Supplemental Materials

Molecular Biology of the Cell

Pollard et a.

Tutorial to lllustrate the Concepts in the Perspective
Article: Empowering Statistical Methods for Cellular and
Molecular Biologists

Daniel A. Pollard!

! Department of Biology, Western Washington University, Bellingham, WA 98225-9160

Introduction

In this tutorial, R statistical software is used to analyze five data sets (provided as Excel files), each using a
different statistical test:

1. Welch's t-test for unequal variances

2. Student's t-test on log transformed responses

3. Logistic regression for categorical response and two treatment variables

4. Chi-Square contingency test on combined response and combined treatment groups
5. ANOVA with Tukey-Kramer post-hoc

For each example, the following steps are taken:

State biological hypothesis

State the number and types of variables

Determine the preferred statistical test and null hypothesis

Check if data meet the assumptions of the preferred statistical test
Decide what statistical test to use

Run the statistical test

Interpret the results of the statistical test

Display the data and statistical results in a figure

You do not need to install R or perform any of the analyses in the tutorial in order to learn from the examples.

Downloading and using R

R is free statistical software (https://www.r-project.org/ (https://www.r-project.org/)). It can be downloaded at
https://cran.r-project.org/mirrors.html (https://cran.r-project.org/mirrors.html) and installed on any OS.

If you are new to R, we recommend going through tutorials, such as the following: https://cran.r-
project.org/manuals.html (https://cran.r-project.org/manuals.html)

We also highly recommend downloading and installing R-Studio (https://www.rstudio.com/
(https://www.rstudio.com/)), which offers a more user-friendly interface for R.

Downloading and using Jupyter

Jupyter is free software for building data analysis notebooks with embedded programming language code, such
as R. This tutorial was created in Jupyter and can be run as a live notebook with executable and editable R
code if Jupyter is installed.

To install Jupyter, following the instructions on this page: https://jupyter.org/install (https://jupyter.org/install)
After Jupyter is installed, you will also need to allow Jupyter to run R by following the instructions on this page:
https://anaconda.org/chdoig/jupyter-and-conda-for-r/notebook (https://anaconda.org/chdoig/jupyter-and-
conda-for-r/notebook)

Tips on reading and using the tutorial

The tutorial is formatted with narrative text like this, R code blocks in grey boxes (see just below), and output
from running the R code (including plots) just after the R code blocks.

In [1]: | # this line that starts with the pound sign is a comment in a block of R
code and does not get run
print('this is the output from some R code')

[1] "this is the output from some R code"

The R code in the grey boxes can be cut and pasted into R or R-Studio. If you are running Jupyter, the R code
throughout the tutorial can be executed using the "Run" button and can also be edited.

Installing 'readxl' and 'plyr' packages

There are numerous ways to read data into R. In this tutorial we will be using a very convenient function called
readxl() that takes an Excel file as input and creates an R dataframe from it. Because this function is not part of
the standard functions in R, we have to install the 'readx|' package to be able to use the function.

We will also install the 'plyr' package. This package has a function called ddply() that lets us calculate many
descriptive statistics for a dataset with one function call and it outputs the results in a neat and tidy dataframe.

Run the following code to install the packages. You only need to do this once.

In [2]: install.packages('readxl', repos='http://cran.us.r-project.org')
install.packages('plyr', repos='http://cran.us.r-project.org')

Loading packages

Although you only have to install a specialized package once, you have to load the package every time you
restart R and want to use functions in the package. Packages can be loaded using the library() function as
follows.

In [3]: library('"readxl")
library("plyr")

Example 1: Welch's t-test for unequal variances

In this first example, we are testing the biological hypothesis that a mutant genotype affects a phenotype we are
measuring. Our statistical null hypothesis is that genotype has no effect on the measurement.

There are two variables in the experiment: Genotype and Measurement. Genotype is a categorical variable with
two possible values: WT and Mutant. Measurement is a continuous numerical variable. Measurement is our
response variable. Genotype is our treatment variable.

Based on these two variables, we will run a Student's two-sample t-test as long as we can meet the
assumptions of that test: normally distributed responses within each treatment and equal variances between
treatments. We have to look at our data to see if we have met these assumptions.

In [5]: | # read fist data file into data frame object
datal <- read xlsx('DataSetl.xlsx', col names = TRUE)
note that the above line of code assumes the data file is in the same
folder as the notebook
look at the first several rows of data
head(datal)
make genotype column a categorical variable which are called factors 1
n R
datal$Genotype <- as.factor(datal$Genotype)
check that data structure is correct
str(datal)
look at summary information
summary (datal)

Genotype Measurement

WT 12.0
WT 8.0
WT 14.0
WT 14.5
WT 3.5
WT 10.0
Classes ‘tbl df’, ‘tbl’ and 'data.frame': 40 obs. of 2 variable

St
$ Genotype : Factor w/ 2 levels "Mutant","WT": 2 2 2 2 2 2 2 2 2 2

$ Measurement: num 12 8 14 14.5 3.5 10 9.5 15 11 10.5 ...

Genotype Measurement

Mutant:23 Min. : 2.00
WT 217 1st Qu.:10.00
Median :14.25
Mean :16.41
3rd Qu.:21.62
Max. :45.00

In the above code block we read the data in from an Excel file and saved it in a data frame variable called
'datal1'. The data appears to have been read in correctly. It was organized in what is called a 'long format'. In the
long format, each row is a replicate and the columns are the variables. In this case, each individual has a
genotype and measurement. R does not know that we want Genotype to be a categorical variable so we have
to tell it. Categorical variables are called 'factors' in R so we use the function as.factor() to make Genotype
categorical. We confirmed that it worked using the str() function. The summary() function shows us some
information about the data. From that we learn that the measurements range from 2 to 45.

