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Supplemental Results and Discussion 

Assessment of quality and reproducibility of RAMPAGE data 

We assessed the quality of these RAMPAGE data in several ways. First, these RAMPAGE data showed 

high reproducibility between biological replicates (Supplemental Fig. S1A; Pearson correlation 

coefficient R = 0.79 ± 0.16 between two biological replicates in 70 replicated biosamples). Second, ~50% 

of RAMPAGE reads were within 5 nt of annotated TSSs (Supplemental Fig. S1B), while substantially 

weaker enrichment at annotated TSSs was observed for CAGE reads and no enrichment for RNA-seq 

reads (Supplemental Fig. S1C). Third, the quantification of gene expression by RAMPAGE significantly 

correlated with the quantification by RNA-seq (Spearman's rank correlation ρ = ~0.58; Supplemental Fig. 

S1D). A similar level of correlation was reported between CAGE and RNA-seq (Kawaji et al. 2014). 

 

Convinced of the high quality of the RAMPAGE data, we built a computational pipeline to call 

RAMPAGE peaks, which corresponded to individual expressed transcripts. Roughly 96% of RAMPAGE 

peaks could be assigned to GENCODE-annotated genes or de novo assembled transcripts using RNA-seq 

from the same biosample (Supplemental Fig. S2A). In K562 and GM12878 specifically, roughly 80% of 

the assigned peaks were within ± 50 nt of the TSSs of GENCODE-annotated genes or de novo assembled 

transcripts (Supplemental Fig. S2A), and some of the remaining 20% peaks might be novel TSSs 

identified only by RAMPAGE. Indeed, many of these RAMPAGE-only peaks were supported by CAGE 

data (Abugessaisa et al. 2016) in the same cell type (Supplemental Fig. S2A, pie charts). 

 

Computational validation that the expressed Alu elements were Pol III-transcribed 

To investigate whether the expressed Alu elements identified by our RAMPAGE pipeline resulted from 

Pol III transcription, we compared the ChIP-seq profiles of POLR3A (the main subunit of Pol III) and 

POLR2A (the main subunit of Pol II) at these expressed Alu elements (Fig. 1C; Supplemental Fig. S3A). 

Like expressed tRNAs (Moqtaderi et al. 2010; Raha et al. 2010), near 80% of the expressed Alu elements 
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showed high POLR3A signals but lower POLR2A signals around their TSSs, while the opposite was 

observed for Pol II-transcribed genes. In sharp contrast, randomly sampled, unexpressed Alu elements 

showed almost no signal for POLR3A or POLR2A. Next, we took a closer look at the ChIP-seq data of 

other components of the Pol III machinery in K562 cells. POLR3A covered the entire body of expressed 

Alu elements, TFIIIC bound the internal Pol III promoter (A-box and B-box), while BDP1 (a major 

component of TFIIIB) was enriched in the upstream region of Alu elements expressed specifically in 

K562 cells but not in GM12878 cells or other samples (Supplemental Fig. S3B). Consistent with Alu 

elements' being type 2 Pol III targets (Moqtaderi et al. 2010; Oler et al. 2010), much higher ChIP-seq 

signals of BRF1 than BRF2 were observed in K562 cells at the 5′-end of Alu elements expressed in these 

cells (Supplemental Fig. S3C). ChIP-seq data were available for the TATA-box binding protein TBP (a 

component of TFIIIB) in both K562 and GM12878 cells, and we observed strong enrichments of TBP 

binding at the Alu elements that were expressed specifically in the corresponding cell types (Supplemental 

Fig. S3D). These results support we mostly identified PoI III-transcribed primary Alu transcripts. 

