Supplemental Materials Molecular Biology of the Cell

Wiedmann et al.

Supplementary Materials for

N-glycosylation-dependent regulation of hK_{2P}17.1 currents

Felix Wiedmann^{1,2,3}, Daniel Schlund¹, Niels Voigt^{4,5}, Antonius Ratte^{1,2,3}, Manuel Kraft^{1,2,3}, Hugo A. Katus^{1,2,3}, Constanze Schmidt^{1,2,3}

¹Department of Cardiology, University of Heidelberg, Heidelberg, Germany; ²DZHK (German Center for Cardiovascular Research), partner site Heidelberg /Mannheim, University of Heidelberg, Germany; ³HCR, Heidelberg Center for Heart Rhythm Disorders, University of Heidelberg, Heidelberg, Germany; ⁴Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Germany; ⁵DZHK (German Center for Cardiovascular Research), partner site Göttingen, University Göttingen, Germany.

Corresponding author:

PD Dr. med. Constanze Schmidt, FESC Department of Cardiology Medical University Hospital Heidelberg Im Neuenheimer Feld 410 D-69120 Heidelberg, Germany Tel.: ++49 6221 568187 Fax: ++49 6221 56 5724 E-Mail: Constanze.Schmidt@med.uni-heidelberg.de

Supplemental figure 1: Intracytoplasmic injection of tunicamycin reduces currents of hK_{2P}17.1 channels, heterologously expressed in *Xenopus* laevis oocytes

To probe whether the route of tunicamycin administration influences its effect on $hK_{2P}17.1$ channels, tunicamycin was coinjected together with the cRNA and measurements were performed 48h after injection. (A) Representative current traces of *Xenopus* oocytes injected with $hK_{2P}17.1$ -WT cRNA and 2ng tunicamycin are compared to control cells (CTRL) injected with $hK_{2P}17.1$ -WT cRNA plus the vehicle DMSO. (B) Resting membrane potentials (RMP) of *Xenopus* oocytes after coinjection with tunicymycin showed a trend towards depolarization, compared to control cell. (C) After coninjection with tunicamycin $hK_{2P}17.1$ currents were significantly diminished. Measurements were performed using the pulse protocol provided. Data are presented as mean \pm SEM. P-values of two-tailed students t-tests are given as inserts. Dashed lines indicate 0 mV.

Supplemental figure 2: Disruption of $hK_{2P}17.1$ *N*-glycosylation by asparagine to glutamine mutagenesis does not prevent channel dimerization

 $hK_{2P}17.1$ -WT, $hK_{2P}17.1$ -N65Q, $hK_{2P}17.1$ -N94Q or $hK_{2P}17.1$ -N65Q,N94Q channel subunits were heterologously expressed in HEK-239T cells and subjected to SDS-PAGE either without (left) or with (right) DTT treatment. For the purpose of clear presentation specific bands are marked in red. Note that $hK_{2P}17.1$ -N65Q, $hK_{2P}17.1$ -N94Q and $hK_{2P}17.1$ -N65Q,N94Q mutant constructs can be detected as dimers, too. Non-transfected negative control experiments and samples of cells grown in the presence of the antibiotic *N*-glycosylation inhibitor tunicamycin (1 µg/ml) have been included as denoted.

Supplement figure 3: Disruption of hK_{2P} 17.1 *N*-glycosylation by alanine-mutagenesis of the *N*+2 amino acid of the *N*-glycosylation consensus motive

(A) Amino acid (AA) sequence of $hK_{2P}17.1$, threonine residues 67 and 96 as essential parts of the N-glycosylation consensus motives (N-x-[S/T], where x can be any AA except proline) around asparagine 65 and 94 are highlighted. (B) Xenopus oocytes expressing hK_{2P}17.1-WT, $hK_{2P}17.1-T67A$ hK_{2P}17.1-T96A display resting membrane or potential (RMP)hyperpolarization while expression of hK_{2P} 17.1-T67A,T96A double mutant constructs does not result in statistically significant changes of the RMP.(C) Single mutant channel subunits hK_{2P} 17.1-T67A and hK_{2P} 17.1-T96A give rise to outward potassium currents, when expressed in Xenopus oocytes. After injection of hK_{2P}17.1-T67A,T96A cRNA potassium currents did not differ from uninjected oocytes. (D)Representative families of current traces, elicited by the pulse protocols depicted. All measurements were performed 48h after cRNA injection using the pulse protocol provided. Data are presented as mean \pm SEM. P-values of two-tailed students t-tests vs. uninjected cells are given as inserts. Dashed lines indicate 0 mV.