Appendix

Table of contents:

p 2: Appendix figure S1: Nigerin triggers inflammasome-independent necrosis in unprimed U937 cells

p 3: Appendix figure S2: TLR ligands in contrast to IFN- γ do not increase caspase-4 levels in *IRF2*^{KO} cells.

p 4: Appendix figure S3: *GBP1* transcript level is regulated by IRF1 in the presence of IFN-γ.

p 5: Appendix figure S4: Profile of iPSC clones knock-out for *IRF2*.

p 6: Appendix Table 1: Cell lines generated by CRISPR/Cas9 with the validation method.

p 7-8: Appendix table 2: Sequences of all sgRNA used to generate knock-out cell lines.

p 9: Appendix table 3: qRT-PCR primers used in this study

Appendix figure S1: Nigerin triggers inflammasome-independent necrosis in unprimed U937 cells

U937 cells of the indicated genotypes (in the absence of PMA and TLR agonist) were treated with nigericin. Cell death was monitored in real time by quantifying propidium iodide (PI) incorporation/fluorescence. Cell death was normalized using untreated and TX-100-treated sample. One experiment representative of two experiments is shown. Each dot represents the mean (+/-SD) of a biological triplicate.

Appendix figure S2: TLR ligands in contrast to IFN- γ do not increase caspase-4 levels in $IRF2^{KO}$ cells.

U937 cells of the indicated genotypes were treated with Pam3CSK4 (1 μ g/ml), LPS (100 ng/ml) or IFN- γ (1000 u/ml) for 16 h. Caspase-4, gasdermin D and β -actin levels were determined by western blot analysis.

Appendix figure S3: *GBP1* transcript level is regulated by IRF1 in the presence of IFN- γ .

GBP1 transcript levels were quantified by qRT-PCR in the indicated cell lines in the presence or absence (Un.) of IFN- γ (1000 u/ml, 16 h) and normalized to β -actin levels. One dot represents the average of three technical qRT-PCR values of one experiment, the bar represents the mean (+/- SD) of three independent experiments.

Appendix figure S4: Profile of iPSC clones invalidated for IRF2.

IRF2 sequence flanking the two sgRNA was amplified by PCR in different iPSC clones. Clones showing a PCR fragments differing from WT iPSC were selected and sequenced. Clones 17 (presenting a 900 bp on one allele and a 900pb inversion on the second allele) and 32 (homozygous 900pb deletion) were selected for futher investigations

Call line	Targeted game	Validation	Def
U027 Cos0 alara	Varia		Kel (lagrange et al. 2018)
	CASD1	WD	
U937-CASPI	CASPI	WB WD ¹	(lagrange et al. 2018)
U937-CASP4	CASP4	WB	(lagrange et al. 2018)
U937-GSDMD	GSDMD	WB	(lagrange et al. 2018)
U937-IRF1 ^{RO}	IRFI	WB ¹	This work
U937-IRF2 ^{R0}	IRF2	WB ²	This work
U937-IRF3 ^{KO}	IRF3	88%2	This work
U937-IRF4 K0	IRF4	93% ²	This work
U937-IRF5 ^{K0}	IRF5	AG ³	This work
U937-IRF6 ^{KO}	IRF6	91% ²	This work
U937-IRF7 ^{KO}	IRF7	>50%4	This work
U937-IRF8 ^{KO}	IRF8	85% ²	This work
U937-IRF9 ^{KO}	IRF9	95% ²	This work
U937-IRF1/2 ^{DKO}	IRF1	WB^1	This work
	IRF2	WB^1	
U937-IRF2/3 ^{DKO}	IRF2	WB^1	This work
	IRF3	89% ²	
$U937-IRF2/4^{DKO}$	IRF2	WB ¹	This work
0,0, 1112,	IRF4	98% ²	
11937-IRF2/5 ^{DKO}	IRE?	WB ¹	This work
0 <i>)31</i> - IIXI' <i>2</i> / <i>3</i>	IRE5	AG^3	This work
U937-IRF2/6 ^{DKO}		WP1	This work
		$020/^2$	THIS WORK
	IKF0	95%	This work
0937-IKF2/7	IRF2	WD	This work
	IRF/	>50%	
U937-IRF2/8-110	IRF2	WB ²	This work
	IRF8	89%-	
U937-IRF2/95110	IRF2	WB ¹	This work
	IRF9	93%2	
U937-INTS6 ^{KO}	INTS6	84%2	This work
U937-PDHA1KO	PDHA1	88%2	This work
U937-DET1 ^{KO}	DET1	43% ²	This work
U937-WDR73 ^{K0}	WDR73	80% ²	This work
KO		2	
U937-IKBKE ^{KO}	IKBKE	94% ²	This work
U937-COP1 KO	COP1	93% ²	This work
U937-TFAP4 ^{KO}	TFAP4	98% ⁵	This work
U937-ARPC1A ^{KO}	ARPC1A	80% ²	This work
U937-FIG4 ^{KO}	FIG4	83% ²	This work
U937-IFI27L1 KO	IFI27L1	$77\%^2$	This work
U937-MTF1 ^{KO}	MTF1	88% ²	This work
U937-RUNX1 ^{KO}	RUNXI	85% ²	This work
iPSC-WT	NA		NIMH
iPSC-CASP1 ^{KO} #C14	CASP1	WB^1 , AG^3 .	This work
		100% ²	
iPSC- IRF2 ^{KO} #C17	IRF2	WB^1 , AG^3 .	This work
		$100\%^2$	
iPSC-IRF2 ^{KO} #C32	IRF2	$WB^1 AG^3$	This work
		$100\%^2$	

1: WB: Validation by Western blotting analysis

2: Overall efficiency determined for 1 sgRNA by sequencing of the flanking region and analysis by tide.3: AG: gene deletion visible by DNA electrophoresis on agarose gel

4: Overall efficiency determined for 1 sgRNA by sequencing of the flanking region and visual analysis (due to high GC content and poor sequencing quality, TIDE automatic analysis could not be used) 5: Including 72% of non-disrupting deletions (-3 or -9 nucleotides)

NA: Not applicable

Appendix Table 1: Cell lines generated by CRISPR/Cas9 with the validation method. The

two cell lines in red were not validated due to low CRISPR efficiency <50% or due to a high frequency of non

ORF-disrupting indels.