We are interested in checking the assumptions of the t-test so we plot the data and calculate summary
statistics.

In [6]:

set plot width & height (only needed for Jupyter)
options(repr.plot.width=4, repr.plot.height=5)

plot data as boxplot
plot(datal)

set plot width & height (only needed for Jupyter)
options(repr.plot.width=4, repr.plot.height=7)
plot data as stacked histograms

par(mfrow=c(2,1))
hist(datal[datal$Genotype
asurement', xlim = c(0,50))
hist(datal[datal$Genotype
ab = 'Measurement', xlim =
dev.off()

'"WT',]$SMeasurement, main =

'Mutant',]$Measurement, main

c(0,50))

’WT’,

xlab = 'Me

'Mutant', x1

0
Lo I
< N
I
|
|
5 © |
e I
o .
»
§ 8-
=
o _| i
- | |
| |
: I
N
l [
Mutant WT
Genotype

null device: 1

Frequency

Frequency

2 3 4 5

1

0

[I I ! I

0 10 20 30 40 50
Measurement
Mutant
O I I : I 1
0 10 20 30 40 50

Measurement

In [7]: (statsl <- ddply(datal, .(Genotype), summarize,
N = length(Measurement),
Median = median(Measurement),
Mean = mean(Measurement),
SD = sd(Measurement),
Var = var (Measurement)
))
note that by putting parentheses around the line of code above, R will
both save the table to the statsl object
and will print the table out. Without the parentheses it would only be
saved to statsl and not print out.

Genotype N Median Mean SD Var

Mutant 23 20.5 20.09043 10.962370 120.17356

WT 17 12.0 11.44118 3.570199 12.74632

The plot() function by default makes a boxplot for this kind of data. From the boxplot you can tell that the
variances are somewhat different between genotypes. The hist() function makes histograms. The stacked
histograms give a sense for the shapes of each distribution. Although neither looks perfectly normal, neither is
strongly skewed. The ddply() function (from the plyr package that we installed and loaded above) helps us
organize our summary statistics for each genotype. The median and mean values for each genotype are very
similar, confirming that the distributions are not highly skewed. From this information, we will say that the data
have met the t-test assumption of normally distributed responses in each treatment. What about equal
variances between treatments? The variances are an order of magnitude different, which violates the
assumption of the t-test.

Instead of a Student's t-test, we can run a Welch's t-test which assumes normality but does not assume equal
variances.

In [8]: # run Welch's t-test on data with alpha set to 0.05
t.test(datal[datalSGenotype == 'WT',]SMeasurement, datal[datal$Genotype
== 'Mutant',]$Measurement)

Welch Two Sample t-test

data: datal[datal$Genotype == "WT",]S$SMeasurement and datal[datal$Geno
type == "Mutant",]$Measurement
t = -3.5385, df = 27.975, p-value = 0.001427
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-13.656431 -3.642085
sample estimates:
mean of x mean of y
11.44118 20.09043

Our p-value is less than our alpha value of 0.05 so we reject the null hypothesis that genotype has no effect on
our measured response. When reporting this result in a paper it is best to include t, df, and p-value. Here is what
that might look like:

The mutant had significantly different measurements than wild type (Welch's (2,0.05) = -3.54, df = 27.98, p-
value < 0.00143).

The numbers in parentheses next to the t are 2 for a two-sided test (i.e. allowing the effect of the mutant to both
increase or decrease the measurement) and 0.05 for the alpha value.

In addition to reporting the result in text, we can also show our data and our results using a figure. We are going
to make a stripchart that includes the mean and 95% confidence intervals for each genotype. First we calculate
the 95% confidence intervals around the means for each genotype.

In [9]: # calculate 95% confidence intervals
here is a function to calculate the magnitude of one side of the 95% 1
nterval
intmag95 <- function(x) {
sem <- sd(x) / sqgrt(length(x))
t <- gt(0.975, df = length(x) - 1)
sem * t
}
here are two functions to calculate the upper and lower bounds of the
95% interval
upper95 <- function(x) mean(x) + intmag95(x)
lower95 <- function(x) mean(x) - intmag95(x)
now calculate the 95% confidence intervals for both genotypes
(datal.95ci <- ddply(datal, .(Genotype), summarize,
IntMag95 = intmag95(Measurement),
Upper95 = upper95(Measurement),
Lower95 = lower95(Measurement)

))

Genotype IntMag95 Upper95 Lower95

Mutant 4.740484 24.83092 15.349950

WT 1.835627 13.27680 9.605549

We created three functions to help us calculate the 95% confidence intervals. The first function intmag95()
calculates the magnitude of one half of the interval. It multiplies the SEM by the t statistic value that

corresponds with an alpha value of 0.05. The upper95() and lower95() functions simply add or subtract the
intmag95() value to/from the mean to get the actual value of the top and bottom of the confidence interval.

We then used the ddply() function again to run these functions we just wrote on the measurement values for
each genotype. Looking at the table, you can see that the 95% confidence intervals for the two genotypes do
not overlap. When 95% confidence intervals do not overlap, you can be sure that a statistical test will reject the
null hypothesis of the categories have equal responses. And that is the case for us here.

Now we want to display the data, means, and confidence intervals.

