
Additional file 6 – Detailed Metabolomics Methodology 

 
Metabolon HD4 Platform 

Sample Accessioning:  Following receipt, samples are inventoried and immediately stored at -

80oC.  Each sample received is accessioned into the Metabolon LIMS system and assigned a 

unique identifier that is associated with the original source identifier only.  This identifier is used 

by the LIMS system to track all samples (and all derived aliquots), sample handling, tasks, results, 

etc.  All portions of any sample are automatically assigned their own unique identifiers by the 

LIMS when a new task is created; the relationship of these samples is also tracked.  All samples 

are maintained at -80oC until processed. 

Sample Preparation:  Samples are prepared using the automated MicroLab STAR® system from 

Hamilton Company.  Several recovery standards are added prior to the first step in the extraction 

process for QC purposes.  Samples are extracted with methanol under vigorous shaking for 2 min 

(Glen Mills GenoGrinder 2000) to precipitate protein and dissociate small molecules bound to 

protein or trapped in the precipitated protein matrix, followed by centrifugation to recover 

chemically diverse metabolites.  The resulting extract is divided into five fractions: two for analysis 

by two separate reverse phase (RP)/UPLC-MS/MS methods using positive ion mode electrospray 

ionization (ESI), one for analysis by RP/UPLC-MS/MS using negative ion mode ESI, one for 

analysis by HILIC/UPLC-MS/MS using negative ion mode ESI, and one reserved for backup.  

Samples are placed briefly on a TurboVap® (Zymark) to remove the organic solvent.  The sample 

extracts are stored overnight under nitrogen before preparation for analysis.   

QA/QC:  Several types of  quality control samples are analyzed in concert with the experimental 

samples.  These include: 1) technical replicate samples derived from a pool of well-characterized 

human plasma (MTRX) or, alternatively, generated by combining a small portion of each (non-

plasma) experimental sample (CMTRX), spaced evenly among experimental samples; 2) extracted 

water samples (process blanks) and solvent blanks; and 3) a cocktail of QC standards, carefully 

chosen not to interfere with the measurement of endogenous compounds, spiked into every 

analyzed sample, allowing instrument performance monitoring and aiding with chromatographic 

alignment.  Tables 1 and 2 describe these QC samples and standards.  Instrument variability is 

determined by calculating the median relative standard deviation (RSD) for the standards that were 

added to each sample prior to injection into the mass spectrometers.  Overall process variability is 

determined by calculating the median RSD for all endogenous metabolites (i.e., non-instrument 

standards) present in each of the pooled MTRX (or CMTRX) technical replicate samples.  

Experimental samples are randomized across the platform run, with QC samples spaced evenly 

among the injections, as outlined in Figure 1. 



Table 1:  Description of Metabolon QC Samples 

Type Description Purpose 

MTRX Large pool of human plasma 
maintained by Metabolon that has 
been characterized extensively 

Assure that all aspects of the Metabolon process 
are operating within specifications 

CMTRX Pool created by taking a small aliquot 
from every client sample 

Assure that all aspects of the Metabolon process 
for non-plasma matrices are operating within 
specifications 

PRCS Aliquot of ultra-pure water that 
provides a baseline reference signal 

Process Blank used to assess process background 
contribution to compound signals 

SOLV Aliquot of solvents used in extraction Solvent Blank used to segregate contamination 
sources in the extraction 

 

Table 2:  Metabolon QC Standards 

Type Description Purpose 

RS Recovery Standard 
Assess variability and verify performance of 
extraction and instrumentation. 

IS Internal Standard Assess variability and performance of instrument. 

 

 

Figure 1.  Preparation of client-specific technical replicates.  A small aliquot of each client 

sample (colored cylinders) is pooled to create a CMTRX technical replicate sample (multi-colored 

cylinder), which is then injected periodically throughout the platform run.  Variability among 

consistently detected biochemicals can be used to calculate an estimate of overall process and 

platform variability. 