 

We further asked whether our pipeline could distinguish Pol III-transcribed Alu elements from Alu 

elements that were embedded in Pol II-transcribed genes. There is an enrichment of expressed Alu 

elements in the introns of Pol II-transcribed genes. Among the 1.2 M copies of annotated Alu elements in 

the human genome, 24.8% of them reside in Pol II transcribed genes in the sense orientation. In sharp 

contrast, 78.1% (2,956 out of 3,784) robustly expressed and 76.2% (13,143 out of 17,249) expressed Alu 

elements resided in Pol II transcribed genes in the sense orientation, corresponding to 3.14- and 3.07-fold 

enrichments, respectively (Chi-squared test p-value < 2.2×10−16 for both). The vast majority of—84.7% of 

robustly expressed and 93.9% of expressed—sense, genic Alu elements were in introns and the remaining 

in untranslated regions (UTRs), with only one robustly expressed and four expressed sense Alu elements 

overlapping the coding regions of their host Pol II genes. To investigate whether these expressed sense 

genic Alu elements were indeed Pol III-transcribed, and not components of Pol II transcribed genes, we 

examined Pol III ChIP-seq and RNA-seq data detailed as follows.  
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Pol III ChIP-seq data revealed that like expressed antisense and intergenic Alu elements, expressed sense 

Alu elements showed strong enrichments for POLR3A and TFIIIC binding in K562 cells (Supplemental 

Fig. S4A), and the enrichments for sense Alu elements were statistically indistinguishable from those of 

intergenic and antisense Alu elements (Student's t-test p-value = 0.52 for POLR3A and 0.59 for TFIIIC).  

 

For embedded Alu elements, there should not be a large difference in RNA-seq read density between the 

Alu body and the upstream flanking region (Conti et al. 2015), while we would expect to see a difference 

for Pol III-transcribed Alu elements. RAMPAGE peaks could pinpoint the TSSs of expressed Alu 

elements (Supplemental Fig. S3E), so we directly compared the RNA-seq read density at the ± 100 bp 

window centered on RAMPAGE peaks. Indeed, we observed lower read densities in the upstream regions 

of RAMPAGE peaks than the downstream regions for robustly expressed intergenic and intronic Alu 

elements (Fig. 1D shows all such elements, and Supplemental Fig. S4B shows the breakdown into 

intergenic, sense intronic, and antisense intronic groups), while such a gradient of RNA-seq read density 

was absent for Alu elements located in 3′-UTRs due to the interference of Pol II transcripts (Supplemental 

Fig. S4B lower right panel). Although the expression levels of the host genes of expressed sense Alu 

elements were significantly higher than those of expressed antisense Alu elements (Supplemental Fig. 

S4C; measured by RNA-seq), the expression levels of their resident sense and antisense Alu elements 

were at similar levels (Supplemental Fig. S4D; measured by RAMPAGE). Thus, both Pol III RNA-seq 

and RNA-seq data support that the expressed elements identified by our approach were preferentially 

transcribed by Pol III. 

 

Comparison with previous approaches for identifying expressed Alu elements 

We compared the expressed Alu elements identified by our RAMPAGE pipeline with the expressed Alu 

elements identified in K562 cells by two prior studies, which used RNA-seq (Conti et al. 2015) and Pol 

III ChIP-seq (Moqtaderi et al. 2010), respectively. To overcome the repetitiveness of Alu elements, the 
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RNA-seq study (Conti et al. 2015) used only uniquely mapping reads; nevertheless, their approach still 

favored less repetitive Alu elements. Furthermore, it is difficult to distinguish primary Alu transcripts 

from embedded Alu transcripts relying only on RNA-seq reads. The ChIP-seq studies (Moqtaderi et al. 

2010; Oler et al. 2010) identified Alu elements bound by POLR3A and/or TFIIIC (using only uniquely 

mapping reads) but did not assess their transcription.  

