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Additional Information on Electronic Structure Calcula-

tions

Our reference calculations were computed with DLPNO-CCSD(T) method1 on top of MP22

relaxed structures. These simulations were performed with the ORCA package.3 We used

resolution of the identity (RI) for the coulomb and the correlation exchange term were treated

via seminumerical integration (COSX). The convergence criteria was set to “TIGHTSCF”.

We used the Dunning’s correlation consistent (cc-) polarized (p) Valence (V) Double-Zeta

(DZ), Triple-Zeta (TZ), Quadruple-Zeta (QZ) and 5-zeta (5Z) basis sets.4 We used the

interpolation scheme by Karton and Martin5 for the mean field (or Hartree Fock) energy

and the scheme by Truhlar6 for the correlation energy at the MP2 level. Note that this is a
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3 point interpolation.

Regarding DFT calculations, three exchange correlation (xc) functionals, namely PBE,7

PBE08 and B3LYP,9,10 and two types of dispersion interactions corrections (Tkatchenko-

Scheffler (TS)11 and many body dispersion (MBD)12 were tested. All the density functional

electronic structure calculations were performed using the all-electron FHI-aims program13

with both light and tight settings. These default settings include both the size of the basis sets

as well as other numerical parameters and are readily available with the program package.

In Table S1 and Table S2 we show the energy and relevant geometric parameters for all

the stationary points obtained with the different xc functionals and CCSD(T). We present

here only the results obtained with light settings. Their difference with respect to tight

settings was, in all the cases, below 5 meV for energies differences and 0.01 for geometrical

parameters. We note that for the three xc functionals tested, dispersion interactions play

a minor role in the relative energies, in most cases representing differences below 5 meV.

Zero point energy (ZPE) contributions were only computed for the functionals including the

TS dispersion correction. All xc functionals predict a potential energy surface (PES) which

is characterized by two pairs of degenerate local minima, 4 first order saddle point and 1

second order in agreement with the literature.14,15 B3LYP+TS is the only functional where

both barriers are still present after the ZPE corrections and, therefore, does not predict a

‘trivial’ delocalization of the hydrogen between the two trans states.

Table S1: Energy of the stationary points of the porphycene potential energy surface for
different theory levels. Number in parenthesis are ZPE corrected. Trans, cis, SP1 and SP2
structures are defined in the Fig. 1 of the main text. The zero of energy is set at the trans
geometry for each setting and the energies are expressed in meV.

PBE PBE+TS PBE+MBD PBE0 PBE0+TS
cis 73 72 (35) 70 90 89 (60)
SP1 110 106 (-14) 102 157 155 (29)
SP2 154 150 (-61) 142 233 228 (-1)

PBE0+MBD B3LYP+TS MP2 CCSD(T)
cis 86 93 (72) 104(51) 160
SP1 150 189 (62) 144(2) 218
SP2 216 290 (56) 194(-47) 322
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Table S2: Relevant geometric parameters of the stationary points of the porphycene PES.
Distances are expressed in Ångstroms. Trans, cis, SP1 and SP2 structures as well as δ1, δ2,
d1, d2, d3 and d4 are defined in the Fig. 1 of the main text.

B3LYP
δ1 δ2 d1,d3 d2,d4

Trans -0.55 -0.55 2.65 2.83
Cis -0.55 0.55 2.61 2.88
SP1 -0.53 0.04 2.58 2.88
SP2 0.00 0.00 2.50 2.88

Exp.16 − − 2.63 2.83
MP2

δ1 δ2 d1,d3 d2,d4

Trans -0.57 -0.57 2.62 2.82
Cis -0.46 0.46 2.57 2.88
SP1 -0.45 0.08 2.50 2.88
SP2 0.00 0.00 2.49 2.87

In Table S3 we show the average absolute value of the dipole projected along the H-

bonded nitrogen atoms.

Table S3: Absolute molecular dipoles values projected along the H-bonded N atoms obtained
from the energy minimum, thermal classical (MD) and quantum (PIMD) average. Dipoles
are expressed in Debye.

trans cis MD PIMD
Dipole 0.0 1.2 0.3 0.5

Additional Information on Free Energy Profiles

In Fig. S1 we show the effective free energy profile for the hydrogen transfer coordinate ob-

tained from PIMD simulations at 290K using PBE+MBD as exchange correlation functional.