Ultrahigh Performance Liquid Chromatography-Tandem Mass Spectroscopy (UPLC-

MS/MS):  All methods utilize a Waters ACQUITY ultra-performance liquid chromatography 

(UPLC) and a Thermo Scientific Q-Exactive high resolution/accurate mass spectrometer 

interfaced with a heated electrospray ionization (HESI-II) source and Orbitrap mass analyzer 

operated at 35,000 mass resolution.  The sample extract is dried then reconstituted in solvents 

compatible to each of the four methods. Each reconstitution solvent contains a series of standards 

at fixed concentrations to ensure injection and chromatographic consistency.  One aliquot is 

Client samples
1st injection Final injection

CMTRX         Process Blank

Client samples

DAY 1

DAY 2

Study samples randomized and balanced

CMTRX: Technical 
replicates created from an 
aliquot of all client study 

samples



analyzed using acidic positive ion conditions, chromatographically optimized for more hydrophilic 

compounds.  In this method, the extract is gradient-eluted from a C18 column (Waters UPLC BEH 

C18-2.1x100 mm, 1.7 µm) using water and methanol, containing 0.05% perfluoropentanoic acid 

(PFPA) and 0.1% formic acid (FA).  A second aliquot is also analyzed using acidic positive ion 

conditions, but is chromatographically optimized for more hydrophobic compounds.  In this 

method, the extract is gradient eluted from the aforementioned C18 column using methanol, 

acetonitrile, water, 0.05% PFPA and 0.01% FA, and is operated at an overall higher organic 

content.  A third aliquot is analyzed using basic negative ion optimized conditions using a separate 

dedicated C18 column.   The basic extracts are gradient-eluted from the column using methanol 

and water, however with 6.5mM Ammonium Bicarbonate at pH 8. The fourth aliquot is analyzed 

via negative ionization following elution from a HILIC column (Waters UPLC BEH Amide 

2.1x150 mm, 1.7 µm) using a gradient consisting of water and acetonitrile with 10mM Ammonium 

Formate, pH 10.8. The MS analysis alternates between MS and data-dependent MSn scans using 

dynamic exclusion.  The scan range varies slightly between methods, but covers approximately 

70-1000 m/z.  Raw data files are archived and extracted as described below. 

Bioinformatics:  The informatics system consists of four major components, the Laboratory 

Information Management System (LIMS), the data extraction and peak-identification software, 

data processing tools for QC and compound identification, and a collection of statistical, 

visualization, and interpretation tools for use by data analysts.  The hardware and software 

foundations for these informatics components are the LAN backbone and database servers running 

Oracle 10.2.0.1 Enterprise Edition. 

LIMS:  The purpose of the Metabolon LIMS system is to enable fully auditable laboratory 

automation through a secure, easy to use, and highly specialized system.  The scope of the 

Metabolon LIMS system encompasses sample accessioning, sample preparation, instrumental 

analysis and reporting, and advanced data analysis.  All the subsequent software systems are 

grounded in the LIMS data structures, which has been modified to leverage and interface with the 

in-house information extraction and data visualization systems, as well as third party 

instrumentation and data analysis software. 

Data Extraction and Compound Identification:  Raw data are extracted, peak-identified, and 

QC processed using Metabolon’s hardware and software.  These systems are built on a web-service 

platform utilizing Microsoft’s .NET technologies, which run on high-performance application 

servers and fiber-channel storage arrays in clusters to provide active failover and load-balancing.  

Compounds are identified by comparison to library entries of purified standards or recurrent 

unknown entities.  Metabolon maintains a library based on authenticated standards that contains 

the retention time/index (RI), mass to charge ratio (m/z), and chromatographic data (including 

MS/MS spectral data) on all molecules present in the library.  Furthermore, biochemical 

identifications are based on three criteria: retention index within a narrow RI window of the 

proposed identification, accurate mass match to the library +/- 10 ppm, and the MS/MS forward 

and reverse scores.  MS/MS scores are based on a comparison of the ions present in the 

experimental spectrum to ions present in the library entry spectrum.  While there may be 

similarities between these molecules based on one of these factors, the use of all three data points 

can be utilized to distinguish and differentiate biochemicals.  More than 4500 commercially 

available purified standard compounds have been acquired and registered into LIMS for analysis 

on all platforms for determination of their analytical characteristics.  Additional mass spectral 



entries have been created for structurally unnamed biochemicals, which have been identified by 

virtue of their recurrent nature (both chromatographic and mass spectral).  These compounds have 

the potential to be identified by future acquisition of a matching purified standard or by classical 

structural analysis. 

Curation:  A variety of curation procedures are performed to ensure that a high quality data set is 

made available for statistical analysis and data interpretation.  The QC and curation processes are 

designed to ensure accurate and consistent identification of true chemical entities, and to remove 

those representing system artifacts, mis-assignments, redundancy, and background noise.  

