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SUPPLEMENTARY FIGURE LEGENDS 

Figure S1. Angiogenesis and Vasculogenesis Genes with Differentially Expressed Transcripts 

in ICH vs. CTRL (A) and IS vs. CTRL (B). Green denotes down-regulation and red denotes up-

regulation of the genes. Orange color in the Angiogenesis/Vasculogenesis process in ICH – 

positive Z score for predicted activation (not passing the threshold of Z>2 for significance 

though). Blue color for Angiogenesis in IS – negative Z score for predicted inhibition of the 

process (not passing the threshold of Z<-2 for significance though). 

Figure S2. Transcriptome architecture of the 63 DET in IS as compared to CTRL. Biotypes of 

the DET.  

Figure S3. Predicted Upstream Regulators of the Observed Transcriptome Changes Following 

ICH and IS.  * Significant Z-score and significant p-value (p<0.05). PSEN1 itself was 

downregulated in IS vs. CTRL (FC=-1.7) and TGFA itself was up-regulated in ICH vs. CTRL 

(FC=1.9). Yellow highlighted gene symbols – p<0.01 for prediction of an upstream regulator in 

ICH vs CTRL and/or in IS vs CTRL. Not highlighted gene symbols – 0.01<p<0.05. 

Figure S4. Transcriptome architecture of ICH as compared to IS. Biotypes of the DET. Bright 

orange arrow points to T-Cell receptor genes, light grey arrow – to non-coding RNA (ncRNA). 

Figure S5. Over-Represented Canonical Pathways (A, top 25 pathways) and Differentially 

Expressed Transcripts from Cell Type - Specific Genes (B) in ICH vs IS. A. The X-axis 

represents negative log10 (Benjamini-Hochberg corrected p-value). -log10 (Benjamini-Hochberg 

corrected p-value) >1.3 corresponds to Benjamini-Hochberg corrected p-value < 0.05. Orange 

bars represent predicted activation of the pathway, blue bars – predicted inhibition of the 

pathways, grey bars – direction cannot be predicted. Pathways having significant Z-scores for 

activation (Z>2) or for inhibition (Z<-2) are denoted to the right of the pathway bar. B. DET of 

cell-type specific genes in the 256 DET from ICH vs IS analysis. P-values represents the 



hypergeometric probability of overlap between our DET list (by gene symbol) and the list of cell-

type specific genes from the HaemAtlas1. Red – genes with upregulated DET (expressed higher 

in ICH than in IS); green – genes with down-regulated DET (expressed lower in ICH than in IS). 

Figure S6. Transcriptome Architecture During Day 1 (within 24 hours post event) following IS 

and ICH (A). Biotypes of the DET. Asterisks denote significant difference between the ICH and 

IS transcriptomes at Day 1 for the particular transcript biotype. Bright orange arrow points to T-

Cell receptor genes, light grey arrow – to non-coding RNA (ncRNA). B. Transcript-level overlap 

of IS (TP1) vs CTRL (TP0) and ICH (TP1) vs CTRL (TP0). Venn diagrams represent the 

number of DET. Red – genes with upregulated DET (expressed higher in ICH than in CTRL); 

green – genes with down-regulated DET (expressed lower in ICH than in CTRL). 

Figure S7. Principal Components Analysis on the differentially expressed transcripts (DET) 

between controls subjects (CTRL, TP0) and: A. Intracerebral Hemorrhage (ICH) patients within 

24 hours post-onset (ICH_TP1), 2667 DET. B. Ischemic Stroke (IS) patients within 24 hours 

post-onset (IS_TP1), 311 DET. On Scan Date-, Age- and Sex-effect corrected data. 

Figure S8.  Time-dependent profiles as determined by SOM (Self-Organizing Maps). 

Transcriptome architecture of ICH and IS as compared to CTRL. The biotypes of RNA and the 

color legend for each RNA biotype are the same as those shown in Figure 1. Asterisks denote 

significant differences between the ICH and IS transcriptomes for the particular transcript 

biotype. Bright orange arrow points to T-Cell Receptor genes. 

