Supplemental Materials Molecular Biology of the Cell

Sørensen et al.

The P5A ATPase Spf1p is stimulated by phosphatidylinositol 4-phosphate and influences cellular sterol homeostasis

Authors:

Danny Mollerup Sørensen[†],^{*,1}, Henrik Waldal Holen[†],¹, Jesper Torbøl Pedersen¹, Helle Juel Martens¹, Daniele Silvestro¹, Lyubomir Dimitrov Stanchev¹, Sara Rute Costa¹, Thomas Günther Pomorski¹, Rosa Laura López-Marqués¹, Michael Palmgren^{*,1}

Affiliations:

¹Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark

*Correspondence to: DMS: Tel: +45 35320656; E-mail: soerensen@plen.ku.dk; MP: Tel: +45 23988444; E-mail: palmgren@plen.ku.dk

† Equally contributed to this work

Supplementary Figures

Supplementary Figure 1

Supplementary Figure 1 – Expression and purification of Spf1p. (A) Expression of *SPF1* from a leaky *GAL1* promoter rescues caffeine-induced growth inhibition of *spf1* cells. A catalytically inactive D488N mutant is unable to complement *spf1*. nt. – not transformed, e.v. – empty vector control. (B) SDS-PAGE showing galactose-induced expression of Spf1p-FLAG-RGS10xHis protein (marked by an arrowhead) in *spf1* cells. (C,D) SDS-PAGE showing the purification of (C)

Spf1p and (D) Spf1p D488N. μ - microsomal fraction, FT – flow-through, W – wash, E - eluate. (E) ATP hydrolytic activity of purified Spf1p, but not Spf1p D488N, can be induced by the addition of POPC. (F) A higher level of spontaneous phosphorylation from [γ^{32} P]-ATP can also be observed after the addition of POPC to Spf1p, but not Spf1p D488N. For all data, error bars represent s.e.m.; n = 3 biological replicates.

Supplementary Figure 2

Supplementary Figure 2 – Effect of cations on ATPase activity and steady-state phosphorylation levels of Spf1p. POPC-reactivated Spf1p was assayed for ATPase activity or steady-state phosphorylation levels in the presence of EDTA and EGTA (50 μ M unless otherwise indicated) and increasing concentrations of the indicated metal cations. (A) Cations previously proposed to be ligands of Spf1p do not stimulate Spf1p ATPase activity. (B) The same cations do not stimulate steady state phosphorylation levels of Spf1p. (C) Chelation of possible trace metals does not influence Spf1p ATPase activity. Increasing concentrations of either EGTA or EDTA were added to the ATPase assay, with or without pretreating the ATPase buffer with Chelex resin to further chelate divalent metal ions. (D) K⁺ ions do not stimulate ATP hydrolytic activity or change phosphoenzyme formation of Spf1p. Ionic strength was kept constant with NaCl and activity is noted relative to buffer without KCl (but with 100 mM NaCl). For all data, error bars represent s.e.m.; n = 3 biological replicates.

Supplementary Figure 3

Supplementary Figure 3 – **Genetic and drug interactions in lipid synthesis pathways of** *spf1* **cells.** The mevalonate pathway (A) and the sphingolipid pathway (B) both contain genes encoding enzymes that were previously shown to genetically interact with SPF1 (underscored). The strength of each interaction is indicated by the intensity of the blue bar, corresponding to individual experimental hits found in previous studies (Supplemental Table S2). The strongest interactors are OPI3 (7 hits), HMG1 (4 hits), SAC1 (4 hits), SCS7 (3 hits), and ELO3 (3 hits). Numbers in circles indicate enzymatic steps not shown. Red lines indicate enzymatic inhibitors that inhibit the growth of *spf1* cells. Lightning bolt indicates increased sensitivity towards sterol binding antibiotics.

Supplementary Figure 4

Supplementary Figure 4 – Quantification of ³²P-labeled phospholipids in wild-type and *spf1* cells. (A) Total lipid extracts from a similar amount of wild-type and *spf1* cells labeled with ³²P were diluted to 10 nCi and separated in two dimensions on TLC plates using an acidic and an alkaline solvent (see Materials and Methods). Twenty-eight spots labeled with ³²P could be visualized after exposure. For comparison, a control plate was loaded with the indicated lipid standards, developed and stained with primuline. Black arrows indicate loading spots. A representative image for all (n = 3) biological replicates is shown. (B) The molar content of ³²P in each spot represented in A was quantified using a ³²P standard. Deletion of *SPF1* results in a slight but significant change in three spots, which we were unable to identify by mass spectrometry (indicated by red arrowheads in A). However, deletion of *SPF1* had little effect on the total levels of the major glycerophospholipids, as indicated by the quantified ratio of spots corresponding to those from extracts of wild-type and *spf1* cells (n = 3 biological replicates).