Gene target	sgRNA #	Sequence (5'-3')	
CCDMD	1	TGAGTGTGGACCCTAACACC	
GSDMD	2	AGGTTGACACACTTATAACG	
CASD1 ¹	1	ACAGACAAGGGTGCTGAACA	
CASPI	2	ATGGAAACAAAAGTCGGCAG	
CASP1 ²	1	TATTGAGAGCAAGACGTGTG	
	2	GACAGTATTCCTAGAAGAAC	
CASDA	1	AGTTATCCAAAACACCAGTG	
CASP4	2	TGCAGCTCATCCGAATATGG	
	1	GAACTCCCTGCCAGATATCG	
IRF1	2	TCTAGGCCGATACAAAGCAG	
	1	CAGCATTCGGTAGACCCTGA	
$IRF2^{1,2}$	2	GGATGCATGCGGCTAGACAT	
ID E 1	1	AGAAGGGTTGCGTTTAGCAG	
IRF3	2	GAGGTGACAGCCTTCTACCG	
IRF4	1	CAGACCCGTACAAAGTGTAC	
	2	CCCATGACGTTTGGACCCCG	
10.05	1	AGAAGCGCTGCTTGTCACTG	
IRFS	2	AGATCAAGTTTCAGTACCGG	
ID E (1	AAGGGCTGTATAGGTGCCTG	
IRF6	2	CAAGTTTCAGTACCGTGGGA	
10.07	1	CACCTTGAAGATGCGCGCGT	
IRF7	2	GATGCACTCACCTTGCACCG	
IRF8	1	ATGGCTCGGAAATGTCCAGT	
	2	CTTCTGTGGACGATTACATG	
ID FO	1	AACTGAGGCCCCCTTTCAAG	
IRF9	2	AATTTAAGGAGGTTCCTGAG	
DITC	1	AAAGTCCGGAGCCGATCACA	
INTS6	2	ACTACAGGATGAGATGTACG	
	1	AGCACTGATTACTACAAGAG	
ΓDΠΑΙ	2	GATGCAGACTGTACGCCGAA	
DET1	1	AATCAGTGACCCCCAACCCA	
DETT	2	ACGCACGTTCAAGTGTGACA	
RUNXI	1	TAGATGATCAGACCAAGCCC	
	2	CTGATCGTAGGACCACGGTG	
MTF1	1	GCACATTCGAACTCATACAG	
	2	AATGCACTTCCACAACACAA	
PACSI	1	AGATCTGGGCCACAGCACGC	
	2	GATGAACCTGTACGCCACCT	

ZNF699	1	TTTGTGTTCTGTGAGCGATG	
	2	CAAAACTCACTGTACATGGG	
WDR73	1	AAAGACGCCCATCTGAGCCA	
	2	GATTTCAAAGTGCGCCATGG	
IKBKE	1	AGCATCCCGACATGTATGAG	
	2	CGTGCACAAGCAGACCAGTG	
TRIM28	1	CCAGCGGGTGAAGTACACCA	
	2	CTTCCCAGGCAGTACCACTG	
COP1	1	GATTCTTATGGAATTCCTCA	
	2	TACCAATCTAGACAACTCAG	
TFAP4	1	ACAGCTCAAGCGCTTCATCC	
	2	AGGCTCCCCGGACATCTGGG	
ARPC1A	1	CATGTGACTTCAAATGCAGG	
	2	GAGCACAACGGACACATCAC	
FIG4	1	CACAGGTGGAATGAACTAGG	
	2	GAAGGATTAATTACACAAGG	
IF127L1	1	GAGAGTGGATGGGACTCAGG	
	2	GGCTGTGGGGGACTGTGCTCG	

Appendix table 2: Sequences of all sgRNA used to generate knock-out cell lines.

¹sgRNA used to generate U937 mutated cell lines

²sgRNA used to generate iPSC deleted clones

gene	Sequence (5'-3')	Ref
CASP1	CTGGGGACTCTCAGCAGATCA	(Lagrange et al., 2018)
	ATAGCTGGGTTGTCCTGCAC	
CASP4	GGCAGGACAAATGCTTCTTC	(Lagrange et al., 2018)
	GACAAAGCTTGAGGGCATCT	
NLRP3	CACCTGTTGTGCAATCTGAAG	(Lagrange et al., 2018)
	GCAAGATCCTGACAACATGC	
GBP1	CCAGTGCTCGTGAACTAAGGA	(Lagrange et al., 2018)
	TGTCAGTGGATCTCTGATGC	
ASC	GGGACCAAGGGTGTAGTAAGG	this work
	ACTCTGGTCTCCCGACTCC	
β-actin	ATTGGCAATGAGCGGTTC	(Lagrange et al., 2018)
	CGTGGATGCCACAGGACT	

Appendix table 3: qRT-PCR primers used in this study