These are qualitatively different from the rest of the simulations where the B3LYP+TS func-

tional was used. In this case, the combination of the small proton transfer barrier height

and ZPE produce a total delocalization of the protons.
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Figure S1: Effective free energy profile for the hydrogen transfer coordinate obtained from
PIMD simulations at 290K using PBE+MBD exchange correlation functional. The contour
lines are separated by 1 kBT .

In Fig. S2 and S3 we show the same free energy profile at 100K with B3LYP+TS

exchange correlation functional and in Fig. S4 we present the 1D free energy cuts along the

trans-trans, cis-cis and trans-cis paths. Finally in Fig. S5 we show the regions considered

to compute the trans/cis population ratio.

Figure S2: Effective free energy profile for the hydrogen transfer coordinate obtained from
PIMD simulations at 100K. The contour lines are separated by 1 kBT starting at 0.75 kBT .
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Figure S3: Effective free energy profile for the hydrogen transfer coordinate obtained from
MD simulations at 290K. The contour lines are separated by 1 kbT .
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Figure S4: Effective free energy projections along q1, δ1 = −δ2, (solid lines), q2, δ1 = δ2,
(dashed lines) and q3, path connecting trans and cis, (dotted lines) directions. Red and blue
lines correspond to PIMD simulations at 290K and 100K respectively.
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Figure S5: Effective free energy profile of the porphycene molecule obtained from PIMD
simulations at 290K, projected on the δ1 and δ2 coordinates. Red and blue regions show the
population that is considered as trans ({δ1 > b ∩ δ2 < −b} ∪ {δ1 < −b ∩ δ2 > b} and cis
({δ1 > b ∩ δ2 > b} ∪ {δ1 < −b ∩ δ2 < −b}) respectively with boundaries b = 0.1 (a) and b =
0.3 (b). Structures that fall in the gray area are considered transition-state-like structures
and therefore discarded.

Additional Information on Instanton Calculations

The ring-polymer instanton calculations were performed using the standard procedure de-

scribed elsewhere.17,18 In this theory, the thermal rate is given by the expression19

kinstQreac =
1

βP~

√
BN

2πβP~2
Qinste

−S/~, (1)

where Qreac and Qinst refers to the reactant and instanton partition functions respectively,

S is the instanton action obtained as βP~UP (q̃) where UP is the potential energy (including

the spring term) of the extended ring-polymer Hamiltonian and q̃ is the geometry of the

instanton. BN is a normalization factor, βP = β/P with β = 1/kBT and P is the number

of replicas of the system used. A more detailed definition of these factors can be found in

Ref.18 In table S4 we show the convergence of the rates at 100 and 150 K with respect to
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the number of beads.

Table S4: Convergence with number of replicas of the ring-polymer instanton thermal rate
obtained with B3LYP+TS functional at 100K and 150K. Rates are expressed in units of
(1011s−1)

Number of replicas Rate at 100K Rate at 150K
64 0.3 1.2
192 0.6 2.1
256 0.6 2.2

The correction factor that was used to scale the B3LYP+TS barrier to the CCSD(T)

ones can be read as following:

Scorrected = βP~U corrected
P (q̃)

= βP~
P∑
k

3N∑
i

[
mi

2(βP~)2 (q̃
(k)
i − q̃

(k+1)
i )2

]
+ f

P∑
k

V (k)(q̃
(k)
1 , . . . , q̃

(k)
3N),

(2)

where q̃(k)
i represents the position of the i-th degree of freedom at the imaginary time slice

k evaluated at the instanton geometry, N is the number of atoms, which is 38 for the

porphycene molecule, and f is the correction factor defined as the ratio of the energy barriers

obtained with CCSD(T) and B3LYP+TS for the considered path. It is assumed that the

zero of energy is set the reactant.

In Fig. S6 we show the potential energy along the cumulative mass-weighted path-length

and in Fig. S7 we present the 2D projection of the instanton pathways in the δ1 and δ2

plane.
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Figure S6: Potential energy along the cumulative mass-weighted path-length20 at 150 K
(red) and 100K (blue) for concerted (circles) and stepwise (squares) mechanisms. The zero
of energy is set at the trans minimum energy geometry. This is the actual barrier which the
system must tunnel through and clearly shows that the concerted path-length is longer.
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Figure S7: 2D projection of the instanton geometry in the δ1 and δ2 plane at 100K. Each
circle and square represents one replica of the discretized concerted and stepwise tunnelling
pathway respectively. White dots are placed at the corresponding trans and cis minimum-
energy geometry for reference.
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Derivation of the Ring-Polymer Expansion of the Hessian used in

the Instanton Calculations

In this section, we demonstrate the the ring-polymer expansion of the Hessian. We make

use of the transformation matrix T (P, P ′) defined in the Ref.,21 where P and P ′ are the old

(smaller) and new (larger) number of beads, defining the contraction operation as

r
(k)
i =

P ′∑
j

(T (P, P ′))kjR
(j)
i , (3)

where r(k)
i is the i position component corresponding to the k-th old replica and R(j)

i is the

i position component corresponding to the j-th new replica.

