## **Supplementary Figures**



**Figure S1. No interaction was observed between AvrPtoB and TN2 or CPK5 in Y2H assays.** (A) A schematic diagram of the AvrPtoB. Each box indicates the specific domain of AvrPtoB, including the predicted signal peptide (SP), Pto-interacting domain (PID), NPR1-interacting domain (NID), Fen-interacting domain (FID) and E3 ubiquitin ligase region. F479A indicated the point mutation of AvrPtoB in E3 ligase domain. (B) AvrPtoB, AvrPtoB<sup>F479A</sup>, and AvrPtoB<sub>1-410</sub> were fused to the AD, and TN2, CPK5-VKJC and CPK5-VK were fused to the BD. Different pairs of constructs were cotransformed into AH109. Yeast cells containing the indicated plasmids were spotted onto SD-Leu-Trp or SD-Ade-His-Leu-Trp media. Photographs were taken 5 days after incubation. No yeast cells were dropped on the blank areas of SD-Leu-Trp media and these same areas on SD-Ade-His-Leu-Trp media. This experiment was repeated three times with similar results.



**Figure S2. EXO70B2 is not a substrate of AvrPtoB.** (A) EXO70B1, EXO70B2 and EXO70A1 were fused to the AD, and AvrPtoB, AvrPtoB<sup>F479A</sup>, and AvrPtoB<sub>1-410</sub> were fused to the BD. Different pairs of constructs were cotransformed into AH109. Yeast cells containing the indicated plasmids were spotted onto SD-Leu-Trp or SD-Ade-His-Leu-Trp media. Photographs were taken 5 days after incubation. No yeast cells were dropped on the blank areas of SD-Leu-Trp media and these same areas on SD-Ade-His-Leu-Trp media. (B) *In vitro* ubiquitination assay. Recombinant MBP-EXO70B2 incubated in ubiquitination buffer in the presence or absence of ubiquitin, E1 (UBE1), E2 (UBC8) or E3 (AvrPtoB or AvrPtoB<sup>F479A</sup>). MBP-EXO70B1 was used for a positive control. The reaction mixtures were subjected to immunoblot analysis with anti-MBP and anti-GST antibodies. Ubiquitinated MBP-EXO70B1 was detected by anti-MBP antibody. These experiments were repeated three times with similar results.



Figure S3. The *tn2-10* mutation suppresses *exo70B1-3*-mediated cell death and resistance to G. cichoracearum. (A) Five-week-old plants were photographed under short-day conditions. The exo70B1-3 mutants displayed hypersensitive responses, but no cell death was observed in Col-0, tn2-10 and exo70B1-3 tn2-10 mutants. Bar = 1.0 cm. (B) Four-week-old plants were infected with G. cichoracearum. Representative leaves were detached and photographed at 8 days post infection. The exo70B1-3 mutant was more resistant to G. cichoracearum, while the tn2-10 and exo70B1-3 tn2-10 mutants showed wild-type like responses to G. cichoracearum. Bar = 0.5 cm. (C) Leaves at 8 days post infection were stained with trypan blue to observe fungal structures and dead cells. Few spores were produced in the exo70B1-3 mutant, whereas many fungal spores were produced in Col-0, tn2-10, and exo70B1-3 tn2-10 plants. Bar = 100  $\mu$ m. (**D**) The transcript level of *TN2* was examined by RT-qPCR. Total RNA was isolated from the indicated five-week-old plants shown in (A). The transcripts of TN2 were up-regulated in exo70B1-3 mutants and were not detected in tn2-10 and exo70B1-3 tn2-10 plants. These experiments were repeated three times with similar results.



Figure S4. EXO70B1 suppresses TN2- or TN2-TIR-triggered cell death in *N. tabacum*. (A) and (B) TN2- or TN2-TIR-triggered cell death was suppressed by EXO70B1 in *N. tabacum*. Agrobacterium GV3101 cells carrying different constructs were mixed prior to adding infiltration buffer. The concentration of agrobacteria expressing *TN2* or *TN2-TIR* was brought to  $OD_{600} = 0.5$  and the concentration of agrobacteria expressing *EXO70B1* was brought to  $OD_{600} = 0$ , 0.5, or 1.0. Five-week-old *N. tabacum* leaves were used for transient expression. Cell death was observed 36 to 48 h later. Pictures were taken 4 days post infiltration. Dashed lines mark the infiltrated areas. (C) Accumulation of the indicated recombinant proteins from the experiments in (A), which failed to trigger a HR. Proteins were detected by anti-GFP antibody and equal loading is shown by Rubisco. These experiments were repeated three times with similar results.



**Figure S5. AvrPtoB rescues TN2- or TN2-TIR-triggered cell death, which is suppressed by EXO70B1, in** *N. benthamiana.* Agrobacterium GV3101 cells carrying different constructs were infiltrated into five-week-old *N. benthamiana* leaves. Pictures were taken 4 days post infiltration (upper panel). Leaves at 4 days post infiltration were stained with trypan blue to visualize cell death (lower panel). Dashed lines mark the infiltrated areas. These experiments were repeated three times with similar results.