Supplementary Tables

Supplementary Table S1 – **Cell characteristics of wild-type and** *spf1* **cells**. The two strains have comparable viability and cell count per OD₆₀₀ unit (determined in a NucleoCounter NC3000 using propidium iodide staining for nonviable cells following the manufacturer's instructions) and have similar average cell sizes (determined by microscopy; see Materials and Methods). However, the *spf1* strain has a significantly lower growth rate at the log phase across all temperatures examined (determined on liquid cultures in YPD medium) and contains a significantly higher energy content, reflecting accumulation of chemical energy within the cell (determined by calorimetry; see Materials and Methods). *n* = biological replicate (# denotes a technical replicate), S.D. = standard deviation. P = P values determined by two-tailed t-tests (# denotes two-tailed Welch t-test). *n.s.* = not significant. Stars indicate significance.

	WT	S.D.	n	spf1	S.D.	n	Р	significance
Cells pr. OD ₆₀₀	3.50E+07	±2.04+06	3	3.68E+07	±0.66+05	3	P = 0.2332	n.s.
Viability	97.60%	-	3#	95.40%	-	3#	-	-
Growth rate 20°C (h^{-1})	0.41	±0.03	3	0.29	±0.03	3	P = 0.0080	**
Growth rate 25° C (h ⁻¹)	0.75	±0.05	3	0.59	±0.01	3	P = 0.0043	**
Growth rate 30° C (h ⁻¹)	0.77	±0.03	3	0.60	±0.02	3	P = 0.0018	**
Growth rate 40° C (h ⁻¹)	0.47	±0.02	3	0.15	±0.02	3	P < 0.0001	****
Cell size (µM)	4.35	±0.64 [#]	54 [#]	4.34	±0.80	64#	P = 0.9117 [#]	n.s.
Energy (J/g cells)	19320	±45.5	3	20050	±14.4	3	P < 0.0001	***

Supplementary Table S2 – Genes encoding proteins involved in lipid synthesis and trafficking, which have been shown to interact with *SPF1* in screening studies. Twenty genes have been reported in genetic interactions (1 lethal, 15 negative, and 4 positive), nine genes in chemical-genetic (CG) interactions, and two gene products (those of *SAC1* and *SCS2*) have been reported to physically interact with Spf1p. Experimental hits (Exp. hits) indicate independent experiments showing the observed interaction. Protein localization indicates the localization of the gene product. LP = lipid particle, PM = plasma membrane, ER = endoplasmic reticulum, and C = cytoplasm.

Gene	Lipid species	Enzymatic activity	<u>Protein</u>	Interaction	Effect	Exp.	References
						<u>hits</u>	
OPI3	Phospholipids	Unsaturated phospholipid	PM	Genetic	Negative	7	Schuldiner et al.
		methyltransferase					(2005)
DGK1	Phospholipids	Diacylglycerol kinase	ER	Genetic	Negative	4	Schuldiner et al.
							(2005)
SAC1	Phospholipids	Phosphatidylinositol	ER/Golgi	Genetic and	Negative /	4	Manford et al.
		phosphate phosphatase		Physical	-		(2012)
ARV1	Sterols	Transport of	ER/Golgi	Genetic	Negative	4	Schuldiner et al.
		glycosylphosphatidylinositol					(2005)
HMG1	sterols	Hydroxymethylglutaryl-CoA	ER	Genetic and	Negative	4	Schuldiner et al.
		reductase		CG			(2005)
							Cronin et al.
							(2002)
SCS7	Sphingolipids	Sphingolipid alpha-	ER/V	Genetic	Negative	3	Schuldiner et al.
		hydroxylase					(2005)
ELO3	Sphingolipids /	Elongase	ER	Genetic	Negative	3	Costanzo et al.
	Glycerolipids						(2010)
TGL3	Glycerolipids	Triacylglycerol lipase /	LP	Genetic	Positive	2	Schuldiner et al.
		lysophosphatidylethanolami					(2005)
		ne acyltransferase					
PSD1	Phospholipids	Phosphatidylserine	М	Genetic	Negative	2	Hoppins et al.
		decarboxylase					(2011)
ZAP1	Phospholipids	Zinc-regulated transcription	Ν	Genetic	Phenotypic	2	Jonikas et al.
		factor			Suppression		(2009)
SUR2	Sphingolipids	Sphinganine C4-hydroxylase	ER	Genetic	Negative	2	Schuldiner et al.
							(2005)
YPC1	Sphingolipids	Alkaline ceramidase /	ER	Genetic	Positive	2	Schuldiner et al.
		ceramide synthase					(2005)
TSC3	Sphingolipids	None (Stimulator of serine	ER/C	Genetic	Negative	2	Schuldiner et al.
		palmitoyltransferases					(2005)
		(Lcb1p, Lcb2p))					