Metabolon data analysts use internally-developed visualization and interpretation software to 

confirm the consistency of peak identification among the various samples.  Library matches for 

each compound are checked for each sample and corrected if necessary. 

 

Metabolite Quantification and Block Correction:  Peaks are quantified as area-under-the-curve 

detector ion counts.  For studies spanning multiple days, a data adjustment step is performed to 

correct block variation resulting from instrument inter-day tuning differences, while preserving 

intra-day variance.  Essentially, each compound is corrected in balanced run-day blocks by 

registering the daily medians to equal one (1.00), and adjusting each data point proportionately 

(termed the “block correction”; Figure 2).   For studies that do not require more than one day of 

analysis, no adjustment of raw data is necessary, other than scaling for purposes of data 

visualization.   

Figure 2:  Visualization of data correction steps for a multiday platform run. 

 

Normalization:  In certain instances, biochemical data may be normalized to an additional factor, 

such as cell counts, total protein (Bradford assay), osmolality, etc., to account for systematic 

variation in metabolite levels due to differences in the amount of starting material in each sample. 
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Statistical Methods and Terminology 

Statistical Calculations:  For many studies, two types of statistical analysis are usually performed: 
(1) significance tests and (2) classification analysis.  Standard statistical analyses are performed 
in ArrayStudio on log transformed data.  For those analyses not standard in ArrayStudio, the 
programs R (http://cran.r-project.org/) or JMP are used.  Below are examples of frequently 
employed significance tests and classification methods followed by a discussion of p- and q-value 
significance thresholds.  
 

1. Welch’s two-sample t-test 

Welch’s two-sample t-test is used to test whether two unknown means are different from 
two independent populations. 
 
This version of the two-sample t-test allows for unequal variances (variance is the square 
of the standard deviation) and has an approximate t-distribution with degrees of freedom 
estimated using Satterthwaite’s approximation.  The test statistic is given by t=  (𝑥̅1 −
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) , where 𝑥̅1, 𝑥̅2 are the sample means, s1, s2, are the sample standard deviations, 

and n1, n2 are the samples sizes from groups 1 and 2, respectively.  We typically use a two-
sided test (tests whether the means are different) as opposed to a one-sided test (tests 
whether one mean is greater than the other). 

 
2. Matched pairs t-test 

The matched pairs t-test is used to test whether two unknown means are different from 
paired observations taken on the same subjects. 
 
The matched pairs t-test is equivalent to the one-sample t-test performed on the 
differences of the observations taken on each subject (i.e., calculate (x1 – x2) for each 
subject; test whether the mean difference is zero or not). The test statistic is given by 𝑡 =
 (𝑥̅1 − 𝑥̅2)/𝑛, with n – 1 degrees of freedom, where 𝑥̅1, 𝑥̅2 are the sample means for 
groups 1 and 2, respectively, sd is the standard deviation of the differences, n is the 
number of subjects (so there are 2n observations).   

 
3. One-way ANOVA  

ANOVA stands for analysis of variance.  For ANOVA, it is assumed that all populations have 
the same variances.  One-way ANOVA is used to test whether at least two unknown 
means are all equal or whether at least one pair of means is different.  For the case of two 
means, ANOVA gives the same result as a two-sided t-test with a pooled estimate of the 
variance.  

http://cran.r-project.org/


 
An ANOVA uses an F-test which has two parameters – the numerator degrees of freedom 
and the denominator degrees of freedom.  The degrees of freedom in the numerator are 
equal to g – 1, where g is the number of groups.  If n is the total number of observations 
(n1 + n2), then, the denominator degrees of freedom is equal to n – g.  The F-statistic is 
the ratio of the between-groups variance to the within-groups variance, hence the higher 
the F-statistic the more evidence we have that the means are different. 
 
Often within ANOVA, one performs linear contrasts for specific comparisons of interest.  
For example, suppose we have three groups A, B, C, then examples of some contrasts are 
A vs. B, the average of A and B vs. C, etc.  For single-degree of freedom contrasts, these 
give the same result as a two-sided t-test with the pooled estimate of the variance from 
the ANOVA and degrees of freedom n – g.  Below, we show the three formulas for A vs. B 
from a three group design as shown above.  The numerator is same in each case, but the 
denominator differs by the estimates of the variances, and the degrees of freedom are 
different for each (if the theoretical assumptions hold, then the contrast has the most 
power, as it has the largest degrees of freedom). 
 
