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A Illustration of the Peeling Algorithm

For illustration, we consider a hypothetical family of three generations shown in Figure A.1.
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Figure A.1: A hypothetical pedigree for illustration of the Elston-Stewart algorithm for family-wise
likelihood evaluation. The circle and square indicate the female and male members, respectively.
Genotypes are all unknown except the 1st and 4th individuals.

Without loss of generality, we assume that GT
obs = (G1, G4) and let GT

mis = (G2, G3, G5, G6, G7)

and HT = (H1, · · · , H7) denote vectors of the unknown genotypes and the cancer history of the

family, respectively. The peeling algorithm computes the family-wise likelihood Pr(H|Gobs) as

follows:

Pr(H|Gobs) = A4(G4|G1, G4) Pr(H4|G4)P4(G4|G1, G4) (1)
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Notice that the summation over G4 in (1) is unnecessary since it is observed. Now, the anterior

probability in (1) is

A4(G4|G1, G4) = A1(G1|G1, G4) Pr(H1|G1)

×
∑
G2

A2(G2|G1, G4) Pr(H2|G2)× Pr(G4|G1, G2, G4)

×
∑
G3

P3(G3|G1, G4) Pr(H3|G3)× Pr(G3|G1, G2)

Again, the summation over G1 does not appear in the above since it is observed. Now, the anterior

and posterior probabilities related to A4(G4|G1, G4) are computed as follows.

- A1(G1|G1, G4) = Pr(H−
1 , G1|G1, G4) = 1;

- A2(G2|G1, G4) = Pr(H−
2 , G2|G1, G4) = Pr(G2|G4), since 2 is a founder;

- P3(G3|G1, G4) = Pr(H+
3 |G3, G1, G4) = 1, since 3 is a founder.

Next, the posterior probability in (1) is

P4(G4|G1, G4) =
∑
G5

A5(G5|G1, G4) Pr(H5|G5)

×
∑
G6

P6(G6|G1, G4) Pr(H6|G6) Pr(G6|G4, G5)

×
∑
G7

P7(G7|G1, G4) Pr(H7|G7) Pr(G7|G4, G5)

The anterior and posterior probabilities related to P4(G4|G1, G4) are given by

- A5(G5|G1, G4) = Pr(H−
5 , G5|G1, G4) = Pr(G5) (prevalence), since 5 is a founder;

- P6(G6|G1, G4) = Pr(H+
6 |G6, G1, G4) = 1, since H+

6 = φ;

- P7(G7|G1, G4) = Pr(H+
7 |G7, G1, G4) = 1, since H+

7 = φ.

As a summary, the following table provides all the quantities to be recursively computed during the

peeling algorithm.

Target Step 1 (Pivot) Step 2 (First-degree relatives)
Pr(H|Gobs) A4(G4|Gobs) A1(G1|Gobs) Father

A2(G2|Gobs) Mother
P3(G3|Gobs) Sibling

P4(G4|Gobs) A5(G5|Gobs) Mate
P6(G6|Gobs) Offspring 1
P7(G7|Gobs) Offspring 2

2



B Bayes-Mendel Model: Estimation of P (Gj|H)

We describe the Bayes-Mendel model (Chen et al.; 2004) that enables us to estimate the carrier

P (Gj |H) based on family cancer history, H. The Bayes-Mendel model computes the carrier prob-

ability P (Gj |H) as follows:

1. Bayesian updating step

Pr(Gj |H) =

Prevalence︷ ︸︸ ︷
Pr(Gj) Pr(H|Gj)∑
G Pr(G) Pr(H|G)

2. Integration step

Pr(H|Gj) =
∑
G−j

{
Pr(H|Gj ,G−j) · Pr(G−j |Gj)

}
=
∑
G−j

[{ N∏
j=1

Pr(Hj |Gj)︸ ︷︷ ︸
Penetrance

}
· Pr(G−j |Gj)︸ ︷︷ ︸
Mendelian Prob

]

where G−j denotes a genotype vector after the jth deleted.

Therefore, the carrier probability can be readily obtained from the prevalence Pr(H|G) and pene-

trance Pr(G) as long as the mode of inheritance is known.
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C Baseline Hazard Model Comparison via Simulation

We conduct a simulation study to compare the performance of different baseline hazard models.

We consider the conventional proportional hazard models λk(t|X) for two competing risks:

λk(t|X) = λk(t) exp(βkX), k = 1, 2. (2)

We first generate binary Xi, taking either 1 or 2 with equal probability. Given X, the time to the

kth event, denoted by Ti,k, can be generated from Sk(t|Xi) = exp(−Λk(u|Xi)du). The censored

time Ci is independently generated from the exponential distribution. Its rate parameter is chosen

so as to achieve a 30% censoring proportion. Then we have (Ti, Di), i = 1, · · · , n where Ti =

min(Ti,1, Ti,2, Ci) and Di is k if Ti = Ti, k, k = 1, 2 and 0 otherwise. We set β1 = β2 = 1 for the

coefficient parameters for different competing risk models. For the cumulative baseline, Λk,0(t) =∫ t
0 λk,0(s)ds, we consider the following three cases:

• Case I: Λk,0(t) = λkt (linear)

• Case II: Λk,0(t) = λkt
2 (quadratic)

• Case III: Λk,0(t) = λk((2t− 1)3 + 1) (complex)

and set λ1 = λ2 = 1. Notice that case I is a constant hazard model that corresponds to exponential

survival times. Case II is a quadratic hazard model that corresponds to Weibull survival times.