ERG2	sterols	C-8 sterol isomerase	ER/V	Genetic and	Phenotypic	2	Jonikas et al.
				CG	Suppression		(2009), Kapitzky et
							al (2010), This
							study
SCT1	Glycerolipids	Glycerol 3-	ER	Genetic	Negative	1	Costanzo et al.
		phosphate/dihydroxyaceton					(2010)
		e phosphate acyltransferase					
SCS2	Phospholipids	None (integral ER	ER	Physical	-	1	Manford et al.
		membrane VAP protein)					(2012)
LCB2	Sphingolipids	Serine palmitoyltransferase	ER	Genetic and	Negative	1	This study
				CG			
SUR1	Sphingolipids	Mannosylinositol	Golgi	Genetic	Negative	1	Hoppins et al.
		phosphorylceramidesynthas					(2011)
		е					
ISC1	Sphingolipids	Inositol	М	Genetic	Negative	1	Collins et al.
		phosphosphingolipid					(2007)
		phospholipase					
ERG11	Sterols	Lanosterol 14-alpha-	ER	Genetic	Lethal	1	Parsons et al.
		demethylase					(2004)
ERG5	sterols	C-22 sterol desaturase	ER	Genetic	Negative	1	Costanzo et al.
							(2010)
ALG7	Glycolipids	UDP-N-acetyl-glucosamine-	ER	CG	Negative	-	Suzuki (2001), This
		1-P transferase					study
LCB1	Sphingolipids	Serine palmitoyltransferase	ER	CG	Negative	-	This study
AUR1	Sphingolipids	Phosphatidylinositol /	Golgi	CG	Negative	-	Cohen et al.
		ceramide phosphoinositol					(2013), This study
		transferase					
ERG9	Sterols	Farnesyl-diphosphate	ER/V	CG	Negative	-	This study
		farnesyl transferase					
ERG1	Sterols	Squalene epoxidase	ER/LP	CG	Negative	-	Cohen et al.
							(2013), This study
ERG24	Sterols	C-14 sterol reductase	ER/V	CG	Negative	-	Kapitzky et al
							(2010), This study

Supplementary Table S3 – **Yeast strains used in this study.** Yeast strains used and generated in this study. *spf1/sac1* cells were generated by crossing *spf1* cells^{*} with *sac1* cells^{\$}; individual crosses are shown. ZHY709 cells[&] were used for cloning of pre-pro-alpha GFP constructs.