In [10]: | # set plot width & height (only needed for Jupyter)
options(repr.plot.width=4, repr.plot.height=5)
diplay results as a strip chart with mean and 95% confidence intervals
stripchart (Measurement ~ Genotype, data = datal, vertical=TRUE, method=
"jitter", ylab = 'Measurement', pch = 20, cex = 0.5)
segments (0.8, statsl$Mean[l], 1.2, statsl$SMean[l], lwd = 1.5)
arrows(l, datal.95cis$Upper95[1], 1, datal.95ciSLower95[1]1[1], angle = 90
, code = 3, 1lwd = 1.5)
segments (1.8, statsl$Mean[2], 2.2, statsl$Mean[2], lwd = 1.5)
arrows (2, datal.95ci$Upper95[2], 2, datal.95ci$Lower95[2], angle = 90, c
ode = 3, 1lwd = 1.5)

40

30

Measurement

Mutant WT

The above stripchart conveys a lot of information to the reader. It shows the actual data points for each
genotype and how they are distributed. It shows the mean values. And it shows the 95% confidence intervals
which do not overlap and therefore convey that the mutant is significantly different than the wild type in
measurement response.

Example 2: Student's t-test on log transformed

responses

In this second example we are working with a very similar dataset. The dataset has the same types of variables
and we are interested in the same biological hypothesis. The difference comes when we inspect the data to see

if it meets the assumptions of a Student's t-test.

In [11]: | # read second data file into data frame object
data2 <- read xlsx('DataSet2.xlsx', col names =
look at the first several rows of data

head(data2)

make genotype column a categorical variable which are called factors i

n R

data2$Genotype <- as.factor(data2$Genotype)
check that data structure is correct

str(data2)

look at summary information

summary (data2)

Genotype Measurement

WT
WT
WT
WT
WT

WT

Classes ‘tbl df’,

St
$ Genotype

Genotype
Mutant:34
WT :29

34.510
26.355
22.285
30.940
26.160

26.355

: Factor w/ 2 levels

‘tbl’

and 'data.frame':

Measurement
Min. :22.29
lst Qu.:30.11
Median :39.31
Mean $39.20
3rd Qu.:45.39
Max. :63.04

"Mutant","WT":

TRUE)

63 obs. of 2 variable

2222222222

$ Measurement: num 34.5 26.4 22.3 30.9 26.2 ...

In [12]:

set plot width & height (only needed for Jupyter)
options(repr.plot.width=4, repr.plot.height=5)

plot data as boxplot
plot(data2)

set plot width & height (only needed for Jupyter)
options(repr.plot.width=4, repr.plot.height=7)
plot data as stacked histograms

par (mfrow=c(2,1))
hist(data2[data2$Genotype
asurement', xlim = c(20,65))
hist(data2[data2$Genotype
ab = 'Measurement', xlim =
dev.off()

'"WT',]$SMeasurement, main =

'Mutant',]$Measurement, main

c(20,65))

’WT’,

xlab = 'Me

'Mutant', x1

40 50 60

Measurement

30

null device: 1

S
|
|
|
|
|
|
: —_—T
_ :
|
|
o
l [
Mutant WT
Genotype

Frequency

Frequency

12

12

[I I I

20 30 40 50 60
Measurement
Mutant
O | I I 1
20 30 40 50 60

Measurement

In [13]: (stats2 <- ddply(data2, .(Genotype), summarize,
N = length(Measurement),
Median = median(Measurement),
Mean = mean(Measurement),
SD = sd(Measurement),
Var = var (Measurement)

))

Genotype N Median Mean SD Var

Mutant 34 44.7825 47.06406 7.304294 53.35271

WT 29 29.8450 29.98086 4.254345 18.09945

With regard to normality, the measurement responses appear to be somewhat skewed to the right. The median
values are less than the mean values, consistent with a slight skew. This might be a violation of the assumption
of normality. The responses for the mutant also appear to be slightly bimodal. Student's t-test is robust to small
deviations from normality so it is unclear if these departures from normality will be a problem.

The variances are just about three-fold different. Student's t-test is robust to this level of difference in variance
but only when the design is balanced. The sample sizes are somewhat different so again we are close to
violating this assumption.

The skew in the response is the more serious violation because if it cannot be corrected then we will need to
use a non-parametric test with lower power. Right-skewed distributions can sometimes be corrected using a
natural log or reciprocal transformation. Note that the function log() in R defaults to the natural log, which is
commonly written as In.

In [14]: | # 1n transformation
data2$LnMeasurement <- log(data2$Measurement)
plot data as stacked histograms
par (mfrow=c(2,1))

hist(data2[data2$Genotype == 'WT',]$LnMeasurement, main = 'WT', xlab =
'ln(Measurement) ', xlim = c(3,4.5))

hist(data2[data2$Genotype == 'Mutant',]$LnMeasurement, main = 'Mutant’,
xlab = 'ln(Measurement)', xlim = c(3,4.5))

dev.off()

descriptive stats
(stats2.Ln <- ddply(data2, .(Genotype), summarize,
N = length(LnMeasurement),
Median = median(LnMeasurement),
Mean = mean(LnMeasurement),
SD = sd(LnMeasurement),
Var = var (LnMeasurement)

))

null device: 1

Genotype N Median Mean SD Var

Mutant 34 3.801812 3.840482 0.1486929 0.02210958

WT 29 3.396017 3.391070 0.1395342 0.01946978

WT
m J—
2 e d |-
u]
> < -
L
L
N —
o 4 [
[[[l
3.0 3.5 4.0 4.5
In(Measurement)
Mutant
N —
==
g © 7]
@
3 0o —
o
e Y
N pa—
D —
[[[1
3.0 35 4.0 4.5

In(Measurement)

