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eMethods 1. Collecting NK cell-specific (NK-specific) Genes

To select NK-specific genes, we used the gene signatures derived from a genome-
wide gene expression analysis of mouse lymphocytes between immune cells! and an
immune gene regulatory network (ImmGen)? containing the gene expression profiles
of more than 300 mouse immune cell types. NK cells were reported to be easily
distinguished from B cells and adaptive T cells such as CD4+ T, CD8+ T and other
innate immune cells but shared many up-regulated genes with NKT and y8 T cells.!
The shared repertoire of surface receptors, signaling molecules and transcription
factors expressed by NK cells and the innate-like T cells (i.e., NKT and y5 T cells)
blurs the distinctions among these cell types. Thus, we collected ~200 NK-specific
genes representing (1) NK-unique genes which were more highly up-reregulated in
NK cells than innate-like T cells (i.e., NKT and yd T cells) and other immune cells
(i.e., B, CD4+ T, CD8+ T and others); (2) genes (termed as NK-NKT genes here)
which were highly up-regulated in both NK and NKT cells, but not in other immune
cells; (3) genes (i.e., termed as NK-y5 T genes here) which were highly up-regulated
in both NK and yd T cells, but not in other immune cells; and (4) genes (i.e., termed
as NK-NKT-yd T genes here) which were highly up-regulated in NK, NKT and yo T
cells, but not in other immune cells. These genes were able to distinguish innate
populations (NK, NKT and yé T cells) from adaptive T cells, B cells and other
immune cells.

We manually checked these genes from literature and gene databases such as
GeneCards (https://www.genecards.org) to remove the genes which were universally
expressed. Furthermore, we conducted correlation analyses between the expression of
each gene and the abundance of TIL-NK, TIL-NK CD56"¢" or TIL-NK CD56%™
cells in each cancer type. For each cancer type, the genes were remained only if they
had significantly positive correlations with the abundance of any of the three TIL-NK
cell subsets (FDR-corrected p<0.05). Finally, we obtained 157 genes (i.e., 28 of them
were NK-unique genes). These genes were highly expressed on either NK cell alone,

NK-NKT, NK-y3 T or NK-NKT-yd T cells. To exclude the genes that have a
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functional effect on tumor cells, we further screened the genes (i.e., from the 157
gene) which were within the bottom 30% of the expression value-ranked whole-

genome genes in the TIME-rich tumors.

eMethods 2. Immunoreceptor Tyrosine-Based Activation Motif (ITAM)-Signaling
Genes

Besides the NK cell specific ITAM-signaling receptors, we manually collected 18
ITAM-signaling genes (eTable 8) from literature which were expressed in NK cells

and other immune cells such as T cells.
eMethods 3. Ligands of the NK Cell Activating Receptors

We manually collected 39 ligands from literature which were known as NK cell

activating receptors (eTable 9).

eMethods 4. Variant Calling and Functional Germline Variants

For WES files, variant calling was performed using Varscan (version-2.3.9)>.
Functional variants were examined and annotated using the Combined Annotation
Dependent Depletion (CADD)* with the default parameters. To consistent with the
WES data analysis pipeline in TCGA, BWA (version-0.7.15)° was used to align with
default parameters for the cancer-free individuals, and pipe into Samtools (version-
0.1.8)° to sort. Additional adding read groups and duplicate removal were processed
with Picard-tools (version-2.6.0). The resulted BAM files were processed with GATK

(version-4.0.11.0) for realignment and base recalibration.
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eMethods 5. Immune Gene Set and Clustering Analysis for Determining TIME
Subtypes

Immune-related genes (n=1,384) including MHC system-related genes,’
immunophenoscore-related genes,® ICT essential genes for immunotherapy® and
cytotoxic T cell-resistant genes'? were collected and identified as critical immune-
related genes (the gene pool G ). RNA-sequencing data of melanoma samples were

used to conduct the following analysis:

Step#1 Initialize the candidate set of key genes, that is, G igae =@
Step#2 Randomly select 30% genes from the gene set G, 4om -
Step#3 Replace the features of elements in the patient set P with G, 4o, to form the

sample set S, qom -

Step#4 Group the samples S, by using the hierarchical clustering method. For

each of the clustering, clValid!' was used to evaluate the clustering stability and the

most stable clustering number was recorded.

Step#5 Repeat Steps 2-4 100,000 times. Rank the most stable clustering numbers and
select the most suitable clustering number 3.

Step#6 Extract the genes when clustering number is 3 and rank the genes.

Select the most informative genes and record them as the final set of key-gene
candidates (1,294 genes).

We then used the 1,294 genes to conduct unsupervised clustering analyses of the

RNA-seq data for each cancer type to define TIME subtypes.
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eMethods 6. Assigning Immune Checkpoint Therapy (ICT) Trial Samples into TIME
Subtypes

ICT-clinical trial SKCM and STAD samples were assigned to the TIME subtypes
derived from TCGA-SKCM and TCGA-STAD samples, respectively. To assign an
ICT-clinical trial sample into a TIME subtype, t-test statistics were first conducted
between TIME-rich and TIME-intermediate tumors, and between TIME-intermediate
and TIME-poor tumors based on the genes derived from the NK cell-mediated
cytotoxicity pathway and the Wnt signaling pathway using RNA-seq data. Spearman's
correlation was then conducted between each ICT-clinical trial sample and the TCGA
samples in each TIME subtype based on the obtained significantly differential genes
(p<0.05). Finally, k-nearest neighbor algorithm (KNN, k=5) was used to determine

the subtype of each ICT-clinical trial sample.

eMethods 7. Randomization Tests of the NK-Defective Genes

For each cancer type, we identified a set of NK-defective genes. To test if a set of
NK-defective genes could be randomly identified, we conducted randomization tests.
We first randomly selected 157 genes within the bottom 30% of the expression value-
ranked whole-genome genes of the TIME-rich tumors for a given cancer type
(n=5,000 times) and then employed hypergeometric tests. When a negative correlation
(p<0.05) between the gene number in the random genes and the abundance of TIL-
NK cells appeared, the hypergeometric test was marked as one success. The number

of successes was calculated within the 10,000 hypergeometric tests.

eMethods 8. Validating the Observation that Inherited Defective Genes in NK Cells
and APP Pathway Were More in Patients With Cancer Than Individuals With No
Cancer

To further validate the observation that more inherited defective genes in NK cells
were in cancer patients than cancer-free individuals, we obtained the WES data of
germlines for 12,380 cancer-free samples from dbGaP (phs000473) and determined

their functional mutated genes. For each cancer type, we conducted hypergeometric
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tests for the NK cell-mediated cytotoxicity pathway, NK cell-associated phenotypes
and the APP pathway shown in Figure 3 and eFigure 4 using the methods in our
previous study.!? Briefly, for a given cancer type, we compared cancer hallmark genes
(~12,000 genes) using randomization tests to identify differentially functional
germline mutated genes (p<0.05) between cancer and the cancer-free samples, and
then conducted enrichment analyses of the NK cell-mediated cytotoxicity pathway,
NK cell-associated phenotypes and APP pathway via conducting hypergeometric tests

(differentially functional germline mutated genes vs the cancer hallmark genes).

eAppendix 1. Associations of Defective Genes in NK Cell-ITAM-Signaling Genes
With Clinical Outcomes and Abudnance of TILs