The P ′ × P expansion matrix T (P ′, P ) can be defined as

(T (P ′, P ))kj =
P ′

P
(T (P, P ′))tkj. (4)

It can be shown that this matrix has the following properties:

∑
j

(T (P ′, P ))ij = 1 (5)

∑
i

(T (P ′, P ))ij =
P ′

P
. (6)

We start our derivation with the following approximation

V(k) ≈
P∑
j

T (P ′, P ))kjV
(j), (7)

where V(k) represents the potential energy corresponding to the k-th new replica and V (j)

represents the potential energy corresponding to the k-th old replica. Summing over k and
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using the properties of the T matrix we get the well known expression

P ′∑
k

V(k) ≈
P∑
j

P ′

P
V (j). (8)

Applying the chain rule , the forces can be approximated as

F (k)
j = −

∂
[∑P ′

l V(l)
]

∂R
(k)
j

≈ −
∂
[
P ′

P

∑P
l V

(l)
]

∂R
(k)
j

= −
P∑
m

∂
[
P ′

P

∑P
l V

(l)
]

∂r
(m)
j

×
∂r

(m)
j

∂R
(k)
j

= −
P∑
m

∂
[
P ′

P

∑P
l V

(l)
]

∂r
(m)
j

(T (P, P ′))mk

=
P ′

P

P∑
m

P∑
l

−∂V (l)

∂r
(m)
j

(T (P, P ′))mk =
P ′

P

P∑
l

−∂V (l)

∂r
(l)
j

(T (P, P ′))lk =
P ′

P

P∑
l

F
(l)
j (T (P, P ′))lk

=
P∑
l

F
(l)
j (T (P ′, P ))kl.

(9)

where F (k)
j is the j force component corresponding to the k-th new replica, F (l)

f is the j force

component corresponding to the l-th old replica and the fact that −∂V (l)

∂r
(m)
j

= δlm was used.

Since the force comes from the derivative of Eq. 7, one needs to sum again over k and use

the properties of the T matrix to get

P ′∑
k

F (k)
j ≈

P∑
j

P ′

P
F

(l)
j . (10)

Applying the chain rule a second time to Eq. 10, one can obtain the expression for the
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ring polymer expansion of the Hessian following similar steps.

H(k)
jm = −

∂
[∑P ′

l F
(l)
j

]
∂R

(k)
m

≈ −
∂
[
P ′

P

∑P
l f

(l)
j

]
∂R

(k)
m

= −
P∑
s

∂
[
P ′

P

∑P
l f

(l)
j

]
∂r

(s)
m

× ∂r
(s)
m

∂R
(k)
m

= −
P∑
s

∂
[
P ′

P

∑P
l f

(l)
j

]
∂r

(s)
m

(T (P, P ′))sk

=
P ′

P

P∑
s

−∂f (s)
j

∂r
(s)
m

(T (P, P ′))sk =
P∑
s

H
(s)
jm(T (P ′, P ))ks,

(11)

where H(s)
jm is the jm matrix element of the Hessian corresponding to the s-th old replica

and H(k)
jm is the jm matrix element of the Hessian corresponding to the k-th new replica.

Additional Information on IR Spectra

In Fig. S8 we present the vibrational density of states (290 K) of a water molecule calculated

with thermostatted ring polymer molecular dynamics (TRPMD) coupled to colored noise

thermostats on the Partridge-Schwenke potential.22 We show that convergence is reached at

16 beads in this case. We thus simulated the IR spectrum of porphycene at 290 K with 16

beads in this paper.