In [15]:

reciprocal transformation
data2$RecipMeasurement <- 1 / data2$Measurement
par (mfrow=c(2,1))

hist(data2[data2$Genotype == 'WT',]$SRecipMeasurement, main = 'WT', xlab
= 'l / Measurement', xlim = ¢(0.01,0.05))

hist(data2[data2$Genotype == 'Mutant',]SRecipMeasurement, main = 'Mutan
t', xlab = 'l / Measurement', xlim = c¢(0.01,0.05))

dev.off()

descriptive stats
(stats2.recip <- ddply(data2, .(Genotype), summarize,
N = length(RecipMeasurement),
Median = median(RecipMeasurement),
Mean = mean(RecipMeasurement),
SD = sd(RecipMeasurement),
Var = var (RecipMeasurement)

)

null device: 1

Genotype

N Median Mean SD Var

Mutant 34 0.02233041 0.02170803 0.003091255 9.555856e-06

Frequency

Frequency

WT 29 0.03350645 0.03398694 0.004673262 2.183938e-05

0 2 4 6 8 10

0 2 4 6 8 10

WT

[I I [|
0.01 0.02 0.03 0.04 0.05

1 / Measurement

Mutant

J O
[1 | [1

0.01 0.02 0.03 0.04 0.05

1/ Measurement

Both transformations improved the shape of the distributions to be more normal in appearance. The natural log
transformation also resulted in the variances being very similar between genotypes, while the reciprocal did not.
The dataset with natural log transformations of the measurement responses meet the assumptions of Student's

t-test.

In [16]: | # run t-test on Iln transformed data with alpha set to 0.05 and assumptio
n of equal variance

t.test(data2[data2$Genotype == 'WT',]$LnMeasurement, data2[data2$Genotyp
e

== 'Mutant',]$LnMeasurement, var.equal = TRUE)

Two Sample t-test

data: data2[data2S$Genotype == "WT",]S$SLnMeasurement and data2[data2$Ge
notype == "Mutant",]$LnMeasurement
t = -12.299, df = 61, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.5224811 -0.3763438
sample estimates:
mean of x mean of y
3.391070 3.840482

In [17]: | # now calculate the 95% confidence intervals for both genotypes
(data2.95ci <- ddply(data2, .(Genotype), summarize,
IntMag95 = intmag95(LnMeasurement),
Upper95 = upper95(LnMeasurement),
Lower95 lower95 (LnMeasurement)

))

Genotype IntMag95 Upper95 Lower95

Mutant 0.05188140 3.892363 3.788601

WT 0.05307596 3.444146 3.337994

In [18]:

set plot width & height (only needed for Jupyter)
options(repr.plot.width=4, repr.plot.height=5)

diplay results as a strip chart with mean and 95% confidence intervals
stripchart(LnMeasurement ~ Genotype, data = data2, vertical=TRUE, method

="jitter", ylab = 'ln(Measurement)', pch = 20, cex = 0.5)
segments (0.8, stats2.Ln$Mean[l], 1.2, stats2.Ln$Mean[l], lwd = 1.5)
arrows(l, data2.95ci$Upper95[1], 1, data2.95ci$Lower95[1][1], angle = 90
, code = 3, 1lwd = 1.5)
segments (1.8, stats2.Ln$Mean[2], 2.2, stats2.Ln$Mean[2], lwd = 1.5)
arrows (2, data2.95ci$Upper95[2], 2, data2.95ci$Lower95[2], angle = 90, c
ode = 3, 1lwd = 1.5)
%
a® »
D-_ L]
~ .
— o ___:__1_:___
E e
e
E : ..’
2 <9 .
3 © =
E L
il —
c < s
= N Al IS S—
™]
lw-:
N .
ol
-
I I
Mutant WT

The mutant had significantly different measurements than wild type (Student's t(2,0.05) = -12.299, df = 61, p-
value < 2.2e-16).

The figure supports this conclusion with non-overlapping 95% confidence intervals.

Example 3: Logistic regression for categorical response
and two treatment variables

In the first two examples we had a continuous numerical response variable and a single categorical treatment
variable. In this example we have a categorical response variable (Phenotype) and two categorical treatment
variables (Genotype & Day).

Our biological hypothesis is that genotype (disomic vs trisomic) affects the proportion of cells that are ciliated.
Data was collected over many days so we include Day as a so called 'nuisance' treatment variable. Our
statistical null hypotheses are that the proportion of ciliated cells is the same across genotypes and that the
proportion of ciliated cells is the same across days.

We can test these hypotheses using logistic regression in a generalize linear model and a series of Wald tests.
This approach makes few assumptions about the structure of the data and the gim() function that we will use
will warn us if our data are not meeting those assumptions.

In [19]:

read third data file into data frame object

data3 <- read_xlsx('DataSet3.xlsx', col_names = TRUE)

head(data3)

from Domenico Galati et al 2018, Fig 1 (https://doi.org/10.1016/7.devc
el.2018.07.008)

make all three columns factors which are categorical variables in R
data3$Phenotype <- as.factor(data3$Phenotype)

data3$Genotype <- as.factor(data3$Genotype)

data3$Day <- as.factor(data3$Day)

check that data structure is correct

str(data3)

look at summary tables

table(data3)

Phenotype Genotype Day

Ciliated Disomic 1
Ciliated Disomic 1
Ciliated Disomic 1
Ciliated Disomic 1
Ciliated Disomic 1
Ciliated Disomic 1
Classes ‘tbl df’, ‘tbl’ and 'data.frame': 1058 obs. of 3 variabl

es:

$ Phenotype: Factor w/ 2 levels "Ciliated","Not Ciliated": 1 1 1 1 1 1
1111...

$ Genotype : Factor w/ 2 levels "Disomic","Trisomic": 1 1 1 1 11 11
11 ...

$ Day : Factor w/ 5 levels "1","2","3","4",..: 111111111
1 ...