Welch’s two-sample t-test 
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Two-sample t-test with pooled estimate of variance from A and B 

𝑡 =  (𝑥̅𝐴 − 𝑥̅𝐵)/√𝑠𝐴𝐵
2 (1/𝑛𝐴 +/𝑛𝐵) 

where 𝑠𝐴𝐵
2 = ((𝑛𝐴 − 1)𝑠𝐴

2 + (𝑛𝐵 − 1)𝑠𝐵
2)/(𝑛𝐴 + 𝑛𝐵 − 2),  where the degrees of freedom 

is nA + nB – 2.  
The contrast from the ANOVA, 

𝑡 =  (𝑥̅𝐴 − 𝑥̅𝐵)/√𝑠2(1/𝑛𝐴 +/𝑛𝐵) 
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the degrees of freedom is given by where the degrees of freedom is nA + nB + nC – 3.  
 

4. Two-way ANOVA 

ANOVA stands for analysis of variance.  For ANOVA, it is assumed that all populations have 
the same variances.  For a two-way ANOVA, three statistical tests are typically performed: 
the main effect of each factor and the interaction.  Suppose we have two factors A and B, 
where A represent the genotype and B represent the diet in a mouse study.  Suppose 
each of these factors has two levels (A:  wild type, knock out; B:  standard diet, high fat 
diet).  For this example, there are 4 combinations (“treatments”):  A1B1, A1B2, A2B1, 
A2B2.  The overall ANOVA F-test gives the p-value for testing whether all four of these 



means are equal or whether at least one pair is different.  However, we are also interested 
in the effect of the genotype and diet.  A main effect is a contrast that tests one factor 
across the levels of the other factor.  Hence the A main effect compares (A1B1 + A1B2)/2 
vs. (A2B1 + A2B2)/2, and the B-main effect compares (A1B1 + A2B2)/2 vs.  (A1B2 + 
A2B2)/2.  The interaction is a contrast that tests whether the mean difference for one 
factor depends on the level of the other factor, which is (A1B2 + A2B1)/2 vs. (A1B1 + 
A2B2)/2.  

 
Some sample plots follow.  For the first plot, there is a B main effect, but no A main effect 
and no interaction, as the effect of B does not depend on the level of A.  For the second 
plot, notice how the mean difference for B is the same at each level of A and the 
difference in A is the same for each level of B, hence there is no statistical interaction.  
The final plot also has main effects for A and B, but here also has an interaction:  we see 
the effect of B depends on the level of A (0 for A1 but 2 for A2), i.e., the effect of the diet 
depends on the genotype.  We also see here the interpretation of the main effects 
depends on whether there is an interaction or not. 

 

0 1 2 3 4

0
1

2
3

4

mean A1B1

mean A1B2

mean A2B1

mean A2B2

Main Effect for B, but no Main Effect for A, no Interaction



 
 

 
 
 
 

0 1 2 3 4

0
1

2
3

4

mean A1B1

mean A1B2

mean A2B1

mean A2B2

Main Effect for A, Main Effect for B, No Interaction

0 1 2 3 4

0
1

2
3

4

mean A1B1 and mean A1B2 mean A2B1

mean A2B2

Main Effect for A, Main Effect for B, with Interaction



5. Two-way Repeated Measures ANOVA 

This is typically an ANOVA where one factor is applied to each subject and the second 
factor is a time point.  See two-way ANOVA as many of the details are similar except that 
the model takes into account the repeated measures, i.e., the treatments are given to the 
same subject over time. The two main effects and the interaction are assessed, with 
particular interest to the interaction, as this shows where the time profiles are parallel or 
not for the treatments (parallel mean no interaction).  
 
One additional note, the standard analysis assumes a condition referred to as compound 
symmetry, which assumes the correlation between each pair of levels of the repeated-
measures factor is the same.  Thus, for the case of time, it assumes the correlation is the 
same between time points 1 and 2, 1 and 3, and 2 and 3. 
 

6. Correlation 

Correlation measures the strength and direction of a linear association between two 
variables.  The statistical test for correlation tests whether the true correlation is zero or 
not. 
 