To test whether ITAM signaling-genes in NK cells could have more inherited defects
in TIME-poor tumors compared with TIME-rich tumors, we collected a set of known
ITAM-dependent genes (~20 genes) in NK cells and found that some of the genes had
significantly higher genetic defects in TIME-poor tumors than TIME-rich tumors
(eTable 5). We further asked whether the combination of these significantly defective
genes with the potentially NK cell-defective genes identified in each cancer type
could improve the correlations (i.e., the negative correlations between the number of
NK cell-defective genes and survival and TILs’ abundance). We showed that the
correlations were significantly improved (i.e., lower p values and correlation
coefficients) in 11 out of the 12 cancer types except COAD. These results suggested
that inheritably genetic defects in ITAM-signalling genes of the NK cells could highly
associated with TILs’ abundance and survival in all the cancers except COAD in a
synergy manner. NK cells surrounding COAD tumors enabled to directly interact with
environmental factors such as microbiome, drinks, and others so that COAD

associated NK cells were much more complex than other cancers.

eAppendix 2. Inherited Defective Genes in NK cells, Type I Diabetes, Long-term
Depression Phenotypes, and Cancer
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Germline genomic analysis here suggested that Type I diabetes and long-term
depression phenotypes were linked to some cancers. This is supported by non-genetic
studies showing that diabetes is a risk factor for all-site cancer through a meta-
analysis of 121 cohorts including 20 million individuals and one million events.'*> A
24-year follow-up study showed that depression increases the risk of cancer,'*
moreover, a meta-analysis of 16 studies (n=163,000) showed that cancer patients with
anxiety and depression had a greater risk of dying from all types of cancer.'® The
research implied that the impairment of NK cell function is probably one of the
common factors behind these links. For example, obesity has been known to impair
NK cell function and then lead to an increased risk for severe infections and several

16,17 while chronic family stress is consistently associated with decreases

cancer types,
in NK cell cytotoxicity.'® These results indicated that NK function impaired by either

genetic defects or regulatory factors could increase cancer incidence.

eAppendix 3. Associations of the Inherited Defective Genes in APP and Wnt
Pathways With Tumorigenesis and Metastasis

It has been shown that activated Wnt signaling pathway in tumors excluded the
recruitment of CD8+ T cells into TIMEs.!? Also, somatic mutations of the Wnt
pathway in tumors could activate it to prevent T cells from being recruited into
TIMEs.?® Here we showed that in most of the cancer types the number of inherited
defective genes in the Wnt pathway had a positive correlation with the gene
expression of the Wnt pathway (i.e., pathway activation) in their paired tumors. In
addition, the number of the inheritably defective genes in the Wnt pathway showed
weakly negative correlations (i.e., with marginally significant p values in the range of
0.02-0.05) with the clinical outcomes for 8 cancer types (i.e., BLCA, BCRA, HNSC,
LAUD, LUSC, PRAD, STAD and UCEC, eFigure 17). Also, the number of the
inheritably defective genes in the Wnt pathway had negative correlations with the
abundance of TILs in 6 cancer types (i.e., HNSC, KIRC, LGG, LUAD, LUSC and
SKCM, eFigure 18) although the correlations were weaker (i.e., in terms of

correlation co-efficiencies and correlation significance represented by p values) than
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those derived from defective NK cells. These results suggested the association
between inherited dysregulations in Wnt pathway and TILs’ recruitment in some

cancer types, and its influences were much weaker than defective NK cells.

APP is a biological process which presents antigens to T cells, functional defects in
APP could lead tumor cells to escape T cell surveillance. However, careful analyses
in this study showed that the number of genetic defective genes in the APP pathway
(i.e., the KEGG APP pathway includes HLA family genes, TAP1/2 and other genes)
was not significantly associated with clinical outcomes and TILs’ abundance.
However, significantly more inherited defective genes in the APP pathway were
observed in cancer patients than cancer-free individuals in most cancers (Figure 5 in
the main text). These results suggested that individuals who bear more inherited
defective genes in the APP pathway probably were at-risk of developing cancers.
These insights provided a potential opportunity to identify the subpopulation at-risk of
developing cancers based on the inherited defective genes in NK cells and the APP

pathway.

eAppendix 4. Open Questions Remained for NK Cell Inherited Defective Genes in
Cancer

In this study, we showed that inherited defective genes in NK cells shaped TIME
subtypes, TILs’ abundance, survival and cancer risk. Along this line, many open
questions still remained, for example, defective genes in NK cells were largely shared
by different cancer types, however, each cancer type has a few unique NK-defective
genes. Given the fact that tissue/organ-resident NK cells are different and diverse,?!
additional studies will be needed to elucidate if defective genes are dominantly
expressed in tissue/organ-resident NK cells. If so, adoptive transfer of tissue-resident
NK cells could be considered to be more efficient in cancer prevention and TIL's
recruitment. NK cells share gene expression programs with NKT and yé T cells, each
of which is a subset of innate-like T cells. NK cells, vy T cells and NKT cells are
cytotoxic cells, which trigger innate immune responses, provide the first level of
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defense against infected cells and tumor cells, produce cytokines and trigger immune
responses without a prior sensitization by the immune system. Along with this point,
we hypothesized that inherited defective genes in NKT and v T cells could also play
important roles which were discussed in this study, although the cell number of the
NK cells is nearly 200 times of that of the NKT and yd T cells in periphery blood.
Genetic defects in NK-NKT and NK-y6 T genes could impair the functions of not
only NK cells but also NTK or yd T cells, therefore, another possibility is that NK,
NKT and yo T cell impairment could contribute together to the results presented in
this study. If this is the case, genome-editing to correcting the genetic defective genes
in patients’ hematopoietic stem cells which generate NK, NKT, y5 T and other
immune cells could be an option for improving existing immunotherapies and cancer

prevention for high-risk individuals.
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eFigure 1. Heatmaps Showing the 3 Universal TIME Subtypes

Heatmaps showing the three universal TIME subtypes derived from the unsupervised
clustering by using the expression of the immune-checkpoint therapy essential genes.
Columns and rows represent samples and genes, respectively. Cancer types include bladder
urothelial carcinoma (BLCA), breast invasive carcinoma (BRCA), colon adenocarcinoma
(COAD), kidney renal clear cell carcinoma (KIRC), lower grade glioma (LGG), lung
squamous cell carcinoma (LUSC), pancreatic adenocarcinoma (PRAD), skin cutaneous
melanoma (SKCM), stomach adenocarcinoma (STAD), thyroid carcinoma (THCA) and
uterine corpus endometrial carcinoma (UCEC). Red, green and blue bars represent TIME-
rich, TIME-intermediate and TIME-poor subtype, respectively.
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eFigure 2. Abundance of the Tumor-Infiltrating Lymphocytes in TIME Subtypes in Cancers
Rows represent tumor-infiltrating lymphocytes.
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eFigure 3. Kaplan-Meier Curves Between Patients With Cancer in TIME-Rich Subtype and
TIME-Intermediate and TIME-Poor Subtypes.

