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A Computational model 1

This section describes computational experiments highlighting different effects of 2

learning in evolution. 3

Computational experiments are performed on a population of agents foraging in a 4

dynamic environment under the effect of natural selection. The environment is made 5

dynamic with the introduction of seasons that differ in the proportion of resources 6

present in the environment, e.g. only one type of resource is produced in every given 7

season. 8

B Learning 9

This section discusses how different learning algorithms behave when faced with a 10

variable environment, in terms of convergence and adaptation to change. The skill gets 11

increased by ∆S after every successful foraging event, while for the action the learning 12

algorithms are based on the Reinforcement Learning approach, Q-Learning [1]. The 13
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Q-Table, a mapping from states/perceptions I and possible actions O to the quality 14

value of each action for that state Q(I, O), of the original Q-Learning approach is 15

replaced by a Q-Network as per [2]; using the following equation (B Equation) and a 16

corresponding training algorithm for each Q-Network structure. 17

∆Q =

 learned value︷ ︸︸ ︷
rt−1︸︷︷︸
reward

+ γ︸︷︷︸
discount factor

·max
O

Q(It, O)−Q(It−1, Ot−1)︸ ︷︷ ︸
old value

 (A)

Q(It−1, Ot−1)︸ ︷︷ ︸
new desired value

← Q(It−1, Ot−1)︸ ︷︷ ︸
old value

+ αrlearn︸ ︷︷ ︸
learning rate

·∆Q (B)

We name the different reinforcement learning algorithms based on their Q-Network 18

structure: 19

• PQL: Reinforcement learning using a single layer feed forward perceptron as its 20

network architecture to ”store” and query the Q-values, trained with 21

backpropagation. 22

• RQL: Reinforcement learning using a variation of a Restricted Boltzmann 23

machine [3] for the network architecture, trained with contrastive divergence. 24

• Q-Learning [1], trained by directly replacing the Q-values in the Q-table. DRL: 25

Deep Reinforcement Learning [2]: using 3 fully connected layers: 26

1. (perception size× perception size ∗ 5) 27

2. (perception size ∗ 5× number of actions ∗ 5) 28

3. (perception size ∗ 5× number of actions) 29

The DRL implementation uses experience replay with a memory replay of 50 30

experiences and is trained using back-propagation. The use of experience replay 31

improves DRL’s learning convergence. 32

The Q-network structure in presence of an input vector I takes the form of: 33

1. PQL: b(I) = W · I + β where W are the weights of the neural network and β the 34

biases associated to the input layer. 35

2. RQL: b(I) = σ(W · I + β) where σ denotes the logistic sigmoid. 36
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3. Q-Learning: b(I) = Q(I) where Q is the Q-table, i.e. a value table. 37

4. DRL: b(I) = G3 ◦G2 ◦G1 where GL(x) = σ(WL · x+ βL). 38

Agents perceive their the environment, i.e. they are able to see a subset of the grid 39

centered at their location and are able to identify food sources within this visual range, 40

I. For the current model, a 3× 3 region is observable and the food sources are 41

observable but without the specificity of the amount of food contained. Based on this 42

perception agents are able to perform an action either: move (north, south, east, west) 43

or eat. 44

The results of each learning algorithm are the average of 300 independent 45

simulations, parameters are consistent across simulations. 46

Results show that different types of learning algorithms have different speeds of 47

convergence (cf. S1 Fig) shows the proportion of agents choosing to eat while a specific 48

type of resource is in their foraging range. Some learning algorithms adapt faster than 49

others to changes in the environment. 50

RQL is the fastest to adapt to a change in the environment, and it also shows a 51

stronger tendency to forget the learned behavior in the opposite season. DRL is the 52

slowest to learn. This is not surprising as deep networks are generally trained with large 53

datasets and used for much more complex tasks. 54

C The Baldwin Veering Effect and the learning 55

algorithm 56

In order to analyze the consistency of the results in respect to the type of learning, 57

learning algorithms are compared by reproducing the main result of the paper, i.e. the 58

evolution of a generalist configuration (cf. S2 Fig). Different learning algorithms 59

produce different features in the genetic configuration, for example, QL has a lower 60

variability than PQL, and both RQL and DRL appear to have a trimodal distribution 61

where some specialized individuals co-exist with generalist individuals. Nevertheless, the 62

genetic configuration produced by all learning algorithms features a clear peak for 63

aptitude of 0.5, indicating the presence of generalist individuals, hence supporting the 64

main result of the paper, i.e. the existence of the Baldwin veering effect. 65
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Parameter Symbol Value Description
Initialization
num-agents N0 100 The size of the initial population.
skill-level s0a 0.7 The average aptitude level of the initial population.

