE) tubing (0.64 cm 

i.d.) was used to connect the output of the ventilator to the GC device, through the 7.6 mm port of 

22M-22F straight connector (shown in Fig. 2). The straight connector was discarded after a single 

use and the PTFE tube was cleaned (first rinsed with 70% 2-propanol, then flushed with deionized 

water and finally dried with pressured air, to eliminate pathogenic microorganism and remove 

residual VOCs) after each sampling to avoid patient-to-patient transmission as well as cross 

contamination between patient breath samples.  

 

S1.4. Operation of the portable 1x2-channel 2D GC 

The operation procedures and parameters of the portable GC in the comprehensive 2D GC 

mode are described as follows. 

(1)  Sampling: The exhaled breath of the patient was drawn by the diaphragm pump through the 2-

port valve and adsorbed by the thermal desorption tube at a flow rate of 70 mL/min for 5 min.  

(2) Desorption and injection: The 2-port valve was closed and the helium gas was flowed through 

the 3-port valve at a flow rate of 2 mL/min. Meanwhile, the thermal desorption tube was heated 

to 300 °C for 5 min to transfer the analytes onto the μTI 1. After 5 min, μTI 1 was heated to 

270 °C in 0.6 s and then kept at 250 °C for 30 s for complete thermal desorption and injection 

of the analytes into the 1D column. 
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(3) Separation: The analytes underwent separation through the 10 m long 1D column and then 

detected by μPID 1. During the separation, the column was kept at 25 °C for 2 min, then first 

ramped at a rate of 10 °C min−1 to 80 °C, next ramped at a rate of 20 °C min−1 to 120 °C, and 

kept at 120 °C for 4 min. The flow rate was 2 mL/min for the 1D column.  

 We used a modulation period of 10 s to inject the eluent from the 1D column into the 2D 

columns. The first 10 s long slice of the eluent from the 1D column was routed to and trapped 

by μTI 2A, which were kept at room temperature (25 °C). The μTI 2A was then heated to 

270 °C in 0.6 s and then kept at 250 °C for 5 s to inject the trapped analytes to Column 2A. In 

the meantime, the second 10 s long slice of the eluent from the 1D column was routed to and 

trapped by μTI 2B, which was subsequently injected into Column 2B. The same operation was 

repeated between Columns 2A and 2B alternatively throughout the analysis. The analyte 

underwent 2D separation through one of 2D columns (kept isothermally at 75 °C during entire 

operation) and then detected by μPID 2. During the entire operation, the helium flow was 3 

mL/min for each of 2D columns.  

(4) Cleaning: After analysis, the outlet of the µTI 1 was disconnected from the inlet of the 1D 

column so that it was open to the ambient air. Then the thermal desorption tube was heated to 

300 ºC for 5 min followed by heating µTI 1 to 270 °C in 0.6 s and then kept at 250 °C for 30 s 

at a helium flow rate of 25 mL/min. This process was repeated twice in order to completely 

remove the residual analytes (if any) trapped in the thermal desorption tube and µTI 1. Note 

that cleaning of µTI 2A and 2B was not needed.   

 

The total assay time was 33 minutes, which included 5 minutes of sample collection, 5 minutes 

of desorption/transfer, 13 minutes of separation, and 10 minutes of cleaning. 

It should be noted that multiple PIDs were used to measure the analytes eluted from 1D 

column and 2D columns. The responsivity of those PIDs may be different due to variations in 

aging and amplification, etc. During the experiment, PID 2A and 2B were calibrated against 

PID 1 using toluene (50 ppb), as discussed in detail in Ref. [1]. This calibration was carried out 

approximately every 300 hours of operation. 

Operation of the portable GC as 1D GC is similar to the steps in (1)-(4) above, except that the 

inlet of the DS is detached from the outlet of the PID 1 or the 2nd-dimensional module is 

powered off.  
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Section S2: Two-dimensional gas chromatogram construction 

Once the analysis is completed, two-dimensional gas chromatogram was generated from all 

three channels’ (1D, 2A, 2B) PID signals. There were a total of 97 peaks found in about 800 

seconds of 2D separation (~800 seconds of 1st-dimensional separation and 20 seconds of 2nd-

dimensional separation). Each of the peak may represent only one analyte (no co-elution) or 

multiple analytes (co-elution). Note that the 2D chromatogram of a particular patient may contain 

only a subset of the 97 peaks. Also note that the volume (analyte mass) of each peak is normalized 

to the total peak volume of the entire 2D chromatogram, which is one of the most commonly used 

normalization techniques [2-7].  