Figure S9. Temporal profiles 10. A. Profile 10 in ICH only (there was no similar profile in IS). B. 

Profile 10 – in IS only (there was no similar profile in ICH). 

Figure S10. Principal Components Analysis of 55 DET from T-cell receptor genes can 

distinguish patients with Intracerebral Hemorrhage (ICH) within 24 hours post-onset from: A. 

Ischemic Stroke (IS) patients within 24 hours post-onset. B. Control (CTRL) subjects. On Scan 

Date-, Age- and Sex-effect corrected data. 

Figure S11. Principal Components Analysis of 107 DET involved in T-cell receptor function can 

distinguish patients with Intracerebral Hemorrhage (ICH) within 24 hours post-onset from: A. 

Ischemic Stroke (IS) patients within 24 hours post-onset. B. Control (CTRL)subjects. On Scan 

Date-, Age- and Sex-effect corrected data. 

Figure S12. Time-dependent behavior of the 55 DET from T-cell receptor genes, which were 

differentially expressed in the acute phase (ICH TP1 vs TP0 (CTRL)). 



Figure S13. Unsupervised Hierarchical Clustering of the 256 DET between ICH and IS. 

Subjects are in rows, DET are in columns. Red – high expression, green – low expression. 

Additional factors, such as biological sex, cause of IS and tPA application are displayed. DET – 

differentially expressed transcripts; CE IS (cardioembolic ischemic stroke); Lac IS (lacunar 

ischemic stroke); LV (large vessel ischemic stroke); ICH (intracerebral hemorrhage). 
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Supplementary Table 1. Subject Demographics and Clinical Characteristics. 

Supplementary Table 2. Differentially Expressed Transcripts (DET). A. The 489 DET in ICH vs 

CTRL. B. The 63 DET in IS vs CTRL. C. The 396 DET in IS vs CTRL. D. The 256 DET in ICH 

vs IS. 

Supplementary Table 3. Functional Analysis of the DET performed in Ingenuity Pathway 

Analysis (IPA). A. For the 489 DET from ICH vs CTRL. B. For the 396 DET from IS vs CTRL. C. 

For the 256 DET from ICH vs IS. 

Supplementary Table 4. Differentially Expressed Transcripts (DET) in ICH and IS in the acute 

phase. A. The 2,667 DET in ICH_TP1 vs CTRL_TP0. B. The 311 DET in IS_TP1 vs CTRL_TP0. 

Supplementary Table 5. Functional Analysis of the DET in the acute phase (0-24 hours, Time-

point 1 (TP1) compared to Control (CTRL, TP0) performed in Ingenuity Pathway Analysis (IPA). 

A. For the 2,667 DET from ICH_TP1 vs CTRL_TP0. B. For the 311 DET from IS_TP1 vs 

CTRL_TP0. 

Supplementary Table 6. Differentially Expressed Transcripts (DET) over time in ICH and IS – 

between each two time points. 

Supplementary Table 7. Differentially Expressed Transcripts (DET) over time in ICH and IS – 

in each of the 10 profiles 

Supplementary Table 8. Functional Analysis of the DET from each of the 10 profiles in ICH 

and in IS. 

Supplementary Table 9. 107 DET of genes involved in T cell receptor function that are 

differentially expressed between ICH within 24 hours post-onset and CTRL. 



Supplementary Table 10. Fisher's Exact p-values for the time-dependent bins. ICH - 

intracerebral hemorrhage; IS - ischemic stroke; CTRL - control. TP0 - control; TP1 - IS or ICH 

within 24 hours post event; TP2 - IS or ICH between 24 hours and 48 hours post event; TP3 - IS 

or ICH with >48 hours post event. 

Supplementary Table 11. A. Complete Blood Count the day of the molecular microarray 

studies; Mann-Whitney test, 1,000 iterations. B. CIBERSORT deconvolution of whole blood 

microarray data; Mann-Whitney test, 1,000 iterations. ICH - intracerebral hemorrhage; IS - 

ischemic stroke; CTRL - control.   