It revealed that survival for was significantly longer for TIME-rich patients than TIME-
intermediate/-poor patients. A substantial fraction of samples in COAD was virus-infected
tumors After removing them, only 87 COAD samples were remained for analysis.
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eFigure 4. Significantly Enriched Pathways by Comparing RNA-seq Data in TIME-
Intermediate and TIME-Poor Subtypes

Columns and rows represent KEGG pathways and cancer types, respectively. The digital
numbers represent FDR-corrected p values.

~ NKD (NK cell deficiency)
- NK cell-related virus infections

w o
7

7,
/

Yy
fgf

)
YL
__ %

%

&

4

i

B

i

ff}%fﬁ.g; 7
s

22602 37604 106401 14602 1.26-03 136085 15608 % @

12005 42000 BAGOS 51002 50001 56001 20608 10005 70007 5301 %“f@s % k2]
RATS 23e 208400 13403 41605 38607 206-00 G600 e i %1‘%
43003 (S [ 1 7o 00005 95000 21002 % % % %%‘%
?Ml_ 13608 7902 19604 37602 J5e400 T9e-04 ZBeD6 ©60e-04 %%% %
57e-03 1be-0b 1Tot4 18002 22001 [ 12002 450t 636400 %b‘g

7003 BARDT| 10001 BI0e0S 13601 2o 25005 20600 30801 % %

17608 26001 20003 24003 % lk% B
78005 B 1a08 7

S1e04 52003 83005 20003 21003 12004 45003 L;&%%"“% .
e,
. ; 22001 - 208 - %&%&%
TEE T EYE R E Y N

© 2019 Xu X et al. JAMA Network Open.



eFigure 5. Heatmaps of the Significantly Differential Functional Germline Variants Between
the TIME-Rich and TIME-Intermediate/ TIME-Poor Subtypes

(Fisher's exact tests with FDR-corrected p<0.25). Only the functional germline variants
(rows) which were less enriched in the TIME-rich subtype are shown. Red, green and blue

bars represent TIME-rich, TIME-intermediate and TIME-poor subtype, respectively. Columns
represent samples.

Germline variants

STAD

Patients
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eFigure 6. Significantly Enriched Pathways by Comparing Functional Germline Variant
Between TIME-Rich and TIME-Intermediate/TIME-Poor Subtypes

Columns and rows represent KEGG pathways and cancer types, respectively. The digital
numbers represent FDR-corrected p values. Significantly functional differential germline
variants (p<0.2) between TIME-rich and TIME-intermediate/-poor tumors were intersected
with the immune-checkpoint therapy (ICT) essential genes, and then pathway enrichment
analysis was conducted.
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eFigure 7. Significantly Enriched Pathways of the Significantly Differential Germline
Variants Between the TIME-Intermediate and TIME-Poor Subtypes

A heatmap showing the significantly enriched pathways derived from the significantly
differential germline variants between TIME-intermediate and TIME-poor subtypes. Columns
and rows represent KEGG pathways and cancer types, respectively. The digital numbers
represent FDR-corrected p values. Significantly functional differential germline variants
(p<0.2) between TIME-intermediate and TIME-poor tumors were intersected with the
immune-checkpoint therapy (ICT) essential genes, and then pathway enrichment analysis was
conducted.
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eFigure 8. A Heatmap Showing the Significantly More Inherited NKD Genes in TIME-
Intermediate/TIME-Poor Subtypes Than TIME-Rich Subtype in Cancers
The digital numbers represent FDR-corrected p values. Columns and rows represent cancer
types and known inherited NKD (NK cell deficiency) genes, respectively.
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eFigure 9. A Bar Chart Showing Ratios of Gene Categories of the Potential NKD Genes Across
12 Cancer Types
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eFigure 10. Kaplan-Meier Curves of the High- and Low-Number of Functionally Inherited
NK Cell Variants
Kaplan-Meier curves of the patient groups of the high- and low-number of functionally

inherited variants in the NK-defective genes for disease-free survival in cancers. Patients were

top-ranked based on the number of functionally inherited variants in NK cells. Top 30% and

Bottom 30% of the ranked patients were defined as the high- and low-number of the NK-

defective patient groups, respectively.
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eFigure 11. Negative Correlations Between the Number of the Inheritable Defective Genes
and Abundance of TILs

NK, NKT, A CD8+ T, A CD4+ T, ¢cDC, immature B, Activated B, MDSC, GD T, RT, CM
CD8+ T, I dendritic, Type 1 TH, Type 2 TH, Type 17 TH, TF helper, A dendritic, EM CD4+
T, EM CD8+ T, P dendritic and CM CD4+ T represent natural killer cell, natural killer T cell,
activated CD8+ T cell, activated CD4+ T cell, conventional dendritic cell, immature B cell,
activated B cell, myeloid-derived suppressor cell, gamma delta T cell, regulatory T cell,
central memory CD8+ T cell, immature dendritic cell, Type 1 T helper cell, Type 2 T helper
cell, Type 17 T helper cell, T follicular helper cell, activated dendritic cell, effector memory
CD4+ T cell, effector memory CD8+ T cell, plasmacytoid dendritic cell and central memory
CD4+ T cell, respectively. *0.05<p-value <0.1; **0.01<p-value <0.05; and ***p-value<0.01.
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eFigure 12. Kaplan-Meier Curves of the High- and Low-Number of Functionally Inherited
Variants of the Combined Genes

Kaplan-Meier curves of the patient groups of the high- and low-number of merged
functionally inherited variants in the combined genes (NK-defective genes + defective non-
NK-specific ITAM-signaling genes) for disease-free survival in cancers. Patients were top-
ranked based on the number of the functionally inherited variants. Top 30% and Bottom 30%
of the ranked patients were defined as the high- and low-number of the defective patient
groups, respectively.
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eFigure 13. Negative Correlations Between the Number of the Inheritable Defective
Combined Genes and Abundance of TILs

Negative correlations between the number of the inheritable defective genes of the combined
genes (NK-defective genes + defective non-NK-specific ITAM-signaling genes) and the
abundance of tumor-infiltrating lymphocytes in cancers. NK, NKT, A CD8+ T, A CD4+ T,
c¢DC, immature B, Activated B, MDSC, GD T, RT, CM CD8+ T, I dendritic, Type 1 TH,
Type 2 TH, Type 17 TH, TF helper, A dendritic, EM CD4+ T, EM CD8+ T, P dendritic and
CM CD4+ T represent natural killer cell, natural killer T cell, activated CD8+ T cell,
activated CD4+ T cell, conventional dendritic cell, immature B cell, activated B cell,
myeloid-derived suppressor cell, gamma delta T cell, regulatory T cell, central memory CD8+
T cell, immature dendritic cell, Type 1 T helper cell, Type 2 T helper cell, Type 17 T helper
cell, T follicular helper cell, activated dendritic cell, effector memory CD4+ T cell, effector
memory CD8+ T cell, plasmacytoid dendritic cell and central memory CD4+ T cell,
respectively. *¥0.05<p-value <0.1; **0.01<p-value <0.05; and ***p-value<0.01.
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eFigure 14. The Abundance of TIL-NK Cells in the Tumors Bearing a Defective Gene in NK
Cells Was Significantly Lower Than the Rest of the Tumors

T-tests were conducted.
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eFigure 15. Heatmaps of the Significantly Differentially Functional Germline Variants
Between Cancer and Cancer-Free Cohorts