First, the signal from each channel was preprocessed for baseline correction and peak 

detection. Second, all the 2D peaks was traced back to their correspondence 1D peak based on the 

1D period they were sampled from, so that both 1D and 2D retention time and peak shapes could 

be found. Third, the 1D chromatogram was aligned to the reference chromatogram to fix the 1D 

retention time drift. Finally, the two-dimensional gas chromatogram for each peak was generated 

by multiplying its 1D peak shape to its 2D peak shape. Adding all individual peak’s two-

dimensional gas chromatogram yielded the completed two-dimensional gas chromatogram. All 

algorithms were implemented in the MatlabTM programming environment with a user-friendly 

graphical interface.   

(1) Baseline correction: The baseline of gas chromatograms drift slowly due to column bleeding 

at high temperature, flow fluctuation and detector performance. This baseline drift can 

negatively affect the analytical results quantitatively hence should be corrected before 

performing further data analysis [8]. Here we use adaptive iterative reweighted Penalized Least 

Squares (airPLS) algorithms, developed by Zhang et al. [9], which iteratively changing weights 

of sum squares errors (SSE) between the original signals and fitted baseline until the 

termination criteria is met. This method requires no user intervention and has been applied to 

chromatograms, NMR and Raman spectra. 

(2) Peak detection: After the baseline correction, peak detection is applied to both 1D and 2D 

chromatograms. The peak apexes are found via the method developed by Morris et al. [10]. In 

this method, the signal is first denoised via wavelet regression using the undecimated discrete 

wavelet transform (UDWT), then searched for all local maxima and the associated peak 

endpoints. At last, the peaks that do not meet the peak height and FWHM criteria are eliminated  
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[10-14]. Once the peak apexes are found (including single and co-eluted peaks), the peak 

shapes are fitted by the exponentially modified Gaussian (EMG) model. This peak fitting 

method has been described previously1. 

(3) Peak assignment: Within each modulation, the 1D peak will be injected into either a 2A or 2B 

subsystem. Each 2D peak is assigned to one or multiple 1D peak IDs, depending on the total 

peaks within each modulation. For each individual peak, multiplying its 1D peak shape by its 

normalized 2D peak shape yields a two-dimensional chromatogram for this individual peak.  

(4) Peak alignment: Gas chromatograms may contain distortions of the retention time due to 

column aging, changes in temperature, or other unknown deviations in instrumental conditions. 

Fluctuations in retention times across various measurements obscure statistical analysis and 

thus discovery of relevant patterns in the data [15]. Since retention time shifts are observed in 

our 1D chromatogram, we applied the correlation optimized wrapping (COW) algorithm [16] 

for peak alignment. This method is a piecewise or segmented data preprocessing method 

(operating on one sample record at a time) aimed at aligning a sample data vector towards a 

reference vector by allowing limited changes in segment lengths on the sample vector. The 

outcome of this method contains the correlation between the reference chromatogram retention 

time and the new chromatogram retention time. With this correlation, a shift time could be 

found for each peak based on its original retention time and the single peak two-dimensional 

gas chromatogram could shift on the 1D based on this shift time.  

(5) Summation of individual two-dimensional chromatograms: Adding all individual peaks’ two-

dimensional chromatograms together after applying the shift time yields the complete two-

dimensional chromatogram.   
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Section S3: Algorithm description 

To distinguish ARDS and non-ARDS patients based on their breath chromatograms, linear 

discriminant analysis (LDA) was applied to find a linear function that could be used to separate 

these two groups. However, LDA can only be applied if the number of samples (patient 

chromatograms) is much larger than the number of features [2] (i.e., the number of VOCs, which 

was 97 in our study). To overcome this limitation and to decrease the computational complexity 

of the pattern classifier, principal component analysis (PCA) was applied prior to LDA to reduce 

the dimensionality of the feature space.  