Background	Strain name	Genotype	Source
BY4741	WT	$MATa: his3\Delta 1; leu2\Delta 0; met15\Delta 0; ura3\Delta 0$	Euroscarf
BY4741	spfl	<i>MAT</i> a: $his3\Delta 1$; $leu2\Delta 0$; $met15\Delta 0$; $ura3\Delta 0$; $yel039w$:: $kanMX4$	Euroscarf
BY4742 [*]	spf1	MAT α : his3 Δ 1; leu2 Δ 0; lys2 Δ 0; ura3 Δ 0; yel039w::HIS3	This study
BY4741	ypk9	$MATa;$ his $3\Delta 1$; leu $2\Delta 0$; met $15\Delta 0$; ura $3\Delta 0$; yor $291w$::HIS 3	Gitler <i>et al.</i> 2009
BY4741 ^{\$}	sac1	MATa: $his3\Delta 1$; $leu2\Delta 0$; $met15\Delta 0$; $ura3\Delta 0$; $ykl212w$:: $KanMX4$	Euroscarf
	spf1/sac1 (#1)	<i>MAT</i> α : his3 Δ 1; leu2 Δ 0; met15 Δ 0; ura3 Δ 0; yel039w::HIS3; ykl212w::KanMX4	This study
	spf1/sac1 (#2)	<i>MAT</i> a: his3∆1; leu2∆0; lys2∆0; ura3∆0; yel039w::HIS3; ykl212w::KanMX4	This study
	spf1/sac1 (#3)	<i>MAT</i> a: $his3\Delta 1$; $leu2\Delta 0$; $met15\Delta 0$; $ura3\Delta 0$; $yel039w$:: $HIS3$; $ykl212w$:: $KanMX4$	This study
ZHY709 ^{&}	dnf1/dnf2/drs2	MATa: $his3\Delta 1$; $leu2\Delta 0$; $ura3\Delta 0$; $met15\Delta 0$; $dnf\Delta$; $dnf\Delta$; $drs2$:: $LEU2$	Huang and Shusta, 2005
W303	hem1/aus1/ pdr11	<i>MATa</i> : $ade2\Delta 1$; $his3\Delta 11,15$; $leu2\Delta 3,112$; $trp1\Delta 1$; $ura3\Delta 1$, $can1\Delta 100$; $hem1\Delta$:: $LEU2$; $pdr11\Delta$:: $loxP$; $aus1\Delta$:: $loxP$ -HIS5Sp-loxP	Marek <i>et al.,</i> 2014
BY4741	<i>SPF1-GFP/</i> <i>SAC1-RFP</i>	<i>MAT</i> a: $his3\Delta 1$; $leu2\Delta 0$; $met15\Delta 0$; $ura3\Delta 0$; $yel039w$::SPF1-GFP; $ykl212w$::SAC1-RFP	This study
BY4741	<i>SPF1-GFP/</i> <i>SEC61-RFP</i>	<i>MAT</i> a: <i>his3Δ</i> 1; <i>leu2Δ</i> 0; <i>met</i> 15 <i>Δ</i> 0; <i>ura3Δ</i> 0; <i>yel039w</i> ::SPF1-GFP; <i>ylr378c</i> ::SEC61-RFP	This study
BY4741	Oshl	MATa; $ura3\Delta 0$; $leu2\Delta 0$; $his3\Delta 1$; $met15\Delta 0$; $YAR042w$:: $kanMX4$	Euroscarf
BY4741	Osh2	MATa; $ura3\Delta 0$; $leu2\Delta 0$; $his3\Delta 1$; $met15\Delta 0$; $YDL019c$:: $kanMX4$	Euroscarf
BY4741	Osh3	MATa; $ura3\Delta 0$; $leu2\Delta 0$; $his3\Delta 1$; $met15\Delta 0$; $YHR073w$:: $kanMX4$	Euroscarf
BY4741	Osh4	$MATa$; $ura3\Delta0$; $leu2\Delta0$; $his3\Delta1$; $met15\Delta0$; $YPL145c$:: $kanMX4$	Euroscarf
BY4741	Osh5	MATa; $ura3\Delta 0$; $leu2\Delta 0$; $his3\Delta 1$; $met15\Delta 0$; $YOR237w$:: $kanMX4$	Euroscarf
BY4741	Osh6	MATa; $ura3\Delta 0$; $leu2\Delta 0$; $his3\Delta 1$; $met15\Delta 0$; YKR003w:: $kanMX4$	Euroscarf

Supplementary Table S4 – Plasmids used in this study.

Plasmid	Reference
pRS316:sec-yEGFP	Huang and Shusta, 2005
pRS316:cyto-yEGFP	This study
pRS423	López-Marqués et al., 2012
yEP351:pPMA1-SPF1-FLAG/RGS10xhis	This study
pRS423:pGAL1-SPF1-FLAG/RGS10xhis	This study
pRS423:pGAL1-SPF1-D488N-FLAG/RGS10xhis	This study
p122:pGAL-ERG6-RFP	Marek et al., 2014
pRS424:GFP-2xPH(Osh2)	Stefan <i>et al.</i> , 2011
pBS-ΔSPF1:URA3	This study

Supplementary Table S5 – Accession numbers of the 171 P-type ATPase protein sequences used for the phylogenetic analysis presented in Figure 1 (see Materials and Methods). Full sequence accession numbers from KEGG or NCBI are noted. In Figure 1, the sequence labels are shortened to include only the three-letter organism identifier followed by the digits in the accession numbers.