Only the functional germline variants (rows) which are more enriched in cancer patients are
shown. For each cancer types, the same number of the cancer-free individuals were randomly
selected from the cancer-free cohort (n=4,500). Red and blue bars represent cancer and
cancer-free individuals, respectively. Columns represent samples.
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eFigure 16. Significantly Enriched Pathways Derived from the Significantly Differential
Germline Variants Between Individuals With No Cancer Patients With Cance

rA heatmap showing the significantly enriched pathways derived from the significantly
differential germline variants between cancer-free individuals and cancer patients in 13 cancer
types. Columns and rows represent KEGG pathways and cancer types, respectively. The
digital numbers represent FDR-corrected p values. Significantly functional differential
germline variants (p<0.2) between cancer-free individuals and cancer patients were
intersected with the immune-checkpoint therapy (ICT) essential genes, and then pathway
enrichment analysis was conducted.
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eFigure 17. Kaplan-Meier Curves of the High- and Low-Number of Functionally Inherited
Variants in the Wnt Signaling Pathway for Disease-Free Survival

Patients were top-to-bottom ranked based on the number of functionally inherited variants

in the WNT signaling pathway. Top 30% and Bottom 30% of the ranked patients were

defined as the high- and low-number of the defected defects in the pathway, respectively.
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eFigure 18. Correlations of the Functionally Inherited Variants in the Wnt Signaling Pathway

With the Abundance of TILs

Bar charts illustrating the number of the functionally inherited variants (inherited defects) in
the Wnt signaling pathway is negatively correlated with the abundances of tumor-infiltrating
lymphocytes. Cancer types: head and neck squamous cell carcinoma (HNSC), kidney renal
clear cell carcinoma (KIRC), lower grade glioma (LGG), lung adenocarcinoma (LUAD), lung
squamous cell carcinoma (LUSC) and skin cutaneous melanoma (SKCM). * p<0.05; **

0.05<p>0.001 and *** p<0.001.
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eTable 1. List of ITAM-Signaling Genes

ITAM-signaling genes

ULBP1

ULBP2

ULBP3

MICA

MICB

CDY%

NKG2A

NKG2C

HLA-E

CD16

DNAM-1

CD226

ITGB2

ICAM1

ZAP70

PLCG1

VAV1

PLCG2
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eTable 2. List of Ligands of the NK Activating Receptors

Ligands of NK cell activating receptors

TNFRSF14

PVR

NECTIN2

CDA48

CADMI1

HLA-E

MICA

MICB

RAETIE

RAET1G

RAETIF

ULBPI

ULBP2

ULBP3

RAETIL

VIM

KMT2E

PCNA

PDGFD

BAG6

NCR3LG1

TNFSF9

CD274

PDCDI1LG2

FAS

FASLG

© 2019 Xu X et al. JAMA Network Open.



TNFRSF10B

TNFRSF10A

ICAMI

CSF2

CSF1

CSF3

CD70

SELL

CD72

CLEC2B

CEACAMI1

SLAMF6

SLAMEF7
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eTable 3. Average Immune Cell Fractions for TIME-Rich, TIME-Intermediate and TIME-
Poor Subtypes, Respectively

Cancer Immune cell TIME- TIME- TIME- P-value
rich intermediate | poor
BLCA Activated CD4+ T cell 0.25 0.18 0.14 1.22E-19
BLCA Activated CD8+ T cell 0.26 0.14 0.14 9.75E-19
BLCA Activated dendritic
0.26 0.21 0.17 6.37E-27
cell
BLCA CD56Yight natyral
0.27 0.25 0.25 7.75E-09
killer cell
BLCA CD56%m™ natural killer
0.33 0.33 0.34 4.73E-01
cell
BLCA Central memory CD4+
0.55 0.52 0.50 2.24E-13
T cell
BLCA Central memory CD8+
0.35 0.33 0.30 5.10E-08
T cell
BLCA Effector memory
0.16 0.15 0.13 3.12E-03
CD4+ T cell
BLCA Effector memory
0.32 0.20 0.15 4.70E-31
CD8+ T cell
BLCA Gamma delta T cell 0.29 0.25 0.24 4.65E-16
BLCA Immature dendritic
0.35 0.34 0.33 5.46E-04
cell
BLCA MDSC 0.36 0.20 0.13 2.30E-20
BLCA Memory B cell 0.10 0.09 0.07 3.07E-03
BLCA Monocyte 0.36 0.36 0.36 6.73E-01
BLCA Natural killer cell 0.28 0.24 0.20 7.85E-17
BLCA Plasmacytoid dendritic
0.38 0.36 0.34 3.59E-07
cell
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BLCA T follicular helper cell 0.18 0.13 0.10 5.61E-14
BLCA Type 1 T helper cell 0.17 0.12 0.09 1.53E-16
BLCA Type 2 T helper cell 0.15 0.13 0.10 3.66E-12
BRCA Activated CD4+ T cell 0.20 0.14 0.10 5.66E-09
BRCA Activated CD8+ T cell 0.24 0.14 0.12 3.11E-13
BRCA Activated dendritic
0.25 0.20 0.20 9.72E-15
cell
BRCA CD56 g natural
0.25 0.22 0.22 1.23E-13
killer cell
BRCA CD56%™ natural killer
0.35 0.33 0.32 7.54E-04
cell
BRCA Central memory CD4+
0.54 0.51 0.51 6.63E-08
T cell
BRCA Central memory CD8+
0.35 0.34 0.35 2.56E-01
T cell
BRCA Effector memory
0.16 0.15 0.15 3.61E-02
CD4+ T cell
BRCA Effector memory
0.29 0.20 0.20 4.10E-11
CD8+ T cell
BRCA Gamma delta T cell 0.25 0.23 0.22 1.55E-07
BRCA Immature dendritic
0.34 0.33 0.34 1.58E-01
cell
BRCA MDSC 0.34 0.22 0.20 7.81E-13
BRCA Memory B cell 0.13 0.14 0.13 7.10E-01
BRCA Monocyte 0.36 0.33 0.33 4.11E-10
BRCA Natural killer cell 0.29 0.26 0.27 2.65E-04
BRCA Natural killer T cell 0.09 0.05 0.05 4.08E-10
BRCA Plasmacytoid dendritic
0.40 0.38 0.39 4.96E-04