Since PCA is an unsupervised dimension reduction method, it only performs a linear mapping 

of the data to a lower-dimensional space in such a way that the variance of the data point is 

maximized. If we directly apply PCA to the overall VOC dataset, the VOCs relevant to ARDS 

may get overlooked and the interference VOCs that have bigger variance among patients will be 

kept. Therefore, to produce the best classification result with PCA-LDA, it is critical to find the 

features (VOCs) that are relevant to ARDS and discard all other interference features. The physical 

interpretation is that not all of those peaks in the 2D chromatogram may be relevant to ARDS. For 

example, some of the peaks may be from indoor air background, normal metabolic activities, or 

other conditions that a patient has. Those irrelevant peaks interfere in the correct classification of 

ARDS and non-ARDS groups. It is therefore critical to determine which subset of the peaks is 

most responsible for the differences observed between ARDS and non-ARDS groups.  

 

S3.1. Generation of possible peak subsets 

We first assume that there are a total of m different peaks found in all patients’ 2D 

chromatograms with different quantities. For a particular patient not all m peaks are present. The 

quantities of those missing peaks are assigned to be 0. All m peaks and their quantities form the 

entire dataset can be expressed as: 

(

𝑥11 ⋯   𝑥1𝑚
⋮ ⋱ ⋮

 𝑥𝑝1 ⋯  𝑥𝑝𝑚
),    (1)  

where xij is the quantity of the jth peak of the ith patient. In total, there are m peaks and p patients. 

We further assume that there are N peaks relevant to ARDS and non-ARDS classification. 

Consequently, there are 𝐶𝑚
𝑁 possible peak combinations (subsets) that can be selected from the 

dataset in Eq. (1). One such subset can be written as: 
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(

𝑥1𝑘1 ⋯ 𝑥1𝑘𝑁 
⋮ ⋱ ⋮

𝑥𝑝𝑘1 ⋯ 𝑥𝑝𝑘𝑁 
),      (2) 

where (𝑘1, 𝑘2, … , 𝑘𝑁) is the subset formed by N peaks. 

 

S3.2. Criteria of peak subset selection 

PCA was first used for data reduction of the N peaks VOC subsets and then LDA was applied 

to the primary two principal component scores for classification. The total accuracy (true positive 

plus true negative rate) of classification was used as the criteria for peak subset relevancy to ARDS. 

For each possible peak subset, PCA was first applied to the p-by-N dataset to produce p-by-N 

principal component scores. Then, the primary two principal component scores (p-by-2) and the 

classifier (1 as ARDS and 0 as non-ARDS) for each patient were used to train an LDA model and 

yield a linear boundary between the ARDS and non-ARDS groups. The total accuracy (number of 

patients falling in the correct side of the boundary divided by the total patients) was calculated and 

used as criteria of the relevancy of this VOC subset. Equations (3) and (4) illustrate the methods 

and processes described above. 

(

𝑥1𝑘1 ⋯ 𝑥1𝑘𝑁 
⋮ ⋱ ⋮

𝑥𝑝𝑘1 ⋯ 𝑥𝑝𝑘𝑁 
)
   𝑃𝐶𝐴   
⇒    (

𝑠11 ⋯ 𝑠1𝑁
⋮ ⋱ ⋮

𝑠𝑝1 ⋯ 𝑠𝑝𝑁
),      (3) 

where 𝑠𝑖𝑗 is the 𝑗𝑡ℎ principal component score of the 𝑖𝑡ℎ patient.  

(

𝑠11 𝑠12
⋮ ⋮

𝑠𝑝1 𝑠𝑝2
)𝑤𝑖𝑡ℎ (

𝑐1
⋮

𝑐𝑝
)
   𝐿𝐷𝐴   
⇒    𝑙𝑖𝑛𝑒𝑎𝑟 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦

𝑦𝑖𝑒𝑙𝑑𝑠
→    𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦,   (4) 

where 𝑐𝑖 is the classifier (1 for ARDS and 0 for non-ARDS) of the 𝑖𝑡ℎ patient. Finally, the peak 

combinations (i.e., subsets) with highest accuracy were selected. For each of these selected peak 

combinations (subsets), the patients’ coordinates on the PCA plot were decided by their principal 

component scores. The mean distance of the 20% patients closest to the boundary line, normalized 

by the mean distance, was calculated. The peak subset with highest boundary distance was chosen 

as the optimal peak subset. 