  



 

Supplementary Table 1. Subject Demographics and Clinical Characteristics.  

 

Intracerebral 

Hemorrhage 

Ischemic 

Stroke 

Vascular Risk 

Factor 

Controls Total 

Subjects, no. 33 33 33 99 

Sex (Male, Female) 24, 9 24, 9 24, 9 72, 27 

Age, years (Mean ± SD) 62 ± 14.3 64.8 ± 13.0 63.5 ± 13.1 63.4 ± 13.4 

Race / Ethnicity (%) 

               White 

               Black or African American 

               Asian 

               Native Hawaiian 

               or Other Pacific Islander 

               Mixed Race 

               Latino 

42.4 

15.2 

9.1 

0.0 

 

21.2 

12.1 

54.5 

18.2 

9.1 

3.0 

 

6.1 

9.1 

54.5 

3.0 

24.2 

0.0 

 

3.0 

15.2 

50.5 

12.1 

14.1 

1.0 

 

10.1 

12.1 

Time post-event, hours (Mean ± SD) 57.3 + 30.6 48.5 + 28.0 0  

Min 4.2 12 0  

Q1 30.6 23.1 0  

Q2 58.2 47 0  

Q3 83.6 68.2 0  

Max 124.3 110.4 0  

Hypertension, no. 23 25 23 71 

Diabetes, no. 6 6 6 18 

Hyperlipidemia, no. 6 12 12 30 

Current Smoker, no. 7 9 5 21 

 

  



SUPPLEMENTARY MATERIALS AND METHODS 

1. Subjects   

Ninety-nine male (M) and female (F) patients with intracerebral hemorrhage (ICH, n=33, 

24M/9F), acute ischemic stroke (IS, n=33, 24M/9F), and vascular risk factor (VRF) - matched 

control subjects (CTRL, n=33, 24M/9F) were recruited between 2005 and 2013 from 

Universities of California at Davis and San Francisco, and at the University of Alberta, Canada. 

The protocol was approved by the UC Davis and UC San Francisco Institutional Review Boards 

and the University of Alberta Health Research Ethics Board and adheres to all federal and state 

regulations related to the protection of human research subjects, including The Common Rule, 

the principles of The Belmont Report, and Institutional Policies and procedures. Written 

informed consent was obtained from all participants or their proxy. ICH or IS diagnoses were 

made by board-certified neurologists based upon histories, exams, and computed tomographic 

(CT) brain scan and/or magnetic resonance imaging (MRI)2. The 33 IS subjects were 

represented by 11 cardioembolic, 11 large vessel, and 11 lacunar causes of IS. Five out of the 

33 IS patients were treated with rtPA (recombinant tissue plasminogen activator) prior to the 

blood draw. CTRLs included subjects matched for VRFs and included stroke mimics, such as 

migraine and simple seizures. Samples were matched for age, race, sex, and VRFs, including 

hypertension, diabetes mellitus, hyperlipidemia, and smoking status. Exclusion criteria included 

previous stroke (for control subjects) and IS with hemorrhagic transformation. 

 

2. Blood Collection, RNA Isolation 

 

Blood collection and RNA isolation were performed as previously described3. There was 

a single blood draw per subject. For the IS and ICH subjects, time after symptom onset varied 

from 4.5 hours to 124.3 hours (Supplementary Table 1). For CTRL subjects, time was recorded 

as zero. Blood draw time was included as a covariate in the statistical analyses. 

 

3. Array Design and Processing 

 

The GeneChip® Human Transcriptome Array (HTA) 2.0 (Affymetrix, Santa Clara, CA) 

allows for deep examination into the coding and non-coding transcriptome and permits 

investigation of alternative splicing/transcript variants. It has an extensive coverage of the 

different layers of the transcriptome, with >285,000 full-length transcripts covered, of which 

>245,000 are coding transcripts, >40,000 - non-coding transcripts, and >339,000 - probe sets 

covering exon-exon junctions 



(http://tools.thermofisher.com/content/sfs/brochures/hta_array_2_0_datasheet.pdf). Raw 

expression values (probe-level data) for each gene were saved in Affymetrix.CEL and 

