
S1 Appendix

The full model consists of fifteen variables:

d

dt
Ccyt = fc

[
(1−RS1)(JIPR − JSERCA) +

1−RS2

RV3
(JNCX − JMCU)

+ Jdiff + Jin − Jpm
] (1)

d

dt
CMAM = fc

[
RV1RS1(JnIPR − JnSERCA)

+
RV1RS2

RV3
(JnNCX − JnMCU)−RV1Jdiff

] (2)

d

dt
Cmito = fm

[
RS2(JnMCU − JnNCX) + (1−RS2)(JMCU − JNCX)

]
(3)

d

dt
Ct = Jin − Jpm (4)

d

dt
P = τp(Ps − P ) + pulse (5)

d

dt̂
h42 = λh42(h∞42 − h42) (6)

d

dt̂
hn42 = λhn42(h∞n42 − hn42) (7)

d

dt̂
m42 = λm42(m∞42 −m42) (8)

d

dt̂
mn42 = λm42

(m∞n42 −mn42) (9)

d

dt̂
h24 = λh24

(h∞42 − h42) (10)

d

dt̂
m24 = λm24

(m∞42 −m42) (11)

d

dt
ADPc = Ihyd −

Iant
RV3

(12)

d

dt
ADPm = Iant − IF1FO (13)

d

dt
N = Ipdh − Io + Iagc (14)

d

dt
Vm =

1

Cp
(a1Io − a2IF1FO − Iant − IHleak

− (1−RS2)(JNCX + 2JMCU)−RS2(JnNCX + 2JnMCU)− Iagc)
(15)
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To non-dimensionalize the model, we first redefined the model variables with dimensionless

variables,

Ccyt = Qcyt · Ĉcyt, CMAM = QMAM · ĈMAM

Cmito = Qmito · Ĉmito, Ct = Qt · Ĉt

P = Qp · P̂ , ADPm = QAm · ÂDPm,

ADPc = QAc · ÂDPc, N = QN · N̂ ,

Vm = QVm · V̂m, t = T · t̂,

(16)

and dimensionless fluxes and rates

J̄? =
J?

VnSERCA
for ? = IPR, nIPR, SERCA, nSERCA, diff,

MCU, nMCU, NCX, nNCX

J̄† =
VSOCCJ†
V 2
pm

for † = leakin, SOCC, ROCC, pm

Ī4 =
I4

VnSERCA
for 4 = hyd, ant, F1FO, pdh, o, agc, Hleak

(17)

Then we derived the following dimensionless version of the system:

d

dt̂
Ĉcyt =

TVnSERCAfcRV2

QcytRV3

[
RV3

RV2
(1−RS1)(J̄IPR − J̄SERCA)

+
1

RV2
(1−RS2)(J̄NCX − J̄MCU) +

RV3

RV2
J̄diff

]
+

TV 2
pmfc

QcytVSOCC

[
J̄in − J̄pm

] (18)

d

dt̂
ĈMAM =

TVnSERCAfcRV1

QMAMRV3

[
RV3RS1(J̄nIPR − J̄nSERCA)

+RS2(J̄nNCX − J̄nMCU)−RV3J̄diff

] (19)

d

dt̂
Ĉmito =

TVnSERCAfmRV2

QmitoRV3

[
RV3

RV2
RS2(J̄nMCU − J̄nNCX) +

RV3

RV2
(1−RS2)(J̄MCU − J̄NCX)

]
(20)

d

dt̂
Ĉt =

TV 2
pm

QtVSOCC

[
J̄in − J̄pm

]
(21)
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d

dt̂
P̂ = Tτp

[
Ps

Qp
− P̂

]
+ pulse (22)

d

dt̂
h42 = Tλh42

[
h∞42 − h42

]
(23)

d

dt̂
hn42 = Tλhn42

[
h∞n42 − hn42

]
(24)

d

dt̂
m42 = Tλm42

[
m∞42 −m42

]
(25)

d

dt̂
mn42 = Tλm42

[
m∞n42 −mn42

]
(26)

d

dt̂
h24 = Tλh24

[
h∞24 − h24

]
(27)

d

dt̂
m24 = Tλm24

[
m∞24 −m24

]
(28)

d

dt̂
ÂDPc =

TVnSERCA

QAcRV2

[
RV2Īhyd −RV2Īant/RV3

]
(29)

d

dt̂
ÂDPm =

TVnSERCA

QAm

[
Īant − ĪF1FO

]
(30)

d

dt̂
N̂ =

TVnSERCA

QNRV2

[
RV2Īpdh −RV2Īo +RV2Īagc

]
(31)

d

dt̂
V̂m =

TVnSERCA

CpQVRV2RV3

[
RV2RV3a1Īo −RV2RV3a2ĪF1FO −RV2RV3Īant −RV2RV3ĪHleak

−RV2RV3(1−RS2)(J̄NCX + 2J̄MCU)−RV2RV3RS2(J̄nNCX + 2J̄nMCU)

−RV2RV3Īagc

] (32)

For every equation, the term in

[
· · ·
]

is approximately of order O(1). The gating variable rates

are λm42 = λm24 = 100 s−1 and λh24 = 40 s−1. These rates are estimated directly from dynamical

single channel data [1, 2].

We chose T = Qcyt/(VnSERCAfc). Based on numerical simulations of the model, typical concen-

tration scale for the ions are of orders Qcyt = 1 µM, QMAM = 10 µM, Qmito = 0.1 µM, Qt = 103

µM, QAc = 103 µM, QAm = 104 µM, QN = 102 µM. A typical scale for mitochondrial membrane

potential is QV = 102 mV. With these scales, the magnitudes of the right hand sides of the equations
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Eq. (18) – Eq. (32) are:

d

dt̂
Ĉcyt ∼ O(0.1)

d

dt̂
ĈMAM ∼ O(10)

d

dt̂
Ĉmito ∼ O(0.1)

d

dt̂
Ĉt ∼ O(0.0001)

d

dt̂
P̂ ∼ O(1)

d

dt̂
h42 ∼ O(0.1)

d

dt̂
hn42 ∼ O(0.1)

d

dt̂
m42 ∼ O(1000)

d

dt̂
mn42 ∼ O(1000)

d

dt̂
h24 ∼ O(100)

d

dt̂
m24 ∼ O(1000)

d

dt̂
ÂDPc ∼ O(0.01)

d

dt̂
ÂDPm ∼ O(0.01)

d

dt̂
N̂ ∼ O(0.1)

d

dt̂
V̂m ∼ O(0.001)

(33)

The model contains multiple timescales with the IPR gating variables evolving on the fastest

and Ĉt on the slowest. Using the quasi-steady-state approximation, we assumed that the gating

variables reach their quasi-equilibria instantaneously. We note that this model reduction method is

not well established for systems with multiple timescales. However, we compared model simulations

of the full model with those of the reduced model, and confirmed that the dynamical characteristics

are preserved under the reduction. Thus, we find that the quasi-steady-state reduction was suitable

for our Ca2+ model.
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