| Primer name           | Purpose                      | Sequence (5'-3')                        |
|-----------------------|------------------------------|-----------------------------------------|
| AvrPto PF             | Yeast two-hybrid             | GGAATTCCATATGATGGGAAATATA<br>TGTGTCGG   |
| AvrPto PR             | Yeast two-hybrid             | CGGAATTCTCATTGCCAGTTACGGT<br>ACGG       |
| AvrPtoB PF            | Yeast two-hybrid             | GGAATTCCATATGATGGCGGGTATC<br>AATAGAGC   |
| AvrPtoB PR            | Yeast two-hybrid             | CGGAATTCTCAGGGGACTATTCTAA<br>AAGCATAC   |
| AvrPtoB 1-410<br>PR   | Yeast two-hybrid             | CGGAATTCTCACCCCGGGTTCAGGT<br>TAAG       |
| AvrPtoB 1-205<br>PR   | Yeast two-hybrid             | CGGGATCCTCATGACGCCGCCTGTT<br>GGT        |
| AvrPtoB 1-307<br>PR   | Yeast two-hybrid             | CGGGATCCTCATACATGTCTTTCAA<br>GGGCC      |
| AvrPtoB 1-387<br>PR   | Yeast two-hybrid             | CGGGATCCTCACACCCGCAATCGTG<br>TTG        |
| AvrPtoB<br>308-533 PF | Yeast two-hybrid             | GGAATTCCATATGATGCAGCGCCTC<br>CCTATC     |
| AvrPtoB<br>308-533 PR | Yeast two-hybrid             | CGGGATCCTCAGGGGACTATTCTAA<br>AAGCATAC   |
| Pto PF                | Yeast two-hybrid             | GGAATTCCATATGATGGGAAGCAA<br>GTATTCTAAGG |
| Pto PR                | Yeast two-hybrid             | CGGAATTCTTAAATAACAGACTCTT<br>GGAGACGAA  |
| EXO70A1 PF            | Yeast two-hybrid             | CGGAATTCATGGCTGTTGATAGCAG<br>AATG       |
| EXO70A1 PR            | Yeast two-hybrid             | AACTGCAGTTACCGGCGTGGTTCAT<br>T          |
| EXO70B2 PF            | Yeast two-hybrid             | CGGAATTCATGGCTGAAGCCGGTGA<br>C          |
| EXO70B2 PR            | Yeast two-hybrid             | AACTGCAGTCAACTTGAGCTTTCCT<br>TGA        |
| avrPtoB M PF          | Site-directed<br>mutagenesis | TGACGCACTGTCTTGCTGGCGGAGA<br>ATTGT      |
| avrPtoB M PR          | Site-directed<br>mutagenesis | ACAATTCTCCGCCAGCAAGACAGTG<br>CGTCA      |
| AvrPtoB PF            | To clone into pGEX-4T-1      | CGGAATTCATGGCGGGTATCAATAG<br>AGC        |

## Supplementary Table 1. Primers used in this study.

| AvrPtoB PR    | To clone into       | TTGCGGCCGCGGGGGACTATTCTAAA |
|---------------|---------------------|----------------------------|
|               | pGEX-4T-1           | AGCATAC                    |
| AvrPtoB 1-410 | To clone into       | TTGCGGCCGCTCACCCCGGGTTCAG  |
| PR            | pGEX-4T-1           | GTTAAG                     |
| EXO70B1 PF    | To clone into PUC19 | CGAGCTCATGGCGGAGAATGGTGA   |
|               |                     | Α                          |
| EXO70B1 PR    | To clone into PUC19 | GCGTCGACTTTTCTTCCCGTGGTAG  |
| AvrPtoB PF    | To clone into       | GCGTCGACATGGCGGGGTATCAATAG |
|               | pSuper1300-MYC      | AGC                        |
| AvrPtoB PR    | To clone into       | GGGGTACCGGGGACTATTCTAAAA   |
|               | pSuper1300-MYC      | GCATAC                     |
| AvrPtoB 1-410 | To clone into       | GGGGTACCCCCGGGTTCAGGTTAA   |
|               | pSuper1300-MYC      | G                          |
| EXO70B1 PF    | To clone into       | GCGTCGACATGGCGGAGAATGGTG   |
|               | pSuper1300-GFP      | AA                         |
| EXO70B1 PR    | To clone into       | GGGGTACCTTTTCTTCCCGTGGTAG  |
|               | pSuper1300-GFP      |                            |
| LBb1.3        | Genotyping          | ATTTTGCCGATTTCGGAAC        |
| TN2 Salk PF   | Genotyping          | TTCCAACAAAATCACCAGCTC      |
| TN2 Salk PR   | Genotyping          | AAATCCCATCTGGGATTTGTC      |
| TN2 PF        | Real-time PCR       | GGCTCATGAGTCAGAAAG         |
| TN2 PR        | Real-time PCR       | GAAGATTCAGTCCCGGAT         |
| PR1 PF        | Real-time PCR       | TTCACAACCAGGCACGAGGAG      |
| <i>PR1</i> PR | Real-time PCR       | CTAACCCACATGTTCACGGCG      |
| PR2 PF        | Real-time PCR       | GAATCAAGGAGCTTAGCCTCACC    |
| PR2 PR        | Real-time PCR       | GTAGAGCCGCATTCGCTGGAT      |
| PAD4 PF       | Real-time PCR       | CTTTCTTCAGTTAAAGATCAAGGAA  |
|               |                     | GG                         |
| PAD4 PR       | Real-time PCR       | GGCAGAAGTTGTGTGTGCTAAACG   |
| NPR1 PF       | Real-time PCR       | TAGAGTTGCACTTGCTCAACGTC    |
| NPR1 PR       | Real-time PCR       | GTTTCCCGAGTTCCACGGT        |
| EDS5 PF       | Real-time PCR       | GAACTCGCTGCTCTTGGACC       |
| EDS5 PR       | Real-time PCR       | CAGCCCAAGGACCGAATAATC      |
| ACTIN2 PF     | Real-time PCR       | TCTCCCGCTATGTATGTCGCC      |
| ACTIN2 PR     | Real-time PCR       | GTCACGTCCAGCAAGGTCAAGA     |
| EXO70B1 PF    | Real-time PCR       | GAAACCTATCGGCATCTGTC       |
| EXO70B1 PR    | Real-time PCR       | CCGAAGGGAGAGCATCAAT        |