 

S3.3. Iterative peak subset selection 

Since human breath is a complex mixture, the total peak number m is large and the total number 

of possible combinations of peaks (i.e., peak subsets), ∑ 𝐶𝑚
𝑁𝑚

𝑁=1  , is enormous. As a result, it 
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requires a great amount of computation time to evaluate all the peak subsets. To expedite the 

selection process, in this work we started with peak subsets formed by a small number of peaks 

(e.g., n peaks, which resulted in 𝐶𝑚
𝑛  subsets to be evaluated). Once the most relevant peak subset 

was determined, more peaks were added to this selected subset, aiming to achieve higher accuracy. 

Assuming that there are n’ more peaks that are relevant to ARDS (n’ is another small number 

of VOCs in order to save the computation time), 𝐶𝑚−𝑛
𝑛′  possible peak combinations (subsets) can 

be found and added to the previously optimized VOC subset to form a new peak subset, i.e., 

(

𝑥1𝑘1 … 𝑥1𝑘𝑛 𝑥1𝑙1 ⋯ 𝑥1𝑙𝑛′
⋮ ⋱ ⋮ ⋮ ⋱ ⋮

𝑥𝑝𝑘1 … 𝑥𝑝𝑘𝑛 𝑥𝑝𝑙1 ⋯ 𝑥𝑝𝑙𝑛′

),   (5) 

where (𝑙1, 𝑙2, … , 𝑙𝑛′) is the peak subset with 𝑛′ peaks. 

With the new peak subset, PCA and LDA were applied to calculate the accuracy and the 

boundary distance. If the classification accuracy increased or the boundary distance increased, 

those n’ peaks were kept and more peaks out of m-n-n’ peaks would be added iteratively in the 

same manner described above. If accuracy no longer increased or the boundary distance no longer 

increased, then the iteration process was ended, and the final optimal peak subset was determined. 

The overall iteration processes are illustrated in Fig. S2.  

 

S3.4. Training and testing with ARDS and non-ARDS patients 

The entire patient data set was divided into two sets: training set (p patients) and testing set (q 

patients). The training set was used to select the optimal peak subset for best classification and 

determine the linear boundary, whereas the testing set was used to validate the determined optimal 

peak subset and the boundary on the PCA plot. 

Assuming the final optimal peak subset containing N peaks. With the N peaks subset, the PCA 

analysis yields an N-by-N PCA coefficient and a linear boundary line between ARDS and non-

ARDS groups. 

(

𝑥𝑡1𝑘1 ⋯ 𝑥𝑡1𝑘𝑁
⋮ ⋱ ⋮

𝑥𝑡𝑝𝑘1 ⋯ 𝑥𝑡𝑝𝑘𝑁

)
   𝑃𝐶𝐴 
⇒   (

𝐶𝑜𝑒𝑓𝑓11 ⋯ 𝐶𝑜𝑒𝑓𝑓1𝑁
⋮ ⋱ ⋮

𝐶𝑜𝑒𝑓𝑓𝑁1 ⋯ 𝐶𝑜𝑒𝑓𝑓𝑁𝑁

)  and  (

𝑠𝑡11 ⋯ 𝑠𝑡1𝑁
⋮ ⋱ ⋮

𝑠𝑡𝑝1 ⋯ 𝑠𝑡𝑝𝑁
)    (6) 

where (𝑡1,   𝑡2, … 𝑡𝑝) is the training set patients; in total there are p patients in the training set. 
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(

𝑠𝑡11 𝑠𝑡12
⋮ ⋮

𝑠𝑡𝑝1 𝑠𝑡𝑝2
)𝑤𝑖𝑡ℎ (

𝑐𝑡1 
⋮

𝑐𝑡𝑝 
) 
   𝐿𝐷𝐴   
⇒    𝑙𝑖𝑛𝑒𝑎𝑟 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦    (7) 

With the N-by-N PCA coefficient acquired from the training set, the PC scores of the testing set 

can be calculated by multiplying the PCA coefficient to the N peak subset of all testing patients. 

With the linear boundary line acquired from the training set, the final classification accuracy can 

be calculated. 