 

The overlaps among the three lists of expressed Alu elements identified by RAMPAGE (this study; N = 

248), RNA-seq (Conti et al. 2015) (N = 154), and POLR3A and TFIIIC ChIP-seq (Moqtaderi et al. 2010) 

(N = 1,593) are summarized in Fig. 1E. The much longer ChIP-seq list suggests that most of the Alu 

elements bound by POLR3A and TFIIIC were not transcribed. The largest overlap was between the 

RAMPAGE and ChIP-seq lists—72 (29%) of the 248 expressed Alu elements by RAMPAGE had 

POLR3A and TFIIIC ChIP-seq peaks. In comparison, 29 (19%) of the 154 expressed Alu elements by 

RNA-seq had POLR3A/TFIIIC ChIP-seq peaks. Although only 21 Alu elements were deemed expressed 

by both RAMPAGE and RNA-seq, the vast majority (17; 81%) of these had POLR3A/TFIIIC ChIP-seq 

peaks. The better agreement between RAMPAGE and POLR3A/TFIIIC ChIP-seq than between RNA-seq 

and ChIP-seq was further observed by directly examining the ChIP-seq signals. More than 80% of the Alu 

elements uniquely identified by RAMPAGE (N = 227) but less than 30% of the Alu elements uniquely 

defined by RNA-seq (N = 133) showed evident ChIP-seq signals (Fig. 1F), with median POLR3A signals 

4.45 vs. 0.80 (p-value = 5.71×10−10) and median TFIIIC signals 5.91 vs. 1.46 (p-value = 6.76×10−9) for 

the two groups of Alu elements (Supplemental Fig. S3F). Even the subset of the Alu elements identified 

by RAMPAGE only but did not result in the calling of ChIP-seq peaks (N = 112) had significantly higher 

POLR3A/TFIIIC ChIP-seq signals than the subset identified by RNA-seq only (N = 107; Fig. 1G). In 

summary, we established a method of using RAMPAGE data to identify expressed Alu elements genome-

wide with improved sensitivity and specificity than earlier approaches. 
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It remains challenging to quantify the expression levels of highly repetitive Alu elements. With the ability 

to capture precisely the 5′-ends and connect them to the downstream unique sequences, the RAMPAGE 

assay enabled us to delineate individual Alu elements and quantifying those elements that are transcribed. 

The expressed Alu elements that we identified with RAMPAGE data had highly significant, albeit 

modest, overlap with the expressed Alu elements identified by RNA-seq or Pol III ChIP-seq data. Some 

of the differences are undoubtedly due to the biology, for example, Pol III binding does not necessarily 

lead to transcription, others could be due to the differences in the assays. The transcripts captured by 

RAMPAGE are more enriched in 5′-capped RNAs than uncapped, 5′-triphosphorylated RNAs, with Alu 

elements belonging to the latter. Thus, RAMPAGE might have missed some expressed, Pol III-

transcribed Alu elements. Furthermore, our pipeline may have filtered out some expressed Alu elements 

with low read entropy. On the other hand, RNA-seq based approaches would tend to filter out Alu 

elements with non-uniform read profiles, e.g., many Alu elements have few reads at their 5′-halves and 

they may be filtered out. This issue does not affect our RAMPAGE pipeline because RAMPAGE reads 

tend to link the 5′-end reads with the downstream locations (Supplemental Fig. S2D). Due to the 

difference between different assays, inconsistent expression patterns could be observed for some 

expressed Alu elements, especially the intronic ones (Supplemental Fig. S2E). Thus, multiple types of 

data should be considered when individual Alu elements are chosen for experimental testing. 

 

Effect of DICER1 on Alu expression 

Alu elements are usually transcribed at low levels and accumulation of Alu RNAs can cause toxicity and 

lead to human pathology. DICER1 cleaves Alu RNAs, and DICER1 deficiency in the retinal pigmented 

epithelium can result in accumulation of cytotoxic Alu RNAs, which in turn activates innate immune 

responses, leading to diseases such as age-related macular degeneration (Kaneko et al. 2011; Tarallo et al. 