Table A. Description of the parameters in the model and their value. Initialization

Parameter Symbol Value Description
Environment
field-size m 20 The size of the grid.
max-food Φ 50 The maximum resource quantity that a cell can

contain.
num-food |F 0| 400 The number of cells containing some food.
food-proportion F 0

0 /F
0
1 1.0 The proportion of the ’seasonal’ resource with

respect to the total amount of resources.
food-energy ε 10 The energy given by a unit of resource.

Table B. Description of the parameters in the model and their value. Environment

PQL has been chosen as the learning algorithm for the experiments presented in the 66

paper, as it offers a good compromise between capacity and computational requirements. 67

D Parameters of the computational model 68

The following tables show the values of the parameters used for the computational 69

experiments. 70

E Reproducibility 71

A C++ compiler with OpenMP support is required in order to compile the code. 72

OpenMPI is used for the parallel computing extension. Other requirement is 73

tiny-dnn [4], used for the reinforcement learning algorithms. The code has been 74

compiled with Make and the GCC compiler (see F Table). Other development 75

environments and libraries might be compatible as well. Data analysis and figures are 76

Parameter Symbol Value Description
Agent
max-age cd 1000 Age after which the probability of death is 1. (fig-

ure 1. used 3000)
max-energy cr max-age Age energy after which the probability of

reproduction is 1.

fov-radius
√
I//2 3 The range of the Moore neighborhood where the

agent can perceive.

Table C. Description of the parameters in the model and their value. Agent parameters
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Parameter Symbol Value Description
Learning
algorithm B PQL Reinfocement learning using a single layer percep-

tron as the Q-table and Back propagation to train
the network (learning)

alpha αrlearn 1 Learning rate
gamma γ 0.5 Discount rate
epsilon ε 0.1 Percentage of exploratory actions
reward-energy rt 1 Positive reinforcement for successful foraging.

Table D. Description of the parameters in the model and their value. Learning

Parameter Symbol Value Description
Simulation
sim-length-f1 L 6001 The simulation length in fig. 1 main text
season-length-long l 3000 The length of a long season
sim-length-other L 5001 Length of the simulation
season-length-short l 50 The length of a short season
max-agents N 2000 The maximum population size, enforced by

killing random agents in surplus.
samples 300 The number of independent simulations.

Table E. Description of the parameters in the model and their value. Simulation

produced with Python (Pandas, Matplotlib). Compilation and startup scripts are 77

written for bash on a *nix system, but other shells might be supported as well. The 78

code has support for the LSF platform for parallel execution on clusters, but it can also 79

be run on a single machine. Simulations complete in a reasonable time: A simulation 80

with 20,000 agents runs on a cluster node with 24 CPU-cores takes less than 24 hours 81

with shallow reinforcement learning algorithms (PQL, RQL, QL) and less than 120 82

hours with deep reinforcement learning algorithms. 83

Flag Description
debug activates debug prints
invisible food food cannot be seen at a distance
immortals disables evolutionary process (birth and death)
nonlinear prob Proportion between skill and foraging probability is non-linear
Learning
learn enables learning
brain ql selects QL as learning algorithm
brain pql selects PQL as learning algorithm
brain rql selects RQL as learning algorithm
brain deep selects DRL as learning algorithm

Table F. Description of compile flags.
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F Analytical model assumptions. 84

The analytical model relies on restrictive macroscopic assumptions which enable a 85

straight forward analysis: 86

• The fitness of agents is modeled over an abstraction of individual cycles (periods 87

of two seasons that repeat) that removes the time component. 88

– Available resources are assumed to be constant and equal to the average over 89

a cycle. 90

– Agents do not move, instead, they access resources of types 0 and 1 with 91

probabilities π0 and π1 respectively. 92

– Evolution is not modeled explicitly, instead, the evolutionary outcome is 93

inferred from the fitness levels obtained within each cycle. 94

• Learning is modeled as skill level plasticity (aptitude + δ): the parameter δ 95

determines the range of skill levels an agent can choose at the start of the cycle. 96