(

𝑥𝑣1𝑘1 ⋯ 𝑥𝑣1𝑘𝑁
⋮ ⋱ ⋮

𝑥𝑣𝑞𝑘1 ⋯ 𝑥𝑣𝑞𝑘𝑁

)(
𝐶𝑜𝑒𝑓𝑓11 ⋯ 𝐶𝑜𝑒𝑓𝑓1𝑁

⋮ ⋱ ⋮

𝐶𝑜𝑒𝑓𝑓𝑁1 ⋯ 𝐶𝑜𝑒𝑓𝑓𝑁𝑁

)    
𝑦𝑖𝑒𝑙𝑑𝑠
→      (

𝑠𝑣11 ⋯ 𝑠𝑣1𝑁
⋮ ⋱ ⋮

𝑠𝑣𝑞1 ⋯ 𝑠𝑣𝑞𝑁
),      (8) 

where (𝑣1,   𝑣2, … , 𝑣𝑞) is the testing set patients; in total there are q patients in testing set; 

(

𝑠𝑣11 𝑠𝑣12
⋮ ⋮

𝑠𝑣𝑞1 𝑠𝑣𝑞2
) with 𝑙𝑖𝑛𝑒𝑎𝑟 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦

𝑦𝑖𝑒𝑙𝑑𝑠
→    𝑓𝑖𝑛𝑎𝑙 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦      (9) 

 

S3.5. Selection of the optimal subset of peaks relevant to ARDS 

In our study, a total of m=97 peaks were found in 2D chromatograms. We first assumed that 

there are n=4 peaks relevant to classification of ARDS and non-ARDS. We found that the 4-peak 

subset of Peak #(2, 44, 72, 79) provides the best classification with the total accuracy of 88.4% 

(see the corresponding peaks on the 2D GC chromatogram in Fig. S3 and the PCA-LDA results in 

Fig. S4(a)). Then n’=5 peaks were added and we found that the 9-peak subset of [(2, 44, 72, 79) + 

(34, 38, 62, 66, 81)] provides the best classification with the total accuracy of 93.0% (see the 

corresponding peaks on a 2D GC chromatogram in Fig. S3 and the PCA-LDA results in Fig. 

S4(b)). Then another n’=5 peaks were added and we found that the 14-peak subset of [(2, 44, 72, 

79) + (34, 38, 62, 66, 81) + (54, 61, 63, 71, 75)] provides the best classification with the total 

accuracy of 93.0% (see the corresponding peaks on a 2D GC chromatogram in Fig. S3 and the 

PCA-LDA results in Fig. S4(c)). Since the classification accuracy and the boundary distance does 

not improve from the 9-peak subset to the 14-peak subset (i.e., the ARDS and non-ARDS groups 

are not clustered/separated better), the 9-peak subset was selected as the final optimal peak subset, 

which consists of Peak #(2, 44, 72, 79, 34, 38, 62, 66, 81) in the 2D chromatogram.  
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These 9 peaks were tentatively identified by coupling our portable GC with Thermo Scientific 

Single Quadrupole Mass Spectrometer (ISQTM Series) and analyzing with ChromeleonTM 7 

Software. Their names, CAS numbers, and formulas are presented in Table S4.   

 

S3.6. Receiver Operating Characteristic (ROC) curve analysis 

With the LDA model acquired from the training set, the posterior probability can be calculated 

for any given 𝑺𝑝: 

 𝑃(𝐴𝑅𝐷𝑆|𝑺𝑝) =
𝑃(𝑺𝑝|𝐴𝑅𝐷𝑆)𝑃(𝐴𝑅𝐷𝑆)

𝑃(𝑺𝑝|𝐴𝑅𝐷𝑆)𝑃(𝐴𝑅𝐷𝑆)+𝑃(𝑺𝑝|𝑛𝑜𝑛 − 𝐴𝑅𝐷𝑆)𝑃(𝑛𝑜𝑛−𝐴𝑅𝐷𝑆)
    , (10) 

where 𝑺𝑝 is the principal component scores (𝑆𝑝1 𝑆𝑝2) for any given patient p. 𝑃(𝐴𝑅𝐷𝑆) and 

𝑃(𝑛𝑜𝑛 − 𝐴𝑅𝐷𝑆) are the prior probability (fraction of ARDS and non-ARDS patients within the 

training set), respectively. 𝑃(𝑺𝑝|𝐴𝑅𝐷𝑆) and 𝑃(𝑺𝑝|𝑛𝑜𝑛 − 𝐴𝑅𝐷𝑆) are the ARDS and non-ARDS 

multivariate Gaussian distribution density functions, with 𝝁𝐴𝑅𝐷𝑆 , 𝝁𝑛𝑜𝑛−𝐴𝑅𝐷𝑆 being the means and 

𝚺 being the shared covariance matrix across ARDS and non-ARDS. 