2012). To test whether the global level of Alu transcripts was correlated with DICER1 level, we divided 

the 104 tissue biosamples with both RAMPAGE and RNA-seq data into two equal-sized subsets by the 

expression level of DICER1. Indeed, the high-DICER1 biosamples had significantly lower global Alu 
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RNA levels than low-DICER1 samples (Wilcoxon rank-sum test p-value = 0.03), supporting the effect of 

DICER1 on Alu levels across different cell types. 

 

Specific expression pattern of Alu elements in testis 

We asked that testis exhibited distinct expression pattern of Alu elements from somatic tissues. Among 24 

human tissues each derived from at least two individuals, testis was ranked as one of top tissues in the 

number of expressed Alu loci, and significantly higher than 15 tissues but not significantly different from 

other 8 tissues (Supplemental Fig. S5D), which is consistent with the previous observation of decreased 

methylation levels at Alu loci in testis (Hellmann-Blumberg et al. 1993). However, the expression levels 

of Alu elements in testis are lower than the levels in other tissues (Supplemental Fig. S5E), which may be 

due to piRNA-mediated silencing in testis (Ha et al. 2014; Williams et al. 2015; Gainetdinov et al. 2017). 

 

Binding of cell type-specific master TFs at expressed Alu loci 

Some TFs with enrichments of both ChIP-seq signals and sequence motifs at expressed Alu loci were 

only enriched in one cell type but not in the other, such as GATA1::TAL1 in K562 cells and PAX5 in 

GM12878 cells (Fig. 6A vs. Supplemental Fig. S9A). Often acting in a complex with TAL1, GATA1 is a 

master regulator of erythropoiesis (Kassouf et al. 2010; Wakabayashi et al. 2016). It is essential for the 

proliferation of K562 erythroleukemia cells in a dose-dependent manner, and recently a proliferation 

screen with CRISPR-Cas9 was performed on the GATA1 locus in K562 cells (Fulco et al. 2016). In 

contrast, PAX5 is exclusively expressed in the B-lymphoid lineage of the hematopoietic system and is 

essential for B-lineage commitment (Nutt et al. 1999). These TFs were ranked as the top master 

transcription factors in the respective cell types based on super-enhancer analysis—TAL1 and GATA1 

were ranked the 7th and 10th among 53 K562 master TFs, and PAX5 was ranked the first among 21 

GM12878 master TFs (Hnisz et al. 2013). Thus, the binding of master TFs at these cell type-specific Alu 

loci might influence lineage-specific transcriptional programs in corresponding cell types. 
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Motif enrichment analysis on the Alu elements expressed in different tissues also revealed some master 

transcription factors known to be involved in the biological processes that largely define the identities of 

the respective tissues (Supplemental Fig. S8C; Supplemental Table S6): TCF4 (Flora et al. 2007; Chen et 

al. 2016) and MEF2D (Yang et al. 2009) in the brain, TBX5 (Ieda et al. 2010; Qian et al. 2012; Song et 

al. 2012) and MEF2A (Naya et al. 2002; Schlesinger et al. 2011) in the heart, HNF1A (Kuo et al. 1992; 

Duncan et al. 1998; Odom et al. 2006), CREB1 (Cereghini 1996; Montminy et al. 2004; Odom et al. 

2006), and USF1 (Iynedjian 1998; Pajukanta et al. 2004; Odom et al. 2006) in the liver, TBX5 (Arora et 

al. 2012), TBX2 (Ludtke et al. 2013), and CEBPA (Martis et al. 2006) in the lung, and IRF1 (Taki et al. 