cell
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BRCA Regulatory T cell 0.20 0.12 0.12 1.77E-09
BRCA T follicular helper cell 0.16 0.12 0.11 5.60E-09
BRCA Type 1 T helper cell 0.17 0.12 0.12 1.19E-09
BRCA Type 2 T helper cell 0.16 0.13 0.13 3.51E-03
COAD Activated CD4+ T cell 0.10 0.21 0.19 8.52E-03
COAD Activated CD8+ T cell 0.19 0.21 0.17 1.61E-01
COAD Activated dendritic
0.27 0.28 0.25 6.01E-02
cell
COAD CD56Yight natyral
0.26 0.25 0.25 3.90E-02
killer cell
COAD CD56%9m™ natural killer
0.45 0.40 0.39 1.31E-04
cell
COAD Central memory CD4+
0.55 0.54 0.55 6.76E-01
T cell
COAD Central memory CD8+
0.34 0.34 0.34 8.83E-01
T cell
COAD Effector memory
0.06 0.10 0.12 4.12E-03
CD4+ T cell
COAD Effector memory
0.18 0.21 0.17 5.47E-01
CD8+ T cell
COAD Gamma delta T cell 0.29 0.28 0.28 2.15E-01
COAD Immature dendritic
0.27 0.29 0.30 8.29E-02
cell
COAD MDSC 0.24 0.22 0.19 6.22E-02
COAD Memory B cell 0.13 0.14 0.15 1.62E-04
COAD Monocyte 0.41 0.40 0.39 4.50E-02
COAD Natural killer cell 0.27 0.27 0.27 7.70E-01
COAD Natural killer T cell 0.06 0.05 0.05 1.41E-01
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COAD Plasmacytoid dendritic
0.37 0.37 0.38 5.93E-01
cell
COAD Regulatory T cell 0.14 0.14 0.15 6.78E-01
COAD T follicular helper cell 0.13 0.12 0.11 1.70E-01
COAD Type 1 T helper cell 0.15 0.14 0.13 1.78E-01
COAD Type 2 T helper cell 0.03 0.08 0.07 3.72E-02
HNSC Activated CD4+ T cell 0.22 0.20 0.19 2.47E-03
HNSC Activated CD8+ T cell 0.25 0.17 0.15 3.13E-19
HNSC Activated dendritic
0.28 0.25 0.23 3.09E-15
cell
HNSC CD56 g natural
0.31 0.30 0.29 5.75E-10
killer cell
HNSC CD56%™ natural killer
0.36 0.36 0.35 4.98E-01
cell
HNSC Central memory CD4+
0.59 0.58 0.56 4.85E-10
T cell
HNSC Central memory CD8+
0.37 0.37 0.36 4.95E-02
T cell
HNSC Effector memory
0.19 0.20 0.19 8.72E-01
CD4+ T cell
HNSC Effector memory
0.33 0.29 0.25 1.01E-17
CD8+ T cell
HNSC Gamma delta T cell 0.31 0.29 0.27 1.16E-09
HNSC Immature dendritic
0.38 0.39 0.38 3.40E-01
cell
HNSC MDSC 0.37 0.29 0.24 2.11E-17
HNSC Memory B cell 0.13 0.12 0.12 2.92E-01
HNSC Monocyte 0.37 0.36 0.35 2.28E-09
HNSC Natural killer cell 0.28 0.26 0.25 1.69E-05
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HNSC Natural killer T cell 0.13 0.11 0.09 9.38E-12
HNSC Plasmacytoid dendritic
0.42 0.42 0.41 1.81E-01
cell
HNSC Regulatory T cell 0.23 0.18 0.13 5.87E-11
HNSC T follicular helper cell 0.19 0.17 0.15 9.16E-08
HNSC Type 1 T helper cell 0.18 0.16 0.13 1.55E-11
HNSC Type 2 T helper cell 0.16 0.17 0.15 2.86E-01
KIRC Activated CD8+ T cell 0.30 0.22 0.13 1.22E-17
KIRC Activated dendritic
0.32 0.29 0.25 7.56E-20
cell
KIRC CD56 g natural
0.25 0.24 0.22 1.62E-16
killer cell
KIRC CD56%™ natural killer
0.40 0.40 0.39 2.05E-01
cell
KIRC Central memory CD4+
0.60 0.59 0.56 4.58E-10
T cell
KIRC Central memory CD8+
0.37 0.37 0.34 9.71E-03
T cell
KIRC Effector memory
0.25 0.26 0.24 1.31E-01
CD4+ T cell
KIRC Effector memory
0.36 0.33 0.30 3.14E-10
CD8+ T cell
KIRC Gamma delta T cell 0.31 0.30 0.27 9.25E-10
KIRC Immature dendritic
0.39 0.39 0.38 1.10E-02
cell
KIRC MDSC 0.43 0.37 0.28 3.02E-20
KIRC Memory B cell 0.13 0.12 0.12 5.34E-03
KIRC Monocyte 0.42 0.41 0.40 3.23E-06
KIRC Natural killer cell 0.38 0.38 0.36 2.54E-04
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KIRC Natural killer T cell 0.16 0.15 0.13 3.33E-06
KIRC Plasmacytoid dendritic
0.45 0.45 0.45 3.12E-01
cell
KIRC Regulatory T cell 0.28 0.26 0.22 1.44E-06
KIRC T follicular helper cell 0.25 0.23 0.20 2.29E-13
KIRC Type 1 T helper cell 0.24 0.22 0.19 1.41E-14
KIRC Type 2 T helper cell 0.12 0.11 0.10 1.01E-01
LGG Activated dendritic
0.21 0.16 0.15 6.58E-28
cell
LGG CD56Might natural
0.24 0.26 0.24 1.86E-03
killer cell
LGG CD56%™ natural killer
0.34 0.31 0.32 9.05E-08
cell
LGG Central memory
0.48 0.44 0.43 1.29E-22
CD4++ T cell
LGG Central memory CD8+
0.24 0.21 0.20 1.52E-12
T cell
LGG Effector memory
0.26 0.24 0.27 5.80E-03
CD4+ T cell
LGG Gamma delta T cell 0.16 0.13 0.12 6.87E-15
LGG Immature dendritic
0.35 0.32 0.33 2.07E-24
cell
LGG Monocyte 0.43 0.43 0.43 3.39E-02
LGG Natural killer cell 0.28 0.22 0.22 1.13E-31
LGG Plasmacytoid dendritic
0.41 0.38 0.38 5.44E-30
cell
LGG T follicular helper cell 0.23 0.19 0.19 3.70E-19
LGG Type 1 T helper cell 0.12 0.06 0.07 1.61E-42
LGG Type 2 T helper cell 0.12 0.11 0.11 2.75E-04

© 2019 Xu X et al. JAMA Network Open.