𝑃(𝑺𝑝|𝐴𝑅𝐷𝑆) =
1

(2𝜋|𝚺|)
1
2

𝑒−
1

2
(𝑺𝑝−𝝁𝐴𝑅𝐷𝑆)

𝑇
𝚺−1(𝑺𝑝−𝝁𝐴𝑅𝐷𝑆), (11) 

𝑃(𝑺𝑝|𝑛𝑜𝑛 − 𝐴𝑅𝐷𝑆) =
1

(2𝜋|𝚺|)
1
2

𝑒−
1

2
(𝑺𝑝−𝝁𝑛𝑜𝑛−𝐴𝑅𝐷𝑆)

𝑇
𝚺−1(𝑺𝑝−𝝁𝑛𝑜𝑛−𝐴𝑅𝐷𝑆) . (12) 

With the ARDS/non-ARDS labels and the posterior probability of the patients in the training 

set, testing set, and all patients, their ROC curves and the corresponding AUC (area under curve) 

were computed and shown in Fig. S7. 
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Section S4: Peak capacity of portable 2D GC 

Table S1 lists the peak capacity estimated from three exemplary peaks. For GC × GC, the peak 

capacity is defined as 𝑛𝐺𝐶×𝐺𝐶 = 𝑛1 × 𝑛2, where 𝑛1 and 𝑛2 are the peak capacity for 1D and 2D, 

respectively [1]. The conventional method for calculation of peak capacity using 4 - bottom-to-

bottom-width 𝑤4𝜎 is gien by: 𝑛4𝜎 = (𝑡𝑅
1 𝑤4𝜎

1 )(𝐶𝑃𝑀 𝑤4𝜎
2⁄ )⁄ , where C is the number of channels in 

2D and PM is the modulation period. The peak capacity value for three selected peaks is listed in 

the table below as 𝑛4𝜎.  

 

Table S1 Peak capacity for the portable 2D GC calculated for three exemplary peaks 

  

 

𝑡𝑅
1: 1D retention time 

𝑡𝑅
2: 2D -dimensional retention time 

𝑤4𝜎
1 : 1D peak width (4 - bottom-to-bottom) 

𝑤4𝜎
2 : 2D peak width (4 - bottom-to-bottom) 

C: Number of 2D channels (in our case: C = 2) 

PM: modulation time (in our case: PM = 10 s)  
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Section S5: Patient medical history during time series testing dates 

Patient #2 was a healthy subject tested for 4 days. 

Patient #3 was a healthy subject tested for 4 days. 

Patient #7 was sampled for 4 days and had ARDS by the Berlin Criteria since the 1st testing day. 

No signs of recovery at least 4 days after the last testing day.    

Patient #11 was a potential and undetermined ARDS patient on the 1st test day and then upgraded 

to ARDS on the next day. By the Berlin Criteria he/has ARDS for all 3 days. 

Patient #12 was suspected for pneumonia on the 1st testing day. This patient was tested for 3 days 

and no ARDS was developed during this period based on the Berlin Criteria. 

Patient #27 was a potential and undetermined ARDS patient on the 1st test day and then upgraded 

to ARDS on the next day. Based on the Berlin Criteria he/has ARDS for all 3 days. 

Patient #30 had pneumonia and ARDS based on the Berlin Criteria since 1st test day and was tested 

for 3 days. No signs of recovery and was shifted to comfort care after the last testing day. 

Patient #31 had acute respiratory failure on the 1st testing day but no ARDS based on the Berlin 

Criteria during the 2 testing days. 

Patient #34 had hypoxemic respiratory failure on the 1st testing day but no ARDS based on the 

Berlin Criteria during the 3 testing days. 

Patient #35 had no ARDS based on the Berlin Criteria during the 2 testing days. 

Patient #36 had ARDS since the 1st sampling day. On the 3rd day the patient was still listed as 

ARDS patients based on the Berlin Criteria and then got extubated and discharged from ICU on 

the 5th day.  

Patient #38 was a healthy subject tested for 3 days. 

Patient #39 had ARDS based on the Berlin Criteria during the 2 testing days. No signs of recovery. 

Patient #40 had pneumonia on the 1st testing day but no ARDS based on the Berlin Criteria during 

the 2 testing days. 