1997) and FLI1 (Suzuki et al. 2013) in the spleen.  
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Supplemental Methods 

RAMPAGE and RNA-seq data 

As part of the ENCODE Consortium, we (T. Gingeras's data production center) generated RAMPAGE 

data in 155 biosamples (Supplemental Table S1). The data, metadata, and protocol of these experiments 

are all available at the ENCODE Portal (https://www.encodeproject.org/). We also generated RNA-seq 

data for all of these 155 biosamples (Supplemental Table S1), and the data, metadata, and protocol of 

these experiments are also available at the ENCODE Portal. These data were processed using the 

ENCODE uniform processing pipelines for the respective data type 

(https://www.encodeproject.org/pipelines/). RNA-seq alignment (BAM files) and gene expression 

quantification are part of the outputs of the pipeline and available at the ENCODE Portal. We used these 

files for downstream analysis. 

 

ChIP-seq and CAGE data processing 

Alignment and quantification of ChIP-seq were performed by the ENCODE Data Coordinating Center 

using the ENCODE uniform processing pipeline of ChIP-seq data 

(https://www.encodeproject.org/pipelines/). Normalized ChIP-seq signals (fold change of ChIP over 

input) were downloaded from the ENCODE Portal for downstream analysis (Supplemental Table S1). 

Read alignment and peak calling of CAGE data were carried out by the FANTOM Consortium (The 

FANTOM Consortium and the RIKEN PMI and CLST (DGT) 2014), and alignment files (BAM) and 

CAGE peaks were downloaded from the FANTOM5 SSTAR database (Abugessaisa et al. 2016) 

(http://fantom.gsc.riken.jp/5/sstar). Detailed information on all ChIP-seq and CAGE datasets is included 

in Supplemental Table S1. 

 

Peak calling for RAMPAGE data and identification of primary Alu transcripts 
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We built a computational pipeline to identify RAMPAGE peaks, each annotating an expressed transcript. 

The BAM files of 155 RAMPAGE datasets (Supplemental Table S1) were downloaded from the 

ENCODE Portal (https://www.encodeproject.org/); these files contained sequencing reads aligned to the 

GRCh37/hg19 reference human genome using STAR (Dobin et al. 2013) based on the ENCODE 

RAMPAGE Processing Pipeline (https://www.encodeproject.org/rampage/). Among the 155 datasets, 70 

contained two biological replicates (hence two BAM files) while the remaining 85 had only one replicate 

(due to the limitation of tissue samples). As illustrated in Fig. 1A, we identified all properly aligned read 

pairs (R1 and R2 denote the paired reads) with uniquely mapped R2 reads from each BAM file and 

collapsed the read pairs with the same alignment coordinates and the identical 15-bp barcode at the 5′-end 

of the R2 reads, as these were presumably PCR duplicates (Batut and Gingeras 2013; Fu et al. 2018). 

Reads from biological replicates were pooled together after the PCR duplicate removal. The 5′-most base 

of each aligned read pairs, which corresponded to the TSSs of the expressed transcripts, were then 

clustered into RAMPAGE peaks using F-seq (Boyle et al. 2008) with parameter settings of feature length 

= 30 and fragment size = 0. To eliminate lengthy tails, we resized the RAMPAGE peaks to the length that 

included 95% of the reads in each peak (Ni et al. 2010). The entropy (E) of a peak was calculated based 

on the coordinates of R2 reads in this peak. The effective length (L) of a peak was defined as the shortest 

distance from the 5′-end that contained 75% of read pairs in the peak.  

 

We then compared our RAMPAGE peaks with annotated genes from GENCODE (V19) and annotated 

Alu elements from the UCSC Genome Browser (hg19 rmsk.txt downloaded from UCSC). To account for 

alternative promoters, we extended annotated Alu elements by padding 50 nts to their annotated 5′-ends 

when assigning RAMPAGE peaks to specific Alu elements. We supplemented GENCODE genes with de 

novo assembled transcripts (StringTie v1.3.3b (Pertea et al. 2015) with default parameters) using RNA-

seq data in the corresponding biosample. As shown in Supplemental Fig. S2C, the RAMPAGE peaks that 

overlapped the TSSs of annotated genes had much higher entropies than the peaks that did not, and an 

entropy of 2.5 separated the two groups of peaks. Furthermore, the effective lengths of most RAMPAGE 



