
Online supplementary material for

A joint deep learning model to recover information and reduce artifacts in

missing-wedge sinograms for electron tomography and beyond

Guanglei Ding1,2, ∥, Yitong Liu2, ∥, Rui Zhang1, Huolin Xin1

1. Department of Physics and Astronomy, University of California, Irvine, CA 92697, United

States

2. School of Information and Communication Engineering, Beijing University of Posts and

Telecommunications, Beijing 100876, China
∥ These authors contributed equally

Correspondence should be addressed to HLX (huolin.xin@uci.edu)

This document contains:

Supplementary methods and supplementary figures

1

Supplementary methods:

Detains on the augmentation of the training images

• Pad Resize. The purpose of Resize and Pad is to ensure that the original image is within the

range of the rotated projection during the radon transformation. The output shape is (1, 256,

256).

• Random Rotation. Random rotate the image in 0 to 180 degree.

• Random Flip: Random flip in vertical and horizontal with probability of 50%.

• Random Affine: Random affine, which is used in "torchvision.transforms. RandomAffine ".

The parameters are:

• degrees = 90,

• translate = (0, 0.05),

• scale = (0.85, 1.15),

• share = 10

▪ Random Noise: We add noise after Radon transform of input training images.

• 50% data: No noise.

• 20% data: Add Gaussian Noise (mean = 0, std = 0.002)

• 20% data: Add Poisson Noise

• 10% data: Add both.

Details on the sinogram preparation

Radon transform: We set degree step as 1.40625° from 0° to 180° with 128 projections. So,

the complete shape of sinogram is (1, 256, 128) that will be used as the ground truth during the

training. The missing wedge sinograms are built from 67.5° to 180° concatenated with 112.5° to

180° at the same delta. The shape is (1, 256, 96) which means that we lose the middle 45 degrees

wedge and 32 projections. However, to align the image dimension of the input and output, we

use a constant to fill the missing part of the center data, and the value of this constant is the mean

value of all pixels of the narrow sinogram.

Details on the generative model of the in-painting network

• Expand the receptive field. We use dilated convolution and modify the dilation of each

layer to expand the receptive field. Lacking the receptive field will result in the inability to

reconstruct the information accurately1.

• Remove the pixel shuffle layer. The end of the pixel shuffle layer is removed because we

need to fill the gaps with information, so there is no need for an up-sample layer.

For the model parameters, all the layers kernels size is (3, 3), stride equal to 1, and we set

padding equal to 1 to keep the same dimension. We use 16 Basic Block in this model, and basic

number channels and the growth rate in Dense block are 16.

Details on the loss function of the in-painting network

2

𝑥𝑖𝑛𝑝𝑢𝑡 represents the input data. The generator and the discriminator are denoted as G and 𝐷.

 𝑥𝑓𝑎𝑘𝑒 is the output of generator. We use 𝑥𝑟𝑒𝑎𝑙 to represent the ground truth.

The loss of standard GAN is used to distinguish if the sinogram is real or fake. Here, we

replace the standard discriminator loss with the Relativistic GAN loss. The relativistic

discriminator tries to predict the probability that a real image is relatively more realistic than a

fake one. The relativistic discriminator will compensate for the missing information from

standard GAN.

Standard GAN loss for D:

𝐿𝐷(𝑥𝑟𝑒𝑎𝑙) = 𝐷(𝑥𝑟𝑒𝑎𝑙) → 1 ⇒ 𝑅𝑒𝑎𝑙 (1)

𝐿𝐷(𝑥𝑓𝑎𝑘𝑒) = 𝐷(𝑥𝑓𝑎𝑘𝑒) → −1 ⇒ 𝐹𝑎𝑘𝑒 (2)

Based on this, we get the Least Square Loss function:

𝑚𝑖𝑛 𝐿𝐷 = [𝐷(𝑥𝑟𝑒𝑎𝑙) − 1]2 + [𝐷(𝑥𝑓𝑎𝑘𝑒) + 1]
2
 (3)

RaGAN loss for D:

𝐿𝑅𝑎𝐷(𝑥𝑟𝑒𝑎𝑙) = 𝐷(𝑥𝑟𝑒𝑎𝑙) − 𝐸[𝐷(𝑥𝑓𝑎𝑘𝑒)] → 1 ⇒ 𝑀𝑜𝑟𝑒 𝑅𝑒𝑎𝑙 (4)

𝐿𝑅𝑎𝐷(𝑥𝑓𝑎𝑘𝑒) = 𝐷(𝑥𝑓𝑎𝑘𝑒) − 𝐸[𝐷(𝑥𝑟𝑒𝑎𝑙)] → 0 ⇒ 𝑀𝑜𝑟 𝐹𝑎𝑘𝑒 (5)