+ o Day =1

Genotype
Phenotype Disomic Trisomic
Ciliated 78 16
Not Ciliated 96 83
, , Day = 2
Genotype
Phenotype Disomic Trisomic
Ciliated 23 8
Not Ciliated 102 94
, , Day =3
Genotype
Phenotype Disomic Trisomic
Ciliated 13 10
Not Ciliated 59 68
, Day = 4
Genotype
Phenotype Disomic Trisomic
Ciliated 63 14
Not Ciliated 57 74
IIDay=5
Genotype
Phenotype Disomic Trisomic
Ciliated 51 20

Not Ciliated 57 72

We will now run the glm() function on the data. We need to tell the gim() function which variable is the response
variable and which variables are treatment variables. This is done in R by putting the response variable to the
left of a tilda symbol and the treatment variables to the right of the tilda symbol with plus signs between
treatment variables. The glm() function also needs to know what kind of regression we plan to do. Because our
response variable is a binary categorical variable, the appropriate type of regression is called logistic regression.
We specify this by telling gim() to use a binomial error distribution. The binomial distribution quantifies the
probability of a binary outcome, like flipping a coin to get heads versus tails. Here, the binary outcome is ciliated
versus not, and the logistic regression model is a way to allow the probability of being ciliated to depend on
genotype and day.

In [20]:

build a generalized linear model of Phenotype with binomial errors and
Genotype and Day as treatments

model3 <- glm(Phenotype ~ Genotype + Day, family = binomial(), data = da
ta3)
summary (model3)
Call:
glm(formula = Phenotype ~ Genotype + Day, family = binomial(),
data = data3)
Deviance Residuals:
Min 10 Median 30 Max
-2.3449 -1.1991 0.6291 0.7300 1.1558
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.2490 0.1381 1.803 0.071422 .
GenotypeTrisomic 1.2705 0.1602 7.933 2.14e-15 ***
Day2 1.1638 0.2371 4.909 9.14e-07 ***
Day3 0.9373 0.2671 3.510 0.000448 ***
Day4 -0.1980 0.1999 -0.990 0.322117
Day5 -0.1744 0.2037 -0.856 0.391964
Signif. codes: 0 ‘***’ (0,001 ‘**’ Q.01 ‘*’ 0.05 ‘.’ 0.1 * " 1

(Dispersion parameter for binomial family taken to be 1)

1254.2
1125.5

Null deviance:
Residual deviance:
AIC: 1137.5

on 1057
on 1052

Number of Fisher Scoring iterations: 4

degrees of freedom
degrees of freedom

The section of the gim() function output that we are most interested in is the coefficients. The line that starts with
"GenotypeTrisomic" tells us about the effect of genotype. The magnitude of the effect of being Trisomic vs
Disomic is 1.2705. This coefficient is calculated as the natural log of the odds ratio. A Wald test was run on this
coefficient to determine if it is a significant departure from what would be expected if there was no effect of
genotype. The Wald test is based on z-scores. Dividing the coefficient by the standard error results in a z-score
of 7.933 which has a p-value of 2.14e-15. So genotype has a very significant effect on the proportion of cells
with cilia.

Simiarly, there were significant effects of what day the experiment was conducted on. Day2 and Day3 were both
significantly different from Day1. Although the effect of day was not of interest, by including it as a variable in the
model we were able to estimate and therefore control for significant variation in the proportion of cells with cilia
across days. Controling for the day effect allowed us to more accurately estimate the effect and significance of
genotype.

Next we want to display our results. It is very common to see this kind of data displayed as a bar graph with
proportion or percentage on the y-axis and the different treatment categories on the x-axis. That is a fine way to
display the data but it doesn't convey information about the hypothesis being tested.

An Odds Ratio plot is an excellent way to convey the effect of a binary categorical treatment variable on a binary
categorical response variable. In this case the Odds Ratio = (Ciliated Disomic / Not Ciliated Disomic) / (Ciliated
Trisomic / Not Ciliated Trisomic). As mentioned above, the coefficient estimated for GenotypeTrisomic is the
natural log of the odds ratio. So the inverse natural log (i.e. 'e') of the coefficient is the odds ratio. Although it
was not printed out to the screen, the glm() function also calculated the 95% confidence interval for the
coefficient, which can also be converted to an odds ratio using the inverse natural log.

In [21]: x.loc <- barplot(exp(coef(model3)[[2]]), names.arg = c(' Genotype'), ylab
= 'Odds Ratio = (C Di / NC Di) / (C Tri / NC Tri)', ylim = c(0,ceiling(e
xp(confint(model3))[2,2])))
arrows (x.loc, exp(confint(model3))[2,2], x.loc, exp(confint(model3))[2,1
1, angle = 90, code = 3, lwd = 1.5)
abline(h = 1, 1ty = 2)

Waiting for profiling to be done...
Waiting for profiling to be done...
Waiting for profiling to be done...

= o — -
I_

QO

=

= ¥ -
|_

Q

5
O

=

O o
C

I

=)
Ei—
o

W

o

°

O o

Genotype

The figure conveys that the odds of having cilia in disomic cells is ~3.5 times higher than in trisomic cells. It also
conveys that this difference significantly exceeds the null expectation of equal odds (the dashed line at 1),
consistent with the small and significant p-value from the Wald test run by the gim() function.

Example 4: Chi-Square contingency test on combined
response and combined treatment groups

This example is similar to the previous example in that there is a categorical response variable and the treatment
is categorical. However, in this example there is only one categorical treatment variable so instead of logistic
regression we can run a chi-square contingency test.