 12 

peaks that overlapped annotated Alu elements clustered around 280 nts, the consensus length of full-

length Alu elements, and few peaks exceeded 1 k nucleotides (Supplemental Fig. S2D). We also tested 

our pipeline with only unspliced RAMPAGE reads, and 99% (247 out of 248) of K562 and 100% (140 

out of 140) GM12878 expressed Alu elements could be discovered, suggesting that the effective length 

cutoff could effectively remove spliced transcripts. Thus, we only retained those RAMPAGE peaks with 

E ≥ 2.5 and L ≤ 1 k nucleotides for further analysis. To minimize the contamination from non-Alu 

transcripts, RAMPAGE peaks with read pairs covering over 50% of an annotated Alu body were deemed 

candidate Alu RAMPAGE peaks, and the corresponding Alu elements were deemed expressed. If one 

RAMPAGE peak overlapped two adjacent Alu elements, this peak was assigned to the Alu with the 

shortest distance to its 5′-end. If one expressed Alu element had multiple RAMPAGE peaks, the peak with 

the highest expression level (measured by RPM, reads per million mapped reads) was retained. As we 

wanted to identify the primary Alu transcripts transcribed by Pol III, we further eliminated the 

RAMPAGE peaks that overlapped the ± 250 bp windows centered on the TSSs of any annotated genes.  

 
To assess the impact of human reference genome version on the identification of expressed Alu elements, 

we reapplied our computational pipeline to the RAMPAGE data by aligning to GRCh38 and overlapped 

with the expressed Alu elements identified in hg19 (Supplemental Table S2). Ninety-seven percent (241 

out of 248) of K562 and 96% (135 out of 140) of GM12878 expressed Alu elements identified in hg19 

were also detected in GRCh38, and only four and six expressed Alu elements in K562 and GM12878 cells 

were newly annotated in GRCh38, respectively. Among the 155 biosamples, 99% and 84% of biosamples 

had discovery rates higher than 80% and 90%, respectively. 

 

Comparison of RAMPAGE peaks with Pol III ChIP-seq data and RNA-seq data 

ChIP-seq peaks of POLR3A and TFIIIC in K562 cells were obtained from (Moqtaderi et al. 2010) and 

overlapped with Alu annotations (hg19 rmsk.txt downloaded from UCSC) to identify Pol III bound Alu 

elements. The list of expressed Alu elements in K562 defined using RNA-seq was downloaded from 
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(Conti et al. 2015), and the binding profile of POLR3A and TFIIIC ChIP-seq in K562 were compared 

with expressed Alu elements identified by RAMPAGE, RNA-seq, or both techniques (Fig. 1E-G; 

Supplemental Fig. S3F).  

 

Comparison of expressed Alu elements with unexpressed Alu elements, tRNAs, and Pol II-

transcribed genes 

Unexpressed Alu elements in K562 cells were randomly sampled from genomic Alu elements that did not 

have any expression signals in either of the two RAMPAGE libraries that corresponding to the biological 

replicates. The list of expressed tRNAs in K562 cells was obtained from (Raha et al. 2010). Pol II-

transcribed genes were randomly sampled from genes with high expression (RPM ≥ 10) according to 

K562 RAMPAGE data. Since tRNAs generally have extremely high Pol III binding signals, Alu elements 

near tRNAs (≤ 1 kb) were removed for the Pol III binding analyses. 

 

Anatomical classification of tissues 

The UBERON anatomy ontology term (Mungall et al. 2012) of each tissue (Supplemental Table S3) was 

extracted from ENCODE Biosample database (https://www.encodeproject.org/). Ontology terms were 

manually classified based on indirect and direct ‘is_a’ or ‘part_of’ relationships to construct mutually 

exclusive organ groups for the tissue samples (Fig. 2C; Supplemental Fig. S5C). 