0 1000 2000 3000 4000

wavenumber (cm
-1

)

16 beads
32 beads

Figure S8: Vibrational density of states of a water molecule from TRPMD employing 16 and
32 beads. Each one was computed by two independent 85 ps trajectories.
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In Fig S9 we show the IR spectra obtained with the PBE+MBD functional. In the

harmonic spectrum (a), the N-H stretching band presents a red shift of 350 cm−1 with respect

to the one obtained with B3LYP+TS, which is not surprising since GGA xc functionals are

known to overestimate the hydrogen bond strength. The inclusion of anharmonicity and

temperature effects in the molecular dynamics spectrum (b) produces a similar effect to

what is observed in the B3LYP+TS simulation, i.e a broadening and a slight red shift of

the N-H band with respect to the corresponding harmonic case. The subsequent inclusion

of nuclear quantum effects from thermostatted ring polymer molecular dynamics shows an

absence of the N-H band in that region of the spectrum presented in (c), which is completely

different from B3LYP+TS simulation. This difference is easy to rationalize. The PBE+MBD

functional predicts a low barrier which is smaller than the ZPE correction (negative values

in the second column of Table S1) and therefore, the hydrogen transfer barrier disappears.

As already mentioned, this fact gives rise to a total delocalization of the hydrogen atoms

which can be observed not only in the free energy profile but also in the IR spectrum. In

panel (d), where the hydrogen atoms in the cage are substituted by deuterium, the barrier

is still present after ZPE corrections, since these are smaller for deuterium. Therefore, a

localized broad peak is observed at the mass scaled frequency (≈ 1700 cm−1). Finally,

it is worth noting that the apparent agreement of the classical-nuclei simulation with the

experimental one for this xc functional is completely fortuitous and for the wrong physical

reasons. Hence, the presented results in the main manuscript are based on simulations

performed with B3LYP+TS xc functional which captures the right physics.
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Figure S9: IR spectra obtained with the PBE+MBD functional including many body dis-
persion interactions.12 a) Harmonic approximation, b) Fourier transform of dipole autocor-
relation function from (classical-nuclei) molecular dynamics, c) Fourier transform of dipole
autocorrelation function from thermostatted ring polymer molecular dynamics (quantum nu-
clei), d) Fourier transform of dipole autocorrelation function from thermostatted ring poly-
mer molecular dynamics (quantum nuclei) with the hydrogen atoms in the cage substituted
by deuterium (DD).

Model of coupled quantum harmonic oscillators

We used the methodology developed by Henri-Rousseau and Blaise.23 The full Hamiltonian

in the absence of damping may be written as

Htot = Hfast +Hslow. (12)

S13



Hfast and Hslow are given by

Hfast =
p2

2m
+

1

2
mω(Q)q2, (13)

and

Hslow =
P 2

2M
+

1

2
MΩQ2, (14)

where q, Q, p, P , m ,M , ω and Ω correspond to the position, conjugate momenta, mass and

frequency of the fast and slow mode respectively. The angular frequency of the fast mode is

expanded up to first order obtaining

ω(Q) = ω◦ + bQ, (15)

where ω◦ is the fast mode frequency in absence of coupling. One may define a convenient

dimensionless coupling parameter α as

α =
b

Ω

√
~

2MΩ
. (16)

Consequently, using the adiabatic approximation to decouple the fast and slow degrees

of motion and with the introduction of direct (γ) and indirect (γ◦) damping, one arrives to

the following expression of the spectral density (SD):

SD(t) ∝ eiω
◦t(ei2α

2Ωt)(ei2α
2e−γt/2sin(Ωt))

[
(eα

2[〈n〉+ 1
2

](2e−γt/2cos(Ωt)−e−γt−1)
]
(e−γ

◦t), (17)

where 〈n〉 = 1/(e~Ω/kBT ), kB is the Boltzmann constant and T is the absolute temperature.

Finally the SD in the frequency space is obtained by the Fourier transform of Eq. 18.

In table S5 we show the range of parameters used to reproduce the simulated TRPMD

spectrum of porphycene. In Fig. S10 two illustrative examples of the spectra obtained with

those parameters are presented.
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Table S5: Range of parameters that yield a good agreement for the TRPMD spectrum of
porphycene.

Ω (cm−1) ω◦ (cm−1) α γ (Ω) γ◦ (Ω)
100-115 2680-2750 0.70-0.85 0.1-0.2 0.2-0.3

2200 2400 2600 2800 3000 3200

wavenumber (cm
-1

)

Figure S10: Fourier transform of the dipole autocorrelation function obtained with TRPMD
in the N-H stretching band region (orange), adiabatic model with Ω= 110 cm−1, ω◦ = 2740
cm−1 , α = 0.85 , γ = 0.3 Ω, γ◦ = 0.2 Ω(dashed red) and adiabatic model with Ω= 105
cm−1, ω◦ = 2680 cm−1 , α = 0.70 , γ = 0.23 Ω, γ◦ = 0.1 Ω (dashed red).