Patient #42 had ARDS based on the Berlin Criteria during the 2 testing days. No signs of recovery. 

Patient #45 had ARDS based on the Berlin Criteria during the 5 testing days. No signs of recovery 

and was shifted to comfort care on the last testing day. 

Patient #46 had no ARDS based on the Berlin Criteria during the 3 testing days. 

Patient #47 was sampled for 4 days and got extubated and discharged on the 6th day. Based on the 

Berlin Criteria this patient had ARDS for all first 4 days.  
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Fig. S1 (a) Zoomed-in portion of Fig. 4(b). (b) Zoomed-in portion of Fig. 4(d)  

(a) (b)
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Fig. S2 Iterative peak subset selection procedure 
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Fig. S3 Selection of the optimal subset of peaks relevant to ARDS. Red lines mark the 1D retention 

time of the 4 peaks selected in the first iteration. Blue lines mark the 1D retention time of the 

additional 5 peaks selected in the second iteration. Green lines mark the 1D retention time of the 

additional 5 peaks selected in the third iteration. Peak #34 in the 9-peak subset nearly co-elutes 

with Peak #8. Peak #54 and #71 in the 14-peak subset co-elutes with Peak #55 and Peak #64, 

respectively 
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Fig. S4 PCA plots using the subset containing 4 peaks, 9 peaks, and 14 peaks for the training 

set of patients. The red and black symbols denote respectively the ARDS and non-ARDS patients 

adjudicated by physicians using the Berlin criteria. The patient numbers are given by the symbol. 

For example, “11.1” and “11.3” denote Patient #11, Day 1 and Day 3 results, respectively. The 

bottom/top zone below/above the boundary line represents respectively the ARDS/non-ARDS 

region using the breath analysis method 
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Fig. S5 Q-residuals of the PCA model (Figure 7) for all recruited patients. For the patients with 

time series tests, only the 1st test day is marked with the patient ID. The red dashed curve shows 

the 99% confidence level 
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Fig. S6 PCA plot for the training and testing set of patients. The corresponding statistics is given 

in Table S2 
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Fig. S7 Receiver operating characteristic (ROC) curves for the training set, testing set, and all 

patients 
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Fig. S8 Individual trajectories of all 18 patients with time series tests on the PCA plot. Refer to 

Section S5 for the patient medical history 
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Table S2 Statistics for the training and testing set of patients 

Training Set ARDS Non-ARDS Total 

Positive (our results) 16 1 17 

Negative (our results) 2 24 26 

Column total 18 25 43 

    

Specificity 96.0%  

Sensitivity 88.9 %  

Positive predictive value 94.1% 

Negative predictive value 92.3% 

Total accuracy 93.0% 

 

Testing Set ARDS Non-ARDS Total 

Positive (our results) 16 1 17 

Negative (our results) 7 18 25 

Column total 23 19 42 

    

Specificity 94.7 %  

Sensitivity 69.6 %  

Positive predictive value 94.1% 

Negative predictive value 72.0% 

Total accuracy 80.9% 
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Table S3 Statistics for the 4-fold cross-validation 

 

Cross Validation - 4 fold Model 1 Model 2 Model 3 Model 4 

Specificity 93.2% 93.2% 93.2% 93.2% 

Sensitivity 78.0% 75.6% 78.0% 75.6% 

Positive predictive value 91.4% 91.2% 91.4% 91.2% 

Negative predictive value 82% 80.4% 82% 80.4% 

Total accuracy 85.9% 84.7% 85.9% 84.7% 

 

 

Table S4 Tentative chemical identification for the 9-peak subset 

Peak ID Chemical Name CAS Number Formula 

2 Pentane, 2-methyl- 107-83-5     C6H14 

44 Heptane, 3-methyl- 589-81-1     C8H18 

72 Heptane, 2,3,5-trimethyl- 20278-85-7     C10H22 

79 2,2,7,7-Tetramethyloctane 1071-31-4     C12H26 

34 Pentane, 2,4-dimethyl- 108-08-7     C7H16 

38 Cyclohexane, methyl- 108-87-2     C7H14 

62 α-Pinene 80-56-8     C10H16 

66 3-Octene, 2,2-dimethyl- 86869-76-3     C10H20 

81 1-Decanol, 2-ethyl- 21078-65-9     C12H26O 

 

 

 

 

 