Then we apply relativistic loss with LSGAN2 (RaLSGAN3) combined with the idea of

RaGAN proposed by Alexia Jolicoeur-Martineau3. Eventually, we define the discriminator loss

as:

𝑚𝑖𝑛 𝐿𝑅𝑎𝐷 = [𝐷(𝑥𝑟𝑒𝑎𝑙) − 𝐸[𝐷(𝑥𝑓𝑎𝑘𝑒)] − 1]
2

+ [𝐷(𝑥𝑓𝑎𝑘𝑒) − 𝐸[𝐷(𝑥𝑟𝑒𝑎𝑙)] + 1]
2
 (6)

The E [·] represents the average operation of minibatch when loading from the dataset.

The adversarial loss for the generator is in a symmetrical form:

𝑚𝑖𝑛 𝐿𝑅𝑎𝐺 = [𝐷(𝑥𝑟𝑒𝑎𝑙) − 𝐸[𝐷(𝑥𝑓𝑎𝑘𝑒)] + 1]
2

+ [𝐷(𝑥𝑓𝑎𝑘𝑒) − 𝐸[𝐷(𝑥𝑟𝑒𝑎𝑙)] − 1]
2
 (7)

Besides, we can get MSE loss as:

𝐿𝑀𝑆𝐸 = (𝑥𝑓𝑎𝑘𝑒 − 𝑥𝑟𝑒𝑎𝑙)
2
 (8)

So, the final loss function for the generator is:

𝑚𝑖𝑛 𝐿𝐺 = 𝐿𝑅𝑎𝐺 + ß 𝐿𝑀𝑆𝐸 (9)

ß = 0.004

MSE is used directly to generated fake images and real images, and RaLSGAN is used as

the GAN loss. Since the ß is small, the same value in 1, the MSE weight is large, therefore the

reduction of the loss function in the initial stage of training mainly depends on the reduction of

the MSE which will help stabilize the GAN’s training. When the MSE is decreased to a certain

extent, the GAN loss will play a role and gradually improve the sensory quality of the image.

3

Details on the De-artifacts network

Loss function

The loss function is the same with inpainting training loss while without the MSE part.

𝑚𝑖𝑛 𝐿𝑅𝑎𝐷 = [𝐷(𝑥𝑟𝑒𝑎𝑙) − 𝐸[𝐷(𝑥𝑓𝑎𝑘𝑒)] − 1]
2

+ [𝐷(𝑥𝑓𝑎𝑘𝑒) − 𝐸[𝐷(𝑥𝑟𝑒𝑎𝑙)] + 1]
2
 (10)

𝑚𝑖𝑛 𝐿𝑅𝑎𝐺 = [𝐷(𝑥𝑟𝑒𝑎𝑙) − 𝐸[𝐷(𝑥𝑓𝑎𝑘𝑒)] + 1]
2

+ [𝐷(𝑥𝑓𝑎𝑘𝑒) − 𝐸[𝐷(𝑥𝑟𝑒𝑎𝑙)] − 1]
2
 (11)

Training strategy

Theoretically, the joint model should be training together. Because the training of de-

artifacts model relies on the output data of inpainting model. However, we don’t have enough

memory to load these models simultaneously. We train the inpainting model first and then we

save the output data and model checkpoint at different epoch. So, we can train these two parts

models separately.

Most of the training strategies are the same as previous works. The total training epochs are

30. For the first three epochs, we set learning rate 1e-4, 1.5e-4, and 2e-4, for both generator and

discriminator. Then we keep 2e-4 as a constant learning rate, and we still verified each epoch by

computing SNR and SSIM score.

We set minibatch size 32 and using two 1080TI GPUs.

Table S1: The optimizer and hyper-parameters in denoise training.

Model\hyper

params

Optimizer learning

rate

weight

decay

betas momentum alpha

Generator Adam 2e-4 5e-4 (0.9, 0.999) / /

Discriminator RMSprop 2e-4 5e-4 / 0 0.99

4

Supplementary figures:

Figure S1. The standard u-net structure for de-artifacts generator.

Figure S2. The structure of discriminator.

5

Supplementary references:

1 Sabini, M. & Rusak, G. Painting Outside the Box: Image Outpainting with GANs. arXiv
preprint arXiv:1808.08483 (2018).

2 Mao, X. et al. in Proceedings of the IEEE International Conference on Computer Vision.
2794-2802.

3 Jolicoeur-Martineau, A. The relativistic discriminator: a key element missing from
standard GAN. arXiv preprint arXiv:1807.00734 (2018).