 

Evolutionary analysis 

Using the liftOver tool with whole-genome alignment-chain files downloaded from the UCSC, we 

mapped 17,249 expressed human Alu elements to four other primate genomes: chimpanzee (panTro5), 

gorilla (gorGor3), orangutan (ponAbe2) and rhesus (rheMac8). We used the primate phylogeny reported 

previously: ((((Human, Chimpanzee), Gorilla), Orangutan), Rhesus) (Locke et al. 2011). Alu elements 

that could not be lifted over to another primate genome were considered missing in that genome. The 

origin of an Alu element was defined as the last common ancestor that descended to all species with its 
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orthologs (Fig. 3A; Supplemental Fig. S6C; Supplemental Table S4). For example, if a human Alu 

element was in the gorilla genome but not in the other three primate genomes, this Alu belonged to B2 

(Fig. 3A). Sequence divergence of each Alu element from the consensus sequence was calculated with 

RepeatMasker and reported as the total number of mismatches per 100 nts (Fig. 3C; Supplemental Fig. 

S6B). 

 

Motif analysis 

The sequence motifs of A-box and B-box (Supplemental Fig. S6F) were identified using the de novo 

motif discovery algorithm MEME (Bailey et al. 2009) on 5,000 randomly sampled expressed or 

unexpressed Alu sequences separately, and the local enrichment of A-box or B-box in expressed and 

unexpressed Alu elements (Supplemental Fig. S6G) was carried out using CentriMo (Bailey and 

Machanick 2012) (parameters: --local --minreg 10 --norc). To search for TF binding motifs, we used the 

AME algorithm (McLeay and Bailey 2010) to identify annotated motifs from the JASPAR CORE 

vertebrates database (v2018) (Sandelin et al. 2004) that might be enriched in the TSS ± 500 bp region of 

expressed Alu elements in tissues and cell lines, respectively (Supplemental Table S6). 

 

DNA methylation analysis 

Sequencing reads of whole-genome bisulfite sequencing datasets in K562 and GM12878 cells were first 

trimmed using Trim Galore (https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) with 

default parameters to remove adapters and low-quality bases. Trimmed reads were aligned to the human 

reference genome (hg19) with Bismark (Krueger and Andrews 2011) (parameters: --bowtie2 -N 1 -L 28), 

and the methylation call for every CpG was extracted by Bismark's methylation extractor script. CpGs 

covered by at least 3 reads were extracted (Tsuji and Weng 2016) and then overlapped with Alu 

annotations. DNA methylation levels of CpGs were compared between expressed Alu elements and 

unexpressed Alu elements (Fig. 4B). 
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Random forest approach to classify expressed Alu elements 

We used the random forest classifier implemented by the h2o Python package 

(https://github.com/h2oai/h2o-3) to train models for predicting the transcriptional states of Alu elements 

(robustly expressed or expressed vs. unexpressed). Random forest classifiers were implemented using 500 

classification trees sampled at each split and a maximum depth of 10 with 10-fold cross-validation 

(parameters: ntrees = 500, nfolds = 10, max_depth = 10, balance_classes = True, 

keep_cross_validation_predictions = True). 

 

To characterize the impact of genomic context and primary sequences on Alu transcription (Fig. 3G, H), 

two random forest classifiers were trained to distinguish robustly expressed or expressed Alu elements 

against 10,000 randomly sampled, unexpressed Alu elements. The classifiers chose from 42 input 

features: (a) distance to the TSS of the nearest Pol II-transcribed gene (gene distance) or the nearest Alu 

element (Alu distance); (b) counts of nearby (± 10 kb) Pol II-transcribed genes (gene count) or Alu 

elements (Alu count); (c) Alu subfamily (Y, S, or J); (d) length of the Alu element; (e) the average 

phastCons sequence conservation score for each Alu element, extracted from the UCSC multiple 

alignments of primate genomes 

(http://hgdownload.cse.ucsc.edu/goldenpath/hg19/database/phastCons46wayPrimates.txt.gz); (f) GC 

content and dinucleotide frequencies of the Alu element and its 100-bp upstream region; and (g) sequence 

divergence from the Alu consensus sequence. 