The square of the correlation is the percentage of the total variation explained by a linear 
relationship between the two variables.  Thus, with large sample sizes there may be a 
sample correlation of 0.1 that is statistically significant.  This means we have high 
confidence that the true correlation is zero, however, only 100*(0.1*0.1)% = 1% of the 
variation of one variable is explained by a linear relationship with the other variable, so 
while there is an association, it has little predictive ability. 

 
7. Hotelling’s T2 test 

The Hotelling’s T2 test is a multivariate generalization of the t-test, but here we are testing 
whether the mean vectors are different or not (the vector consists of multiple 
metabolites). 
 

The Hotelling statistic is: 𝑡2  = (
𝑛𝑥 𝑛𝑦

𝑛𝑥+𝑛𝑦
) ∗ (𝒙̅ − 𝒚̅)𝑇 𝑺−1 (𝒙̅ – 𝒚̅), where nx and ny are the 

numbers of samples in each group, 𝒙̅  is the mean vector of the variables from group 1,  𝒚̅  
is the mean vector of variables from group 2 and S is the pooled estimate of the variance-
covariance matrix of the variables.  This analysis assumes the underlying variance-
covariance matrix is the same for each group.  Notice that in the case of uncorrelated 
variables, this is simply a weighted average of the squared mean differences with weights 
inversely proportional to the sample variances (i.e., the metabolites less variable within a 
group are given higher weights). 
 

8. p- values 

For statistical significance testing, p-values are given.  The lower the p-value, the more 
evidence we have that the null hypothesis (typically that two population means are equal) 



is not true.  If “statistical significance” is declared for p-values less than 0.05, then 5% of 
the time we incorrectly conclude the means are different, when actually they are the 
same. 
 

The p-value is the probability that the test statistic is at least as extreme as observed in 
this experiment given that the null hypothesis is true.  Hence, the more extreme the 
statistic, the lower the p-value and the more evidence the data gives against the null 
hypothesis. 

 
9. q-values 

The level of 0.05 is the false positive rate when there is one test.  However, for a large 
number of tests we need to account for false positives. There are different methods to 
correct for multiple testing.  The oldest methods are family-wise error rate adjustments 
(Bonferroni, Tukey, etc.), but these tend to be extremely conservative for a very large 
number of tests.  With gene arrays, using the False Discovery Rate (FDR) is more common.  
The family-wise error rate adjustments give one a high degree of confidence that there 
are zero false discoveries.  However, with FDR methods, one can allow for a small number 
of false discoveries.  The FDR for a given set of compounds can be estimated using the q-
value (see Storey J and Tibshirani R. (2003) Statistical significance for genomewide 
studies. Proc. Natl. Acad. Sci. USA 100: 9440-9445; PMID: 12883005).  
 
In order to interpret the q-value, the data must first be sorted by the p-value then choose 
the cutoff for significance (typically p<0.05).  The q-value gives the false discovery rate for 
the selected list (i.e., an estimate of the proportion of false discoveries for the list of 
compounds whose p-value is below the cutoff for significance).  For Table 1 below, if the 
whole list is declared significant, then the false discovery rate is approximately 10%.  If 
everything from Compound 079 and above is declared significant, then the false discovery 
rate is approximately 2.5%.   
Table 1: Example of q-value interpretation 

 
 
 
 
 
 
 

10. Random Forest 

 
Random forest is a supervised classification technique based on an ensemble of decision 
trees (see Breiman L. (2001) Random Forests.  Machine Learning.  45: 5-32; 
http://link.springer.com/article/10.1023%2FA%3A1010933404324).  For a given decision 
tree, a random subset of the data with identifying true class information is selected to 