Case III does not satisfy the exponential nor the Weibull survival time assumption. The three true

baseline functions are depicted in Figure C.1.
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Figure C.1: true cumulative baseline hazard functions

We consider four different models for the baseline hazard functions, λk(t), k = 1, 2 includ-

ing the exponential model, Weibull model, piecewise constant model, and the proposed Bernstein
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polynomial-based model. For the piecewise constant and the Bernstein polynomial-based models,

the survival time T is rescaled so as to lie on [0, 1]. For the piecewise constant model, we set 4

equally spaced knots to obtain 5 pieces of equal length. Similarly, we set M = 5 for the Bernstein

polynomial-based model.

As a performance measure, we consider

M̂SE(β̂k) =
1

L

L∑
`=1

(β̂k,` − βk)2

for the regression coefficient and

M̂ISE(Λ̂k,0) =
1

L

L∑
`=1

∫ (
Λ̂k,`(t)− Λk(t)

)2
dt, k = 1, 2

for the baseline hazard. Here the subscript ` = 1, · · · , L is used to represent the quantities obtained

from the `th Monte Carlo (MC)iteration.

Case k Exponential Weibull Piecewise Bernstein

I β1 0.018 (.006) 0.033 (.013) 0.023 (.007) 0.024 (.007)
β2 0.019 (.006) 0.032 (.013) 0.022 (.007) 0.022 (.008)

II β1 0.239 (.011) 0.025 (.008) 0.030 (.008) 0.027 (.007)
β2 0.248 (.012) 0.024 (.008) 0.034 (.009) 0.029 (.008)

III β1 0.229 (.024) 1.152 (.167) 0.033 (.008) 0.024 (.006)
β2 0.208 (.025) 1.114 (.169) 0.031 (.009) 0.023 (.007)

Table C.1: MSE of coefficient estimates. MC standard error estimates are in parentheses.

Case k Exponential Weibull Piecewise Bernstein

I Λ1(t) 0.011 (.005) 0.020 (.009) 0.425 (.051) 0.206 (.031)
Λ2(t) 0.011 (.005) 0.017 (.008) 0.426 (.051) 0.182 (.032)

II Λ1(t) 0.263 (.035) 0.206 (.031) 0.207 (.038) 0.077 (.018)
Λ2(t) 0.264 (.036) 0.210 (.033) 0.222 (.039) 0.074 (.019)

III Λ1(t) 0.726 (.072) 1.247 (.253) 0.325 (.046) 0.247 (.034)
Λ2(t) 0.697 (.067) 1.160 (.237) 0.357 (.047) 0.226 (.033)

Table C.2: MISE of cumulative baseline hazard function estimates. MC standard error estimates
are in parentheses.

Then, we generate 200 survival times from the competing risk model under the three cases. The

results based on L = 1, 000 independent MC repetitions are summarized in Tables C.1 and C.2.

Under case 1, the exponential model performs best with the smallest MSE and MISE because it

is correctly specified. Under case 2, the exponential model performs worst with the largest MSE

and MISE. Bernstein polynomial and Weibull model are comparable and outperform the piecewise
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constant model. Under case 3, the exponential model and Weibull model lead to large MSE and

MISE. The piecewise constant model performs better than the the exponential model and Weibull

model. Bernstein polynomial performs best with the smallest MSE and MISE. Overall, Bernstein

polynomial outperforms the other three models and is robust to different shapes of hazard, which

partially justifies the use of Bernstein polynomial to model the baseline hazard.
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D Comparison of Cancer-Specific Penetrance Estimates of LFS

We compare the penetrance estiamtes of LFS obtained from different models.

D.1 Genotype-Observed Subjects Only

We compare the results to the most naive estimates from the conventional proportional hazard

models using the genotype-observed subjects only.
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Figure D.1: Comparison to the proportional hazard model based on genotype-observed subjects
only
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D.2 Without Ascertainment Bias Correction

We compare the results with and without ascertainment bias correction.
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Figure D.2: Comparison to the model without ascertainment bias correction
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D.3 Without Frailty

We compare the results with and without random frailty
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Figure D.3: Comparison to the model without frailty
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D.4 Different Baseline Hazard Models

We compare the results from the different baseline hazard models used in Section C.
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Figure D.4: Different Baseline hazard Models.
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E Sensitivity Analysis

We consider the following nine combinations of prior settings.

• γk ∼ Flat;Gamma(0.01, 0.01);Gamma(1, 1)

• νk ∼ Gamma(0.01, 0.01);Gamma(0.1, 0.1);Gamma(1, 1).

Figure E.1 depicts penetrance estimates from different prior settings. We observe that the pene-

trance estimates are not particularly sensitive to the choice of hyperparameters.
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Figure E.1: Sensitivity analysis
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F Cross-validated ROC curves for the cancer-specific risk predic-

tion.
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Figure F.1: Cross validated ROC curves for the cancer-specific risk prediction evaluated at different
ages tc = 30, 40, 50 and 60.
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