Species	Full KEGG accession number (*NCBI accession number)
Caenorhabditis elegans	cel:CELE_C10C6.6; cel:CELE_K07E3.7; cel:CELE_Y59H11AR.2;
(cel)	cel:CELE_W08D2.5; cel:CELE_C02E7.1; cel:CELE_C09H5.2; cel:CELE_B0365.3;
	cel:CELE_ZK256.1; cel:CELE_K11D9.2; cel:CELE_C01G12.8; cel:CELE_F36H2.1;
	cel:CELE_Y49E10.11;
	cel:CELE_W09D10.2; cel:CELE_H06H21.10; cel:CELE_R05C11.3;
	cel:CELE_Y67D8C.10; cel:CELE_Y76A2A.2; cel:CELE_W09C2.3
Drosophila melanogaster	dme:Dmel_CG6230; dme:Dmel_CG32000; dme:Dmel_CG32451;
(dme)	dme:Dmel_CG5670; dme:Dmel_CG45760; dme:Dmel_CG42321;
	dme:Dmel_CG3725; dme:Dmel_CG33298; dme:Dmel_CG4301;
	dme:Dmel_CG42314; dme:Dmel_CG9981; dme:Dmel_CG1886;
	dme:Dmel_CG14741; dme:Dmel_CG31729
Homo sapiens	hsa:57130; hsa:79572; hsa:344905; hsa:23400; hsa:84239; hsa:487; hsa:489;
(hsa)	hsa:476; hsa:477; hsa:479; hsa:480; hsa:488; hsa:478; hsa:495; hsa:27032;
	hsa:9914; hsa:490; hsa:492; hsa:23250; hsa:491; hsa:10396; hsa:51761;
	hsa:23200; hsa:57198; hsa:79895; hsa:57205; hsa:493; hsa:538; hsa:23120;
	hsa:540; hsa:286410; hsa:374868; hsa:148229; hsa:5205; hsa:10079;
	hsa:57194
Sulfolobus solfataricus	sso:SSO2651; sso:SSO2896
(sau)	
Methanococcoides methylutens	*WP_048193110.1; *WP_048193070.1; *WP_048205438.1;
(mem)	*WP_048206222.1; *WP_081955762.1; *KGK98552.1; *WP_048195962.1;
	*WP_052721400.1; *WP_048205268.1; *WP_048205866.1;
	*WP_048194506.1
Escherichia coli	eco:b4242; eco:b0697; eco:b0484; eco:b3469
(eco)	
Staphylococcus aureus (sau)	sau:SA0070; sau:SA2344; sau:SA1880
Nostoc punctiforme	npu:Npun_R6170;
(npu)	npu:Npun_R0509; npu:Npun_R0301; npu:Npun_F0719; npu:Npun_R1694
Saccharomyces cerevisiae	<pre>sce:YEL031W; sce:YOR291W; sce:YGL167C; sce:YDR040C; sce:YDR039C;</pre>
(sce)	<pre>sce:YDR038C; sce:YGL006W; sce:YAL026C; sce:YER166W; sce:YIL048W;</pre>
	<pre>sce:YGL008C; sce:YPL036W; sce:YDR093W; sce:YMR162C; sce:YDR270W;</pre>
	sce:YBR295W
Arabidopsis thaliana	ath:AT5G23630; ath:AT1G10130; ath:AT3G57330; ath:AT5G44240;
(ath)	ath:AT1G80660; ath:AT5G57350; ath:AT3G63380; ath:AT1G17260;
	ath:AT3G22910; ath:AT3G42640; ath:AT4G37640; ath:AT1G07670;
	ath:AT4G29900; ath:AT1G07810; ath:AT2G24520; ath:AT3G47950;
	ath:AT4G30190; ath:AT2G07560; ath:AT5G62670; ath:AT2G18960;
	ath:AT2G41560; ath:AT3G60330; ath:AT1G27770; ath:AT3G21180;
	ath:AT5G57110; ath:AT1G59820; ath:AT2G22950; ath:AT4G00900;
	ath:AT4G11730; ath:AT3G25610; ath:AT1G26130; ath:AT1G68710;
	ath:AT3G27870; ath:AT1G72700; ath:AT3G13900; ath:AT1G54280;
	ath:AT1G13210; ath:AT1G17500; ath:AT1G63440; ath:AT5G21930;
	ath:AT5G44790; ath:AT4G37270; ath:AT4G30110; ath:AT5G04930;
	ath:AT4G33520; ath:AT2G19110

Nannochloropsis gaditana	ngd:NGA_0576820; ngd:NGA_0502700; ngd:NGA_0599100;
(nga)	ngd:NGA_0635410; ngd:NGA_0722800; *EWM26586.1; *EWM22623.1;
	*EWM29580.1; *EWM24559.1; *EWM25428.1; *EWM27560.1