LUAD Activated CD4+ T cell 0.14 0.19 0.16 8.58E-04
LUAD Activated CD8+ T cell 0.20 0.22 0.16 9.64E-01
LUAD Activated dendritic
0.30 0.30 0.25 3.16E-05
cell
LUAD CD56Yight natyral
0.25 0.25 0.23 1.64E-02
killer cell
LUAD CD56%m natural killer
0.38 0.39 0.38 2.21E-01
cell
LUAD Central memory CD4+
0.60 0.60 0.57 1.50E-04
T cell
LUAD Central memory CD8+
0.38 0.37 0.33 7.79E-04
T cell
LUAD Effector memory
0.18 0.17 0.16 6.38E-03
CD4+ T cell
LUAD Effector memory
0.34 0.33 0.24 1.67E-06
CD8+ T cell
LUAD Gamma delta T cell 0.30 0.29 0.26 8.24E-03
LUAD Immature dendritic
0.42 0.40 0.38 4.80E-09
cell
LUAD MDSC 0.40 0.39 0.28 3.57E-05
LUAD Monocyte 0.41 0.40 0.38 1.20E-05
LUAD Natural killer cell 0.31 0.31 0.27 9.23E-05
LUAD Natural killer T cell 0.10 0.11 0.07 1.13E-01
LUAD Plasmacytoid dendritic
0.42 0.41 0.38 2.99E-05
cell
LUAD Regulatory T cell 0.30 0.28 0.19 5.39E-05
LUAD T follicular helper cell 0.22 0.20 0.16 5.67E-11
LUAD Type 1 T helper cell 0.19 0.19 0.14 2.03E-03
LUAD Type 2 T helper cell 0.15 0.15 0.15 5.81E-01
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LUSC Activated CD4+ T cell 0.25 0.20 0.21 3.37E-12
LUSC Activated CD8+ T cell 0.22 0.14 0.17 1.88E-18
LUSC Activated dendritic
0.28 0.22 0.23 3.80E-45
cell
LUSC CD56Might natural
0.27 0.27 0.28 5.93E-02
killer cell
LUSC CD56%™ natural killer
0.35 0.32 0.34 2.50E-09
cell
LUSC Central memory CD4+
0.56 0.52 0.52 1.92E-30
T cell
LUSC Central memory CD8+
0.37 0.33 0.34 4.43E-16
T cell
LUSC Effector memory
0.19 0.17 0.17 5.81E-11
CD4+ T cell
LUSC Effector memory
0.32 0.21 0.22 9.75E-44
CD8+ T cell
LUSC Gamma delta T cell 0.29 0.24 0.25 3.61E-28
LUSC Immature dendritic
0.38 0.36 0.36 2.00E-11
cell
LUSC MDSC 0.39 0.24 0.25 4.27E-40
LUSC Memory B cell 0.11 0.11 0.11 4.94E-01
LUSC Monocyte 0.36 0.33 0.33 1.46E-19
LUSC Natural killer cell 0.28 0.23 0.23 6.95E-33
LUSC Natural killer T cell 0.13 0.08 0.09 2.89E-26
LUSC Plasmacytoid dendritic
0.40 0.37 0.38 5.80E-19
cell
LUSC Regulatory T cell 0.29 0.15 0.17 1.62E-38
LUSC T follicular helper cell 0.19 0.13 0.14 4.45E-36
LUSC Type 1 T helper cell 0.19 0.12 0.13 1.63E-34
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LUSC Type 2 T helper cell 0.16 0.13 0.14 4.46E-11
PRAD Activated CD8+ T cell 0.16 0.17 0.14 7.22E-01
PRAD Activated dendritic
0.19 0.22 0.20 2.22E-06
cell
PRAD CD56Yight natyral
0.30 0.31 0.30 2.17E-02
killer cell
PRAD CD5649™ natural killer
0.30 0.31 0.30 2.62E-03
cell
PRAD Central memory CD4+
0.50 0.53 0.51 4.28E-07
T cell
PRAD Central memory CD8+
0.23 0.24 0.24 2.55E-06
T cell
PRAD Effector memory
0.14 0.16 0.16 5.23E-08
CD4+ T cell
PRAD Effector memory
0.15 0.19 0.16 2.26E-06
CD8+ T cell
PRAD Gamma delta T cell 0.17 0.18 0.17 2.34E-01
PRAD Immature dendritic
0.35 0.36 0.36 7.58E-07
cell
PRAD Memory B cell 0.05 0.05 0.06 1.09E-02
PRAD Monocyte 0.43 0.42 0.42 2.02E-01
PRAD Natural killer cell 0.25 0.28 0.27 1.22E-14
PRAD Plasmacytoid dendritic
0.40 0.41 0.41 4.11E-07
cell
PRAD T follicular helper cell 0.11 0.14 0.13 4.61E-10
PRAD Type 1 T helper cell 0.06 0.09 0.07 2.79E-08
SKCM Activated CD4+ T cell 0.24 0.21 0.14 2.44E-13
SKCM Activated CD8+ T cell 0.28 0.16 0.12 2.51E-24
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SKCM Activated dendritic
0.28 0.23 0.19 1.45E-32
cell
SKCM CD56Migh natural
0.25 0.23 0.24 2.32E-09
killer cell
SKCM CD56%™ natural killer
0.34 0.34 0.33 2.05E-02
cell
SKCM Central memory CD4+
0.54 0.51 0.48 1.63E-22
T cell
SKCM Central memory CD8+
0.34 0.33 0.30 1.33E-09
T cell
SKCM Effector memory
0.17 0.17 0.13 1.30E-05
CD4+ T cell
SKCM Effector memory
0.34 0.24 0.19 4.02E-33
CD8+ T cell
SKCM Gamma delta T cell 0.29 0.28 0.26 5.88E-09
SKCM Immature dendritic
0.36 0.35 0.32 5.15E-12
cell
SKCM MDSC 0.38 0.26 0.19 9.97E-26
SKCM Memory B cell 0.18 0.19 0.17 3.63E-01
SKCM Monocyte 0.42 0.40 0.39 1.96E-15
SKCM Natural killer cell 0.32 0.28 0.25 2.93E-24
SKCM Natural killer T cell 0.13 0.10 0.07 1.57E-18
SKCM Plasmacytoid dendritic
0.42 0.41 0.40 4.31E-09
cell
SKCM Regulatory T cell 0.27 0.20 0.14 5.36E-19
SKCM T follicular helper cell 0.23 0.18 0.14 1.79E-24
SKCM Type 1 T helper cell 0.19 0.15 0.11 1.49E-22
SKCM Type 2 T helper cell 0.18 0.19 0.17 6.74E-01
STAD Activated CD4+ T cell 0.24 0.23 0.28 2.27E-08
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STAD Activated CD8+ T cell 0.08 0.16 0.27 2.95E-24
STAD Activated dendritic
0.19 0.25 0.31 1.76E-28
cell
STAD CD56ig natural
0.18 0.18 0.26 8.35E-06
killer cell
STAD CD56%™ natural killer
0.39 0.38 0.45 1.88E-01
cell
STAD Central memory CD4+
0.51 0.55 0.57 3.60E-24
T cell
STAD Central memory CD8+
0.29 0.33 0.42 6.85E-16
T cell
STAD Effector memory
0.16 0.21 0.13 7.31E-10
CD4+ T cell
STAD Effector memory
0.13 0.25 0.30 2.27E-41
CD8+ T cell
STAD Gamma delta T cell 0.19 0.21 0.26 2.05E-08
STAD Immature dendritic
0.31 0.27 0.26 2.31E-03
cell
STAD MDSC 0.08 0.20 0.39 1.54E-33
STAD Memory B cell 0.15 0.12 0.08 7.92E-04
STAD Monocyte 0.32 0.40 0.42 1.02E-17
STAD Natural killer cell 0.29 0.31 0.34 8.21E-27
STAD Natural killer T cell 0.09 0.10 0.09 8.02E-23
STAD Plasmacytoid dendritic
0.39 0.42 0.38 7.05E-07
cell
STAD Regulatory T cell 0.02 0.10 0.19 1.05E-21
STAD T follicular helper cell 0.07 0.15 0.20 4.73E-24
STAD Type 1 T helper cell 0.09 0.18 0.19 6.06E-32
STAD Type 2 T helper cell 0.18 0.14 0.09 1.20E-07
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THCA Activated CD8+ T cell 0.19 0.09 0.06 8.27E-34
THCA Activated dendritic
0.26 0.21 0.17 4.08E-45
cell
THCA CD56igh natural
0.26 0.23 0.22 2.18E-51
killer cell
THCA CD5649m natural killer
0.38 0.37 0.32 3.02E-26
cell
THCA Central memory CD4+
0.58 0.55 0.50 1.07E-45
T cell
THCA Central memory CD8+
0.36 0.32 0.30 6.76E-28
T cell
THCA Effector memory
0.19 0.18 0.17 1.59E-09
CD4+ T cell
THCA Effector memory
0.29 0.22 0.12 1.42E-44
CD8+ T cell
THCA Gamma delta T cell 0.25 0.22 0.18 1.72E-33
THCA Immature dendritic
0.41 0.39 0.34 1.85E-28
cell
THCA Monocyte 0.44 0.42 0.42 7.49E-24
THCA Natural killer cell 0.34 0.33 0.28 2.07E-20
THCA Plasmacytoid dendritic
0.41 0.40 0.39 1.80E-21
cell
THCA T follicular helper cell 0.24 0.21 0.17 5.73E-30
THCA Type 1 T helper cell 0.18 0.14 0.11 4.66E-33
THCA Type 2 T helper cell 0.07 0.06 0.04 2.26E-05
UCEC Activated CD8+ T cell 0.20 0.17 0.14 2.71E-02
UCEC Activated dendritic
0.25 0.22 0.19 1.66E-05
cell
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UCEC CD56 g natural
0.25 0.25 0.23 3.46E-04
killer cell
UCEC CD56%™ natural killer
0.38 0.33 0.33 1.61E-07
cell
UCEC Central memory CD4+
0.49 0.49 0.47 6.55E-02
T cell
UCEC Central memory CD8+
0.24 0.23 0.22 1.54E-02
T cell
UCEC Effector memory
0.05 0.09 0.08 1.34E-03
CD4+ T cell
UCEC Effector memory
0.21 0.19 0.14 2.98E-03
CD8+ T cell
UCEC Gamma delta T cell 0.21 0.22 0.21 7.41E-01
UCEC Immature dendritic
0.30 0.32 0.30 2.00E-01
cell
UCEC MDSC 0.28 0.20 0.15 5.91E-05
UCEC Memory B cell 0.08 0.06 0.07 1.42E-01
UCEC Monocyte 0.36 0.35 0.34 1.19E-03
UCEC Natural killer cell 0.26 0.24 0.23 5.15E-04
UCEC Plasmacytoid dendritic
0.35 0.36 0.35 4.81E-01
cell
UCEC T follicular helper cell 0.14 0.10 0.09 2.29E-05
UCEC Type 1 T helper cell 0.12 0.10 0.08 5.12E-04
UCEC Type 2 T helper cell 0.08 0.09 0.09 2.29E-02