Affymetrix.DAT files. Through Affymetrix Power Tools (APT), the .CEL transformer was used to 

apply GC Correction (GCCN) and Single Space Transformation (SST) to the HTA.CEL files. We 

conducted the GCCN-SST transformations through a command line using APT 1.18.0 in “batch” 

mode (runs the algorithm on groups of .CEL files rather than processing each individually) 

(https://www.affymetrix.com/support/developer/powertools/changelog/VIGNETTE-apt-cel-

transformer-GCCN-SST.html). In order to investigate differential alternative splicing more 

directly, we performed transcript-level differential expression analysis using Partek Flow’s 

workflow for HTA arrays. The intensity data is converted to simulate RNA-seq data by mapping 

within-exon and exon-exon junction probe sets onto the genome, and converting their intensities 

into “read” counts. For that, after performing the GCCN-SST transformations, the APT-

preprocessed .CEL files were uploaded in the Partek Flow software (Partek Inc, St. Louis, MO). 

Probe sets were mapped to the Human Genome hg19, using STAR 2.4.1d aligner. Nominal 

read coverage depth was considered as 30 million and default mapping parameters were used. 

The mapping was followed by a quantification to a transcriptome (Ensembl75), RPKM 

normalization, and normalization offset of 1.0e-04 to account for the zero values. Low 

expression filter was applied (lowest maximum coverage=10). The E/M algorithm as 

implemented in Partek was used to assign “reads” (from the “mapping” of the HTA 2.0 probe 

sets) to known isoforms of a gene. Partek then uses a log-likelihood ratio test to identify DET 

across the groups.4 

The quantified, normalized transcript-level expression values were analyzed using Mixed 

Regression Models in Partek Genomics Suite 6.6 (Partek Inc, St. Louis, MO). This approach 

allowed us to investigate alternative splicing/expression of transcript variants to detect 

differentially expressed transcripts (DET) between ICH and CTRL, IS and CTRL, and ICH 

and IS, as well as time-dependent expression following ICH and IS. 

 

4. Analyses - Pairwise Group Comparisons 

 We used a Mixed Regression Model for transcript-level analyses: Diagnosis (ICH, IS, 

CTRL, fixed effect), Sex (categorical), Age (continuous), Time-since-event (continuous), 

Technical Variation (scan batch, random effect). REML variance estimate suitable for mixed 

models was used5. Transcripts with FDR-corrected p(Diagnosis)<0.2, which also had p<0.005 

and |FC|>1.2 for the individual comparisons (ICH vs. CTRL, IS vs. CTRL, or ICH vs. IS), were 

http://tools.thermofisher.com/content/sfs/brochures/hta_array_2_0_datasheet.pdf
https://www.affymetrix.com/support/developer/powertools/changelog/VIGNETTE-apt-cel-transformer-GCCN-SST.html
https://www.affymetrix.com/support/developer/powertools/changelog/VIGNETTE-apt-cel-transformer-GCCN-SST.html


considered significant. The Fisher's least significant difference contrast method was used for the 

individual contrasts6. 

 

5. Analyses – Time-Dependent Changes in Transcript Expression 

For time-dependent analyses (in a cross-sectional design), the VRF-matched controls 

(n=33) were considered as time-point 0 (TP0), and ICH and IS subjects were binned separately 

for time-since-event into additional three time-points – <24h (day 1, Time-Point 1 (TP1), 10 IS, 7 

ICH), 24-48h (day 2, Time-Point 2 (TP2), 7 IS, 7 ICH) and >48h (>day 3, Time-Point 3 (TP3), 16 

IS, 19 ICH). Mixed Regression Model on transcript-level data was used: Diagnosis (IS, ICH, 

CTRL), Sex, Age, Time-Point (TP0, TP1, TP2, TP3), and an interaction of Diagnosis * Time-

Point. Since a smaller number of subjects per group were analyzed in this analysis, significance 

was considered with p<0.005 and |FC|>1.2 on the individual contrasts from the interaction term. 