G Analytical model: edge cases 97

In this section, we provide further observations regarding the analytical model. 98

Equation C reproduces equation 3 from the main text. 99

Wi = π0 ·min(1, (αi + δ))q + (1− π0) ·min(1, (1− αi + δ))q − c · δ (C)

Where the parameters αi, δ, π, q can assume values in the interval [0, 1]. 100

Considering the case where c = 0, i.e. plasticity has no cost, any increase in δ

provides an increase in fitness, bounded by the cases where ai + δ ≥ 1 and

1− ai + δ ≥ 1. If π0 = 0.5 the maximum fitness is reached when both bounds are

reached simultaneously,

(αi + δ) = 1− αi + δ (D)

2 · αi = 1 (E)

αi = 0.5 =⇒ δ = 0.5 (F)
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The maximum fitness of 1 is reached for αi = δ = 0.5 and keeps the same value, 1, 101

for any values of δ ≥ 0.5, and αi + δ ≥ 1. If π0 = 1 or π0 = 0 the maximum bound is 102

reached for any values of αi and δ such that the bounds αi + δ ≥ 1 or 1− αi + δ ≥ 1 are 103

satisfied respectively. 104

In the case where c > 0, i.e. plasticity has a cost: Given a combination of αi, δ and π 105

that reached the maximum value in equation 3, any further increase in δ would result in 106

a decrease in fitness. 107

G.1 Analytical model sensitivity to different values of q when 108

c = 0 109

The results presented in the main text are validated here in absence of plasticity costs, 110

i.e. c = 0, and for different values of q. 111

From S3 through S5 Fig we can observe that qualitatively similar results are 112

produced also for q = 1 and 0 < q < 1. 113

H Diversity measures for social foraging 114

Assume a group contains G individuals and S discrete resource types. 115

• ngs is the number of items of resource s consumed by individual g. 116

• ng. =
∑S

s=1 ngs is the total foraging of individual g. 117

• n.s =
∑G

g=1 ngs is the number of resources of type s foraged by any agent. 118

• n.. =
∑G

g=1

∑S
s=1 ngs is the number of resources of any type consumed by any 119

agent. 120

Each ngs > 0 defines a sample proportion pgs where pgs = ngs/n.., which is used to 121

estimate the total, cross-classified diversity: 122

h′(g × s) = −
G∑

g=1

S∑
s=1

pgsln(pgs) (G)

The following measures of social foraging [5, Pag. 241] are based on the concept of 123

diversity [6]: 124
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A generalized diet includes most of all resources types in roughly equal proportions.
A specialized diet includes one or a few resource types at high proportions, and very
low proportional levels of the remaining resources. The group’s diet refers to the
pooled resource consumption of all group members.

• Among-resource diversity h′(s) = −
∑S

s=1 p.sln(p.s)

– Low: group specializes because individuals have similar specialized diets

– High: group generalizes, individuals may generalize or different individuals
have different specialized diets.

• Average within resource diversity E[h′(g|s)].

– Low: different individuals have different specialized diets, so group gen-
eralizes; a similar effect occurs whenever different individuals consume
different total amounts of resources.

– High: individuals have similar diets, whether generalized or similarly
specialized, group diet may then be generalized or specialized.

• Among-individual diversity h′(g).

– Low: individuals differ in amount of resources consumed, independently
of each individual’s specialization or generalization.

– High: Individuals consume similar amounts of resources, independently
of each individual’s specialization or generalization.

• Average within-individual diversity E[h′(s|g)].

– Low: Individuals specialize independently, group may consequently spe-
cialize or generalize.

– High: individuals generalize, group consequently generalizes.

Table G. Reproduced from [5, Pag. 241]

• Among-resource diversity: h′(s) = −
∑S

s=1 p.sln(p.s) 125

• Conditional phenotypic diversity within resource s: 126

h′(g|s) = −
∑G

g=1(
pgs

p.s
)ln(

pgs

p.s
) 127

• Average within-resource diversity: E[h′(g|s)] =
∑S

s=1 p.sh
′(g|s) 128

• Among-individual diversity: h′(g) = −
∑G

g=1 pg.ln(pg.) 129

• conditional resource-consumption diversity: 130

h′(s|g) = −
∑S

s=1(
pgs

pg.
)ln(

pgs

pg.
) 131

• E[h′(s|g)] =
∑G

g=1 pg.h
′(s|g) 132
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