Note: p-values represent the significant differences for each type of immune cells
between the TIME-rich and TIME-intermediate/-poor subtypes.
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eTable 4. Fractions of the Patients in TIME-Rich, TIME-Intermediate, and TIME-Poor
Subtype in Cancers

Cancer | Patient (n) | TIME-rich (%) | TIME-intermediate (%) | TIME-poor (%)
UCEC 365 7.5 20.3 72.3
LUAD 512 17.4 52.5 30.1
BLCA 408 19.4 51.5 29.2
BRCA 314 22.0 372 40.8
STAD 374 22.2 11.5 66.3
KIRC 530 23.8 38.7 37.5
PRAD 497 26.4 13.1 60.6
COAD 87 26.4 16.1 57.5
HNSC 412 28.6 393 32.0
THCA 498 29.3 448 25.9
LUSC 501 30.7 40.1 29.1
SKCM 364 343 29.1 36.5
LGG 511 41.7 34.1 243
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eTable 5. NK Defective Genes in Each Cancer Type

Cancer type | Gene Annotation

LGG CMAL1 NK cell
CSF2 NK cell+NKT cell+yd T cell
FASLG NK cell+NKT cell
IKZF3 NK cell+NKT cell
KIR2DL4 | NK cell+NKT cell
KIR3DL3 | NK cell+NKT cell
KLHL30 | NKcell
NCR1 NK cell+y8 T cell
NCR2 NK cell
NCR3 NK cell
SH2D1B | NK cell+yd T cell

BRCA Cl170rf66 | NK cell+NKT cell
CD244 NK cell+NKT cell+yd T cell
CSF2 NK cell+NKT cell+yd T cell
KHDC1 NK cell
KIR2DL3 | NK cell+NKT cell
KIR2DL4 | NK cell+NKT cell
KIR3DL2 | NK cell+NKT cell
KIR3DL3 | NK cell+NKT cell
KLHL30 | NKcell
KLRF1 NK cell
NCR3 NK cell
SH2D1B | NK cell+yd T cell

HNSC C170rf66 | NK cell+NKT cell
CD244 NK cell+NKT cell+yd T cell
CDC20B | NK cell+yd T cell
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CHRNE | NK cell
CLNK NK cell+yd T cell
CMA1 NK cell
KIR2DL3 | NK cell+NKT cell
KIR2DL4 | NK cell+NKT cell
KIR3DL1 | NK cell+NKT cell
KIR3DL3 | NK cell+NKT cell
KLRF1 NK cell
NCR2 NK cell
NCR3 NK cell

BLCA C170rf66 | NK cell+NKT cell
CDC20B | NK cell+yd T cell
CLNK NK cell+yd T cell
CMAL1 NK cell
CSF2 NK cell+NKT cell+yd T cell
IKZF3 NK cell+NKT cell
KHDC1 NK cell
KIR2DL1 | NK cell+NKT cell
KIR2DL3 | NK cell+NKT cell
KIR3DL1 | NK cell+NKT cell
KIR3DL2 | NK cell+NKT cell
KIR3DL3 | NK cell+NKT cell
KLHL30 | NKcell
KLRBI1 NK cell+NKT cell+yd T cell
NCR2 NK cell
NCR3 NK cell
SH2D1B | NK cell+yd T cell

LUSC C170rf66 | NK cell+NKT cell
CD244 NK cell+NKT cell+yd T cell
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CDC20B | NK cell+yd T cell
CHRNE | NK cell
CLNK NK cell+y8 T cell
CMAL1 NK cell
CSF2 NK cell+NKT cell+yd T cell
FASLG NK cell+NKT cell
KIR2DL1 | NK cell+NKT cell
KIR2DL3 | NK cell+NKT cell
KIR3DL1 | NK cell+NKT cell
KIR3DL2 | NK cell+NKT cell
KLHL30 | NK cell
KLRF1 NK cell
NCR2 NK cell
SH2D1B | NK cell+yd T cell

LUAD C170rf66 | NK cell+NKT cell
CD244 NK cell+NKT cell+yd T cell
CDC20B | NK cell+yd T cell
CMAL1 NK cell
CSF2 NK cell+NKT cell+yd T cell
FASLG NK cell+NKT cell
KHDC1 NK cell
KIR2DL1 | NK cell+NKT cell
KIR2DL4 | NK cell+NKT cell
KIR3DL2 | NK cell+NKT cell
KIR3DL3 | NK cell+NKT cell
KLHL30 | NKcell
KLRF1 NK cell
NCR1 NK cell+y8 T cell
NCR2 NK cell
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NCR3 NK cell
SH2D1B | NK cell+yd T cell

PRAD CD244 NK cell+NKT cell+yd T cell
CLNK NK cell+yd T cell
CMAL1 NK cell
CSF2 NK cell+NKT cell+yd T cell
IKZF3 NK cell+NKT cell
KIR2DL1 | NK cell+NKT cell
KIR2DL3 | NK cell+NKT cell
KIR2DL4 | NK cell+NKT cell
KIR3DL1 | NK cell+NKT cell
KIR3DL3 | NK cell+NKT cell
KLHL30 | NKcell
KLRF1 NK cell
NCR2 NK cell
NCR3 NK cell
SH2D1B | NK cell+yd T cell