The biological hypothesis is that loss of expression of the gene JMJUD2A causes decreased expression of the
gene Sox2 in developing chicken neural plate. The four treatments were control morpholino (Control-MO),
translation blocking JMJD2A morpholino (JmjD2A-tbMO), splicing blocking JMJD2A morpholino (JmjD2A-
sbMO), and splicing blocking JMJD2A morpholino plus JmjD2A full-length rescue vector. The response was
Sox2 expression for each embryo categorized as full wild type expression (WT), mild decrease in expression
(Mild), or strong decrease in expression (Strong). An appropriate null hypothesis is that Sox2 expression
response is independent of JIMUD2A treatment.

We can test our null hypothesis with a chi-square contingency test. The test calculates the expected counts of
each combination of treatment and response assuming independence. The assumptions of the test are that
none of the expected counts are less than 1 and <20% of the expected counts are less than 5. Let's look at the
data to see if they meet these assumptions.

In [22]: | # read fourth data file into data frame object
data4 <- read xlsx('DataSet4.xlsx', col names = TRUE)
head(data4)
from Santiago O. Bouzas et al 2016, Fig 2 (https://doi.org/10.1091/mb
c.el6-01-0042)
make both columns factors which are categorical variables in R
data4$Phenotype <- as.factor(data4$Phenotype)
datad4S$Treatment <- as.factor(data4s$sTreatment)
check that data structure is correct
str(data4d)
create a contingency table
(data4.table <- table(data4d))

Treatment Phenotype

Control-MO Mild

Control-MO Mild

Control-MO WT

Control-MO WT

Control-MO WT

Control-MO WT
Classes ‘tbl df’, ‘tbl’ and 'data.frame': 86 obs. of 2 variable
S:

$ Treatment: Factor w/ 4 levels "Control-MO","JmjD2A-sbMO",..: 1 1 1 1

111111...
$ Phenotype: Factor w/ 3 levels "Mild","Strong",..: 1 1 3 3 3 3 3 3 3

3 ...
Phenotype
Treatment Mild Strong WT
Control-MO 2 0 20
JmjD2A-sbMO 3 7 2
JmjD2A-sbMO+pCI-JmjD2A 4 2 9
JmjD2A-tbMO 10 14 13

The table() function converted the long format data into a table of counts for combinations of treatment and
phenotype (Sox2 expression). An efficient way to get the expected counts from the observed counts is to run
the chisq.test() function and then print out the expected counts which it calculates.

In [23]: # run chi-square test with correct = F because this is not a 2x2 table
chitest4 <- chisqg.test(datad.table, correct = F)
print expected counts
chitest4$expected

Warning message in chisqg.test(data4.table, correct = F):
“Chi-squared approximation may be incorrect”

Mild Strong WT

Control-MO 4.860465 5.883721 11.255814
JmjD2A-sbMO 2.651163 3.209302 6.139535
JmjD2A-sbMO+pCIl-JmjD2A 3.313953 4.011628 7.674419

JmjD2A-tbMO 8.174419 9.895349 18.930233

Although the expected counts meet the first assumption that none can be less than 1, they do not meet the
second assumption that <20% are less than 5. 5 out of 12 (41.7%) are less than 5.

There are two ways to handle this situation. One way is to increase sample sizes for each of the treatments.
Another way is to consider if any of the treatment or response categories could be combined such that the
assumption is satisfied while keeping the outcome of the hypothesis test interpretable and meaningful.

Given the biological hypothesis that loss of expression of the gene JMJUD2A causes decreased expression of the
gene Sox2, the two treatments intended to decrease expression of JMJD2A (JmjD2A-tbMO & JmjD2A-sbMO)
could be combined and the two responses that involve decreased expression of Sox2 (Mild & Strong) could be
combined.

In [24]: # this is an inelegant way of making a new counts table with JmjD2A-tbMO
& JmjD2A-sbMO combined and Mild & Strong combined
(data4.table.comb <- matrix(c(2+0,20,3+7+10+14,2+13,4+2,9), nrow = 3, by
row = T, dimnames = list(Treatment = c("Control-MO","JmjD2A-sbMO+tbMO",
"JmjD2A-sbMO+pCI-JmjD2A"), Phenotype = c("Mild+Strong","WT"))))

Mild+Strong WT

Control-MO 2 20
JmjD2A-sbMO+tbMO 34 15
JmjD2A-sbMO+pCIl-JmjD2A 6 9

Now check the expected counts for this new observed counts table.

In [25]: # run chi-square test with correct = F because this is not a 2x2 table
chitestd4comb <- chisqg.test(data4.table.comb, correct = F)
print expected counts
chitest4comb$expected

Mild+Strong WT

Control-MO 10.744186 11.255814
JmjD2A-sbMO+tbMO 23.930233 25.069767

JmjD2A-sbMO+pCl-JmjD2A 7.325581 7.674419

Now all expected values are 5 or more so the assumptions of the test have been met.

In [26]: chitestd4comb

Pearson's Chi-squared test

data: data4d4.table.comb
X-squared = 22.66, df = 2, p-value = 1.201le-05

The test resulted in a significant p-value. So we reject the null hypothesis that Sox2 expression is independent
of treatments decreasing JMJD2A expression.

A table is an excellent way of displaying data from a contingency analysis. If a figure is desired, a mosaic plot is
an appropriate type of graph.