Compound p -value q -value

Compound 103 0.0002 0.0122

Compound 212 0.0004 0.0122

Compound 076 0.0004 0.0122

Compound 002 0.0005 0.0122

Compound 168 0.0006 0.0122

Compound 079 0.0016 0.0258

Compound 113 0.0052 0.0631

Compound 050 0.0053 0.0631

Compound 098 0.0061 0.0647

Compound 267 0.0098 0.0939



build the tree (“bootstrap sample” or “training set”), and then the remaining data, the 
“out-of-bag” (OOB) variables, are passed down the tree to obtain a class prediction for 
each sample.  This process is repeated thousands of times to produce the forest.  The final 
classification of each sample is determined by computing the class prediction frequency 
(“votes”) for the OOB variables over the whole forest.  For example, suppose the random 
forest consists of 50,000 trees and that 25,000 trees had a prediction for sample 1.  Of 
these 25,000, suppose 15,000 trees classified the sample as belonging to Group A and the 
remaining 10,000 classified it as belonging to Group B.  Then the votes are 0.6 for Group 
A and 0.4 for Group B, and hence the final classification is Group A.  This method is 
unbiased since the prediction for each sample is based on trees built from a subset of 
samples that do not include that sample.  When the full forest is grown, the class 
predictions are compared to the true classes, generating the “OOB error rate” as a 
measure of prediction accuracy.  Thus, the prediction accuracy is an unbiased estimate of 
how well one can predict sample class in a new data set.  Random forest has several 
advantages – it makes no parametric assumptions, variable selection is not needed, it 
does not overfit, it is invariant to transformation, and it is fairly easy to implement with 
R. 
 
To determine which variables (biochemicals) make the largest contribution to the 
classification, a “variable importance” measure is computed.  We use the “Mean 
Decrease Accuracy” (MDA) as this metric.  The MDA is determined by randomly 
permuting a variable, running the observed values through the trees, and then 
reassessing the prediction accuracy.  If a variable is not important, then this procedure 
will have little change in the accuracy of the class prediction (permuting random noise 
will give random noise).  By contrast, if a variable is important to the classification, the 
prediction accuracy will drop after such a permutation, which we record as the 
MDA.  Thus, the random forest analysis provides an “importance” rank ordering of 
biochemicals; we typically output the top 30 biochemicals in the list as potentially worthy 
of further investigation. 
 

11. Hierarchical Clustering 

Hierarchical clustering is an unsupervised method for clustering the data, and can show 
large-scale differences. There are several types of hierarchical clustering and many 
distance metrics that can be used.  A common method is complete clustering using the 
Euclidean distance, where each sample is a vector with all of the metabolite values.  The 
differences seen in the cluster may be unrelated to the treatment groups or study design. 

 
12. Principal Components Analysis (PCA) 

Principal components analysis is an unsupervised analysis that reduces the dimension of 
the data.  Each principal component is a linear combination of every metabolite and the 
principal components are uncorrelated.  The number of principal components is equal to 
the number of observations.   
 



The first principal component is computed by determining the coefficients of the 
metabolites that maximizes the variance of the linear combination.  The second 
component finds the coefficients that maximize the variance with the condition that the 
second component is orthogonal to the first.  The third component is orthogonal to the 
first two components and so on.  The total variance is defined as the sum of the variances 
of the predicted values of each component (the variance is the square of the standard 
deviation), and for each component, the proportion of the total variance is computed.  
For example, if the standard deviation of the predicted values of the first principal 
component is 0.4 and the total variance = 1, then 100*0.4*0.4/1 = 16% of the total 
variance is explained by the first component.  Since this is an unsupervised method, the 
main components may be unrelated to the treatment groups, and the “separation” does 
not give an estimate of the true predictive ability.   
 

13. Z-scores 

An intensity measurement for a metabolite by itself does not tell much. If for example a 
patient contains a blood glucose level of 300, this could be very good news if most people 
have blood glucose levels around 300, but less so if most people have levels around 100. 
In other words a measurement is meaningful only relative to the means of the sample or 
the population. This can be achieved by transforming the measurements into Z-scores 
which are expressed as standard deviations from the mean.   
 
The Z-score, also called the standard score or normal score, is a dimensionless quantity 
derived by subtracting the control population mean from an individual raw score and then 
dividing the difference by the control population standard deviation. The Z-score 
indicates how many standard deviations an observation is above or below the mean of 
the control group. The Z-score is negative when the raw score is below the mean, positive 
when above. Since knowing the true mean and standard deviation of a control population 
is often unrealistic, the mean and standard deviation of the control population may be 
estimated using a random control sample. 

 
 

Z-score =  
where:  x is a raw score to be standardized, μ is the mean of the 
control population,  σ is the standard deviation of the control population 

 
Subtracting the mean centers the distribution, and dividing by the standard deviation 
standardizes the distribution. The interesting properties of Z-scores are that they have a 
zero mean (effect of “centering”) and a variance and standard deviation of 1 (effect of 
“standardizing”). This is because all distributions expressed in Z-scores have the same 
mean (0) and the same variance (1), so we can use Z-scores to compare observations 
coming from different distributions. When a distribution is normal most of the Z-scores 
(more than 99%) lay between the values of -3 and +3. 

 
 