 

We also trained random forest classifiers that additionally included epigenetic features (Fig. 4D). These 

classifiers were trained on balanced classes of Alu elements expressed in a specific cell type (K562, 

GM12878, or PC-3) against 150 randomly sampled Alu elements expressed in other cell types. Input 

features included normalized DNase-seq signal, ChIP-seq signals of H2AZ, H3K27ac, H3K27me3, 

H3K36me3, H3K4me1, H3K4me2, H3K4me3, H3K79me2, H3K9ac, H3K9me3, and H4K20me1, the 
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percentage of CpG methylation and related genomic context features (gene distance, gene count, Alu 

distance, Alu count, and Alu subfamily).  

 

Gene Ontology analysis 

Alu elements specifically expressed in brain, heart, liver, lung, or spleen were identified using 

RAMPAGE datasets that corresponded to the tissues (Supplemental Table S3), and GO term enrichment 

on proximal genes was performed using GREAT (McLean et al. 2010) (http://great.stanford.edu) with the 

following parameter settings: basal plus extension, proximal 5 kb upstream and 1 kb downstream, plus 

distal up to 1,000 kb. The top 10 enriched GO terms for each tissue with FDR < 0.05 were plotted in Fig. 

5B and listed in Supplemental Table S5. 

 

Overlap with candidate cis-regulatory elements and chromatin states 

The ENCODE cell type-agnostic and cell type-specific candidate Cis-Regulatory Elements (cCREs) and 

the subset of cCREs with enhancer-like signatures (cCREs-ELS) were downloaded from the SCREEN 

resource (http://screen.encodeproject.org/). Chromatin states were downloaded from the ENCODE 

ChromHMM annotations (Ernst et al. 2011) for K562 and GM12878 (Fig. 5E). 

 

ChIA-PET data analysis 

We downloaded paired-end-tag (PET) clusters of Pol II ChIA-PET data in K562 (Li et al. 2012) and 

GM12878 (Tang et al. 2015). PET clusters were further filtered to exclude inter-chromosomal 

interactions. An Alu element was considered linked to the promoter of a protein-coding gene if both the 

Alu and the promoter overlapped tags of the same PET cluster. cCREs-ELS Alu elements, non-cCREs-

ELS Alu elements, and Alu elements expressed in other biosamples were analyzed and compared (Fig. 

5F). 

  

Enrichment of transcription factor binding at expressed Alu loci 
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The ChIP-seq signals of TFs in the TSS ± 500 bp window of expressed Alu elements were quantified in 

K562 and GM12878 cells, respectively. To control for genomic context, 500 randomly sampled Alu 

elements expressed in other biosamples but not in K562 or GM12878 were used as control (Fig. 6; 

Supplemental Fig. S9). 

 

Overlap with STARR-seq, Sharpr-MPRA, and CRISPR-QTL data 

STARR-seq data of primed ESCs and naive ESCs were downloaded from Barakat et al. and active 

enhancers were defined as RPP (reads per plasmid) ≥ 138 (Barakat et al. 2018). Expressed Alu elements 

in H7 and induced pluripotent stem cell derived from fibroblast of arm were combined as Alu elements 

expressed in ESCs (Supplemental Fig. S10A). Sharpr-MPRA activity scores of 15,720 regions tested in 

K562 cells were downloaded from (Ernst et al. 2016), and activity scores at the promoter region (TSS ± 

50 bp) of expressed and unexpressed Alu elements were compared (Supplemental Fig. S10B). The 

enhancer-gene pairs identified in K562 using CRISPR-QTL were downloaded from (Gasperini et al. 

2019) and the Alu elements expressed in K562 were overlapped with the enhancers to identify their target 

genes (Fig. 6B).  
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