We could also compute b values by finite difference displacements of the harmonic normal

modes of porphycene (Eq. 13) and convert them to the corresponding α using the Eq. 16.

In table we report the computed α coupling parameter of all modes with both symmetric

and antymmetric N-H stretch. We used the following definition of Mi (the generalized mass

of the i-th mode) needed to convert b into α

1

Mi

=
∑
i

|aji |j

mj

, (18)

where mj is the mass of the j-th degree of freedom, and |aji |j is the j-th element of the i-th

normalized normal mode eigenvector. The values for α are shown in the table below.
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Ω (cm−1) α1 × 103 α2 × 103

66 0.4 0.7

74 -0.3 0.8

87 0.3 -0.3

121 -0.5 0.6

133 0.3 0.6

153 2.8 3.9

197 -17.5 -17.8

199 -0.6 -0.4

202 -0.1 1.3

207 0.4 0.2

245 0.7 -2.1

313 0.0 0.8

320 -0.5 0.9

329 -0.6 -1.3

352 1.7 2.4

374 -1.2 -2.2

395 -0.1 -0.2

403 -0.3 -0.4

475 0.3 -0.6

495 2.3 1.5

495 2.0 1.3

517 0.3 -0.3

613 -2.7 -1.6

629 0.0 0.7

641 -0.1 0.2

646 0.0 0.0

Ω (cm−1) α1 × 103 α2 × 103

672 -0.1 -0.2

673 -0.0 -0.0

678 2.5 2.2

679 -0.1 0.3

711 0.1 -0.1

713 0.1 0.1

718 -0.0 0.2

728 0.2 -0.2

763 0.0 0.1

779 -0.0 -0.1

789 0.2 -0.0

799 -0.0 0.1

832 0.6 0.6

833 0.3 0.1

835 -4.1 -4.1

839 -0.1 -0.3

883 -2.6 -2.2

902 0.0 -0.3

907 0.0 -0.2

910 -0.1 0.1

912 0.1 -0.0

914 0.0 0.0

942 -0.2 -0.1

949 0.2 -0.1

960 -0.0 0.2

964 0.1 -0.1
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Ω (cm−1) α1 × 103 α2 × 103

965 -0.0 0.1

988 0.0 -0.2

992 -0.0 0.3

994 -3.3 -3.2

1012 -2.1 -2.2

1026 -0.1 -0.0

1070 0.1 0.1

1080 -2.9 -3.9

1086 0.1 -0.1

1091 -1.6 -1.2

1119 0.1 0.0

1138 -1.7 -1.8

1185 1.2 1.8

1199 -0.1 0.2

1221 -0.1 0.2

1238 0.8 1.3

1259 -0.0 -0.0

1274 -0.0 0.2

1283 2.5 2.3

1300 3.6 3.8

1315 0.1 -0.2

1326 0.2 -0.0

1356 -0.5 -0.3

1374 1.8 1.6

1389 -0.1 0.2

1396 0.5 0.1

Ω (cm−1) α1 × 103 α2 × 103

1405 0.0 0.1

1430 -0.8 -0.1

1436 -1.4 -1.8

1446 0.1 0.0

1475 -3.3 -3.6

1492 -0.0 -0.0

1499 0.0 0.0

1520 0.1 0.0

1521 2.9 3.3

1547 3.2 3.3

1554 -0.1 0.0

1574 0.6 0.2

1593 0.8 0.5

1602 -0.0 0.0

1618 -0.0 0.0

1650 3.8 3.7

2902 25.4 25.3

2905 0.1 -0.1

3167 -0.1 0.1

3167 0.0 -0.0

3186 0.0 0.2

3187 0.0 -0.0

3238 0.1 0.0
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Ω (cm−1) α1 × 103 α2 × 103

3238 -0.0 -0.0

3252 0.0 0.2

3253 -0.0 0.0

3258 -0.0 -0.3

3260 -0.0 0.0

3270 -0.1 -0.2

3273 -0.0 0.0

Table S6: Dimensionless coupling parame-

ter between harmonic modes with symmet-

ric (α1, ω = 2902cm−1) and antisymmetric

(α2,ω = 2905cm−1) N-H stretching motion.
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