STAD KLRF1 NK cell
NCR2 NK cell
NCR3 NK cell
C170rf66 | NK cell+NKT cell
KIR2DL1 | NK cell+NKT cell
KIR3DL1 | NK cell+NKT cell
KIR3DL3 | NK cell+NKT cell
CD244 NK cell+NKT cell+yd T cell
CDC20B | NK cell+yd T cell
CLNK NK cell+yd T cell
SH2D1B | NK cell+yd T cell

UCEC CMAL NK cell
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KHDC1 NK cell
KLRF1 NK cell
NCR2 NK cell
NCR3 NK cell
C170rf66 | NK cell+NKT cell
FASLG NK cell+NKT cell
KIR2DL1 | NK cell+NKT cell
KIR2DL3 | NK cell+NKT cell
KIR2DL4 | NK cell+NKT cell
KIR3DL1 | NK cell+NKT cell
KIR3DL2 | NK cell+NKT cell
CD244 NK cell+NKT cell+yd T cell
CSF2 NK cell+NKT cell+yd T cell
CLNK NK cell+yd T cell
SH2D1B | NK cell+yd T cell
ANGPT!1 | NK cell+NKT cell
SKCM C170rf66 | NK cell+NKT cell
CLNK NK cell+yd T cell
CMAL1 NK cell
CSF2 NK cell+NKT cell+yd T cell
KIR3DL2 | NK cell+NKT cell
KLHL30 | NK cell
KLRF1 NK cell
NCR2 NK cell
KIRC C170rf66 | NK cell+NKT cell
CDC20B | NK cell+yd T cell
CLNK NK cell+yd T cell
CMAL1 NK cell
CSF2 NK cell+NKT cell+yd T cell
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KHDC1 NK cell

KIR2DL1 | NK cell+NKT cell

KIR2DL3 | NK cell+NKT cell

KIR2DL4 | NK cell+NKT cell

KIR3DL2 | NK cell+NKT cell

KIR3DL3 | NK cell+NKT cell

KLHL30 | NK cell

KLRF1 NK cell

NCR2 NK cell

STYK1 NK cell+yd T cell
THCA CHRNE | NK cell

CLNK NK cell+yd T cell

CMA1 NK cell

CSF2 NK cell+NKT cell+yd T cell

FASLG NK cell+NKT cell

KIR2DL1 | NK cell+NKT cell

KIR2DL3 | NK cell+NKT cell

KIR3DL3 | NK cell+NKT cell

STYK1 NK cell+y8 T cell
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eTable 6. Experimental Evidence of the NK Cell Defective Genes for Tumor Surveillance

Gene Tumor immune surveillance Reference

CD244 CD244 stimulates NK cell activation to overcome resistance of 2

leukemia and neuroblastoma cells

NCRI1 Tumors in the absence of NCR1 grow faster in mice 2
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eTable 7. ITAM-Signaling Genes Associated With Patients’ Survival and Abundance of TILs
in Cancers

Cancer type Gene
ULBP2
LGG
CD226
ULBP3
BRCA
ITGB2
PLCG2
HNSC
ITGB2
BLCA ULBP2
CD226
LUSC
HLA-E
LUAD ICAM1
CD226
ICAM1
PRAD
ITGB2
VAV1
PLCG1
STAD ULBP2
ZAP70
CD226
UCEC PLCG2
VAV1
CD226
SKCM ULBPI
ULBP3
KIRC HLA-E
PLCG1
THCA
ULBPI
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ITGB2
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eTable 8. Abundance of TILs in Tumors Stratified by the Expression of NK Cell Ligand
Genes of Tumors for the Bottom 10% and Top 10% of Patients Ranked by the Mumber of
NK-Defective Genes

Cancer | Cell type p-value Ratio* | p-value Ratio*
(bottom 10%6) (top 10%)
BLCA | Activated CDS T 5.9E-03 2.41 NS -
v6 T cell 4.9E-06 2.88 NS -
NK cell 6.6E-09 2.65 6.7E-03 1.26
NKT cell 9.8E-12 1.27 1.0E-05 1.86
BRCA | Activated CDS T 4.2E-02 1.16 NS -
v6 T cell 1.4E-02 1.43 NS -
NK cell 1.1E-04 1.35 NS -
NKT cell 2.1E-04 1.32 NS -
HNSC | Activated CDS T 8.7E-03 2.31 NS -
v T cell 1.9E-02 2.73 NS -
NK cell 1.4E-05 2.54 NS -
NKT cell 5.7E-04 2.01 NS -
KIRC Activated CD8 T NS - NS -
v6 T cell 3.8E-03 4.19 NS -
NK cell 9.6E-03 4.67 NS -
NKT cell 8.1E-03 19.98 NS -
LGG Activated CD8 T 4.2E-08 1.57 NS -
v6 T cell 1.4E-10 1.42 2.6E-02 1.36
NK cell 3.5E-10 1.73 NS -
NKT cell 1.3E-15 2.81 NS -
LUAD | Activated CDS T NS - NS -
v6 T cell 3.2E-02 2.44 1.2E-02 1.05
NK cell 1.1E-03 2.34 2.7E-03 1.09
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NKT cell NS - 5.4E-05 1.88
LUSC | Activated CD8 T 2.4E-03 1.22 1.0E-03 3.03
vd T cell 2.0E-04 1.62 1.2E-02 4.76
NK cell 1.2E-08 1.49 1.8E-04 435
NKT cell 2.1E-09 1.08 2.2E-04 333
PRAD | Activated CD8 T NS - 3.8E-02 1.17
vo T cell 2.4E-02 4.42 1.7E-04 1.33
NK cell 1.8E-03 4.21 4.0E-05 1.35
NKT cell NS - NS -
SKCM | Activated CDS T NS - NS -
vo T cell NS - NS -
NK cell NS - NS -
NKT cell 3.2E-02 3.25 NS -
STAD | Activated CDS T 1.8E-02 5.35 2.4E-02 2.51
vd T cell 5.0E-01 6.69 NS -
NK cell 8.0E-03 6.15 1.1E-02 1.45
NKT cell 5.0E-03 4.49 1.3E-02 1.23
THCA | Activated CD8 T NS - 2.5E-02 1.22
v6 T cell NS - NS -
NK cell 2.5E-02 2.32 NS -
NKT cell NS - NS -
UCEC | Activated CD8 T NS - NS -
v6 T cell NS - NS -
NK cell NS - NS -
NKT cell 3.2E-02 1.7-E02 NS -

Note: ratio is the TIL’s abundance of the high-expression group/the low-expression group.
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eTable 9. Clustering Analysis for the Melanoma (SKCM) and Gastric Cancer (STAD)
Samples in Immune-Checkpoint Therapy (ICT) Trials

Cancer Group Number of
Number of non-
type responding Enrichment
responding
patients ratio*
SKCM TIME-rich 7 22 1.24
TIME-intermediate/-poor 3 17 0.69
STAD TIME-rich 7 11 1.86
TIME-intermediate/-poor 5 24 0.61

*Ratio of the enrichment of responding patients in each group to that in all patient
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