 

6. Self-Organizing Maps (SOM) Analyses 

For identifying similar profiles of dynamic changes following ICH and IS over the four 

time-points, we performed SOM7 and Learning and Neighborhood functions, as implemented in 

Partek Genomics Suite. The initial learning rate was 0.1. The learning rate was updated with 

exponential decay. The neighborhood function type was Gaussian. SOM arranges data points in 

a map so that similar points are closer to each other on the map. The input for SOM was all 

transcripts that were differentially expressed between any two time-points (p<0.005, FC>|1.2|). 

Clustering was performed separately for the ICH and IS time-dependent transcripts. We 

performed 500,000 training iterations and set the Map Height to 4 and Map Width to 4, yielding 

16 profiles for ICH and 16 - for IS. Each transcript-level’s expression was normalized by 

standardizing it by shifting it to a mean of 0 and standard deviation (SD) of 1, and are presented 

summarized with ± 2SD in Figure 7 and Supplementary Figure 7.  

 

7. Pathway Analysis. Prediction of Activation/Inhibition of Pathways. Identifying 

Upstream Transcriptional Regulators 

Pathway enrichment analysis was performed in Ingenuity Pathway Analysis (IPA, 

Ingenuity Systems®) as previously described8. In short, Benjamini-Hochberg corrected p<0.05 

was used for determining whether there were more genes per pathway that were differentially 

expressed between ICH and CTRL, IS and CTRL, or ICH and IS than would be expected by 

chance. For the time-dependent analysis (time profiles), Fisher’s exact tests with nominal 

p<0.05 was used to ensure more detailed overview of the pathways involved. 



IPA’s Pathway Activity analysis allows to predict if a Signaling Canonical Pathway is 

increased (activated) or decreased (inhibited). For that, a Z-score algorithm is used to calculate 

a Z-score that mathematically compares our uploaded dataset of DET (by Gene Symbol) with 

the Canonical Pathway patterns. The latter ones are calculated taking into account the 

activation state of one or more key molecules when the pathway is activated, as well as the 

molecules’ causal relationships with each other to generate an activity pattern for the molecules 

and the end-point functions in that pathway based on IPA-curated literature findings.  

To identify potential upstream transcriptional regulators that may drive the observed 

transcriptome changes, we performed Upstream Transcriptional Regulators Analysis in IPA. It is 

based on prior knowledge of expected effects between transcriptional regulators and their target 

genes.  As per IPA, for each potential transcriptional regulator, an overlap p‐value (measures a 

significant overlap between our dataset genes and known targets regulated by a transcriptional 

regulator) and an activation z‐score (infers likely activation/inhibition states of upstream 

regulators based on comparison with a model that assigns random regulation directions) are 

calculated for each upstream regulator. 

 

8. Estimating the Fraction of Peripheral Blood Cell Types 

To estimate the frequency of circulating immune cells for each subject, we utilized the 

Cibersort deconvolution method (https://cibersort.stanford.edu/)9. The method applies a 

machine learning algorithm (linear support vector regression (SVR)) to deconvolute unknown 

cell mixture based on an input matrix of reference gene expression signatures, collectively used 

to estimate the relative proportions of each cell type of interest9. The method is very robust 

compared to other methods with respect to noise and overfitting. We used the 

Cibersort’s LM22 signature matrix, which contains 547 genes that distinguish 22 human 

hematopoietic cell phenotypes, including seven T cell types, naïve and memory B cells, 

plasma cells, NK cells, and myeloid subsets. Mann-Whitman test with 1,000 iterations 

was used to determine significance.  

 

9. Biotype Comparisons 

Fisher’s Exact Test was used to calculate the difference in the numbers of DET 

in each biotype in the ICH vs CTRL analysis compared to the IS vs CTRL analysis. For 

each biotype category we input the “In-Biotype” and the “Not-in-Biotype” numbers for 

each biotype category to obtain the Fisher’s Exact two-tailed p-value (GraphPad online 

calculator - https://www.graphpad.com/quickcalcs/contingency1/). 
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