In [27]:

set plot width & height (only needed for Jupyter)
options(repr.plot.width=7, repr.plot.height=7)

first make a table of proportions rather than counts
(datad.table.comb.prop <- data4.table.comb / matrix(c(rep(sum(data4.tabl
e.comb[1l,]),2), rep(sum(datad4.table.comb[2,]),2), rep(sum(datad.table.co
mb[3,]1),2)), nrow = 3, byrow = T))

use barplot to make a mosaic plot

barplot(t(datad4.table.comb.prop), legend = T, width = c(sum(data4.table.
comb[1l,]), sum(datad.table.comb[2,]), sum(datad.table.comb[3,])), ylab=
"Proportion", args.legend = list(x = "top", bty="n"))

Mild+Strong WT

Control-MO 0.09090909 0.9090909
JmjD2A-sbMO+tbMO 0.69387755 0.3061224

JmjD2A-sbMO+pCIl-JmjD2A 0.40000000 0.6000000

1.0

O WT
B Mild+Strong

0.8

Proportion

0.4

C!_-
o

Control-MO JmjD2A-sbMO+tbMO JmjD2A-sbMO+pCl-JmjD2A

The mosaic plot conveys the differences in response proportions across treatments. Sample sizes for each
treatment are reflected in the width of the bars. This figure could be improved by overlaying the counts in each
bar.

Example 5: ANOVA with Tukey-Kramer Post-hoc

In this example there is a categorical treatment variable and a continuous numerical response variable, just like
the first two examples. However, in this example, the categorical treatment variable has four groups, three RNAI
treatments and one control treatment.

The biological hypothesis is that RNAi against all three members of the ZLW gene family results in decreased
fluorescence intensity of a reporter. A common mistake is to perform a series of t-tests, which does not control
the false positive rate at or below 0.05. If all six pairwise comparisons were made using t-tests, the false positive
rate would be capped at 6 x 0.05 = 0.3, which is quite high. A single ANOVA test can be run to determine if any
of the mean responses across treatments are different. The null hypothesis is that the mean responses are the
same across all treatments. If we reject this null hypothesis from the ANOVA, we can then run a Tukey-Kramer
post-hoc analysis to determine which pairs of treatments are significantly different. And all of that can be done
while keeping the false positive rate no higher than 0.05.

ANOVA has the same assumptions as t-tests: normality of responses within treatments and equal variances
across treatments. Let's see if the data meet these assumptions.

In [28]: | # read fifth data file into data frame object
data5 <- read xlsx('DataSet5.xlsx', col names = TRUE)
head(datab)
make Treatment column factor which is a categorical variable in R
datab$Treatment <- as.factor(data5$Treatment)
check that data structure is correct
str(data5)
look summary information
summary (data5)

Treatment Intensity

control 22.65740
control 23.57987
control 25.03277
control 28.58105
control 12.63860

control 25.13817

Classes ‘tbl df’, ‘tbl’ and 'data.frame': 298 obs. of 2 variable
S:

$ Treatment: Factor w/ 4 levels "control","ZLW1-RNAi",..: 1 1 1 11 1
1111...

$ Intensity: num 22.7 23.6 25 28.6 12.6 ...

Treatment Intensity
control :74 Min. : 0.3958
ZLW1-RNAi:73 1st Qu.:10.8099
ZLW2-RNAi:76 Median :14.2645
ZLW3-RNAi:75 Mean :14.4173

3rd Qu.:17.7509
Max. :30.6101

In [29]: | # set plot width & height (only needed for Jupyter)
options(repr.plot.width=6, repr.plot.height=5)
plot data as boxplot
plot(datab)

20

Intensity
15

1

I | | I
control ZLW1-RNAI ZLW2-RNAI ZLW3-RNAI

Treatment

In [30]: | # set plot width & height (only needed for Jupyter)
options(repr.plot.width=4, repr.plot.height=10)
plot data as stacked histograms
par (mfrow=c(4,1))
names <- c("control", "ZLW1-RNAi", "ZLW2-RNAi", "ZLW3-RNAi")
for (i in 1:4) hist(data5[data5$Treatment == names[i],]$Intensity, main
= names[i], xlab = 'Intensity', xlim = c(0,40), ylim = c(0,25))
dev.off()

null device: 1

Frequency

Frequency

Freguency

15 20 25

5 10

1]

15 20 25

5 10

1]

15 20 25

5 10

1]

control

I I 1
10 20 30

Intensity

ZLW1-RNAI

40

[I I
10 20 30

Intensity

ZLW2-RNAI

40

[I I
10 20 30

Intensity

ZLW3-RNAI

40

¢
i

15 20

=
(4]
2 _
[5F}
=
g = 4
[
WYy -
o
I I I | |
0] 10 20 30 40
Intensity

In [31]: (stats5 <- ddply(data5, .(Treatment), summarize,
N = length(Intensity),
Median = median(Intensity),
Mean = mean(Intensity),
SD = sd(Intensity),
Var = var(Intensity)

)

Treatment N Median Mean SD Var

control 74 17.34206 18.26805 5.564848 30.96753
ZLW1-BRNAi 73 13.65137 13.77063 3.437403 11.81574
ZLW2-BRNAi 76 11.07473 10.90948 5.808174 33.73489

ZLW3-RNAi 75 14.58257 14.80203 4.420197 19.53814

The distributions of responses for each treatment look approximately normally distributed. The variances are not
equal but are all less than three fold different. ANOVA is robust to this level of difference in variance as long as
the experiment is balanced. Sample sizes are large and almost identical so it is balanced. It appears we have
met the assumptions of ANOVA.

In [32]: # ANOVA
(data5.aov <- aov(Intensity ~ Treatment, data = data5))
summary (data5.aov)

Call:
aov(formula = Intensity ~ Treatment, data = data5)

Terms:

Treatment Residuals
Sum of Squares 2074.083 7087.302
Deg. of Freedom 3 294

Residual standard error: 4.909834
Estimated effects may be unbalanced

Df Sum Sqg Mean Sq F value Pr(>F)

Treatment 3 2074 691.4 28.68 2.7e-16 **%*
Residuals 294 7087 24.1
Signif. codes: 0 ‘***’ (0,001 ‘**’ Q.01 ‘*’ 0.05 ‘.’ 0.1 * " 1

The aov() function, like the gim() function from the third example, takes an equation written as Response ~
Treatment. In our case that was Intensity ~ Treatment. The summary() function provides the results we seek.
ANOVA runs what is called an F-test. Large values of F mean that the differences in responses amongst
treatments are large compared to differences in responses within treatments. F values close to 1 mean that the
differences in responses amongst treatments are similar to differences in responses within treatments. In our
case, we got an F value of 28.68, which is very large and has a very significant p-value of 2.7e-16. We therefore
reject the null hypothesis that the mean responses are the same across treatments.

If and only if you get a significant result from an ANOVA, you can run a Tukey-Kramer post-hoc analysis to
determine which pairs of treatments differ significantly.

In [33]: | # Tukey-Kramer Post-hoc
(TukeyHSD (data5.aov))

Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = Intensity ~ Treatment, data = data5)

STreatment

diff lwr upr p adj
ZLW1-RNAi-control -4.497413 -6.590101 -2.4047251 0.0000004
ZLW2-RNAi-control -7.358565 -9.430357 -5.2867738 0.0000000
ZLW3-RNAi-control -3.466019 -5.544614 -1.3874250 0.0001315
ZLW2-RNAi1i-ZLW1-RNAi -2.861152 -4.940121 -0.7821835 0.0024652
ZLW3-RNAi-ZLW1-RNAi 1.031394 -1.054355 3.1171419 0.5778909
ZLW3-RNAi-ZLW2-RNAi 3.892546 1.827764 5.9573277 0.0000108

The TukeyHSD() function performed the post-hoc analysis. The function returns a table with each of the six
pairwise comparisons of treatments as the rows. The columns are 'diff', which is the difference in mean
responses between the two treatments, 'lwr' and 'upr', which are the bounds of the 95% confidence interval for
the 'diff', and 'p adj', which is the p-value from a g-test. In this case, five of the six possible pairwise
comparisons had significantly different responses, demonstrated by a 'p adj' value less than 0.05 and a
confidence interval that does not overlap zero. Only ZLW3 RNAi vs ZLW1 RNAi was not significant.

By using the ANOVA to Tukey-Kramer approach, we have kept the false positive rate at or below 0.05. We can
draw the conclusion that RNAI of all three ZLW family genes significantly decreases fluorescence intensity of our
reporter relative to a control. We can further say that RNAi of ZLW2 has a stronger effect on the fluorescence
intensity of the reporter than ZLW1 and ZLW3.

For displaying our results in a figure, we can use a stripchart with mean and 95% confidence intervals overlayed
like we did for examples 1 and 2. We have already calculated the mean responses for each treatment. Now we
need to extract the 95% confidence intervals from the ANOVA result using the confint() function.

In [34]: (data5.95ci <- confint(data5.aov))
data5.95ci[2:4,] <- data5.95ci[2:4,] + stats5[1,4]
data5.95ci

25 % 97.5 %

(Intercept) 17.144759 19.391332
TreatmentZLW1-RNAi -6.091411 -2.903415
TreatmentZLW2-RNAi -8.936647 -5.780484

TreatmentZLW3-RNAi -5.049282 -1.882756

25 % 97.5 %

(Intercept) 17.144759 19.39133
TreatmentZLW1-RNAi 12.176635 15.36463
TreatmentZLW2-RNAi 9.331399 12.48756

TreatmentZLW3-RNAi 13.218764 16.38529

The function confint() gets the 95% confidence intervals for the first treatment and refers to this treatment as the
intercept. In our case, that was ZLW1-RNA.. It then gets the confidence intervals for the other treatments relative
to the "intercept" which is the mean response of ZLW1-RNAi. So in order to get the absolute confidence
intervals rather than the relative confidence intervals, we have to add the mean response of ZLW1-RNAi (stored
in stats5[1,4]) to all the remaining confidence interval lower and upper values. The second table printed has the
absolute confidence intervals.

Now we can make the stripchart.

In [35]: | # set plot width & height (only needed for Jupyter)

options(repr.plot.width=6, repr.plot.height=5)
diplay results as a strip chart with mean and 95% confidence intervals
stripchart(Intensity ~ Treatment, data = data5, vertical=TRUE, method="j
itter", ylab = 'Intensity', pch = 20, cex = 0.5)
for (i in 1:4) {

segments(i - 0.2, stats5[i,4], i + 0.2, stats5[i,4], lwd = 1.5)

arrows (i, data5.95ci[i,1], i, data5.95ci[i,2], angle = 90, code = 3, 1

wd = 1.5)
}
) -
M
: e
0 - o.
N L2)
-7 .)
.:'l.'= - - . ':."
8 _| . ..', -
— b | L4 L]
2 5 e g :
—] . . * .
E — ﬁ‘- ‘ l:' :d.. -

10
|
. 1 {rk
.:"r'. 1,

[Tp] - . *
u..t
o — e
| I | I
control ZLW1-RNAI ZLW2Z-RNAI ZLW3-RNAI

The figure shows the distribution of responses for each treatment which makes clear that these are overlapping
distributions. The 95% confidence intervals around the mean response for each treatment however echo the
results from the ANOVA and Tukey-Kramer post-hoc analysis, which is that the means are not equal and all of
the treatments have significantly different responses with the exception of ZLW1-RNAi and ZLW3-RNAi. For
ZLW1-RNAi and ZLW3-RNAI, the mean response of each treatment is contained within the confidence interval
of the other treatment, making it clear that these are not significantly different treatments.

