
Reviewers' Comments:  

 

Reviewer #1:  

Remarks to the Author:  

The manuscript focuses on interactions between hippocampus and visual cortex, and how these 

change over time after participants learn to associate actions with outcomes. Some of the actions 

reliably predicted their outcome, while other actions did not. Immediately after learning these 

associations, connectivity between hippocampus and visual cortex was similar for predictive and non-

predictive actions. However, three days after learning, predictive action-outcome associations led to 

stronger hippocampal-neocortical interactions than non-predictive actions. The authors furthermore 

report that in visual cortex the neural representations of predictive outcomes are more distinct than 

the representations of non-predictive outcomes.  

 

The manuscript is very well written and the work appears mostly methodologically sound (but see 

below). The results are novel and timely. The finding that hippocampus-neocortical interactions 

sharpen over time for predictive (but not non-predictive) outcomes is interesting, and suggests that 

predictiveness plays a role in consolidation-related processes. My enthusiasm is dampened, however, 

by a potential confound in one of the analyses that makes it difficult to interpret some of the results, 

as explained below.  

 

- Are visual stimuli more distinct for predictive versus non-predictive actions?  

 

The authors find that neural representations of predictable outcomes are less similar to one another 

than those of non-predictable outcomes, but I wonder to what degree this effect is driven by the 

visual stimuli, rather than predictability per se. Consider, for example, two outcomes (a and b) and 

two sequences (1 and 2). In the predictable condition, outcome a will be more likely in sequence 1, 

and outcome b in sequence 2. In the non-predictable condition, however, either outcome will be 

equally likely for sequence 1 and 2. To address neural similarity, the authors calculated the correlation 

across voxels for sequences that shared the same cue but contained different outcomes. As far as I 

understand their analysis, this would be a correlation between sequence 1 and 2 in the example 

above. However, this analysis would automatically result in reduced similarity for the predictable 

condition, even when there was no neural effect due to predictability, simply because of the way the 

sequences were constructed (i.e., across trials, sequences 1&2 share fewer visual stimuli/outcomes in 

the predictable condition). I wonder to what degree this also holds for the actual sequences used in 

the experiment. One way to address this concern would be to perform a correlation analysis on the 

visual stimuli/sequences themselves to determine the amount of overlap in visual stimulation, both 

when they do and don’t share a cue.  

 

- A direct link between neural and behavioral effects?  

 

It would strengthen the results if the neural effects predicted behavior. Does the strength of 

hippocampal-neocortical interactions predict behavioral (reaction time) effects, across runs and/or 

participants?  

 

- Is enhanced connectivity between hippocampus and visual cortex specific to the retinotopic location 

of the stimulus?  

 

It would be interesting to see the degree of overlap between voxels that respond to the retinotopic 

location of the stimuli (as identified by the visual localizer stimulus) and voxels that indicate enhanced 

connectivity with hippocampus (i.e. visual voxels identified in the partial volume analyses). One way 

to address this would be to visualize the degree of overlap on the inflated cortical surface.  



 

 

 

Reviewer #2:  

Remarks to the Author:  

The manuscript by Hindy and colleagues uses human fMRI to probe interactions between hippocampus 

and early visual cortex during a cue-action-outcome learning task. Prior to fMRI scanning, subjects 

completed two training sessions (one just before scanning, one 3 days prior to scanning) during which 

they repeated saw various fractals and had to choose an action (left or right response) that led to an 

outcome. For half of the fractals, responses were highly predictive of outcomes (95% predictive) 

whereas for the other half of fractals, responses were non-predictive of outcomes (50% predictive). 

Thus, the two critical factors were whether a given cue was a predictive vs. non-predictive cue and 

then whether the cue was learned 3 days prior or just prior (same day) to scanning. During scanning, 

subjects essentially completed the same task with alternating blocks of predictive vs. non-predictive 

cues, and 3-day vs. same-day cues.  

 

Behaviorally, subjects’ reaction times in selecting actions did not differ for predictive vs. non-

predictive cues learned the same day as scanning. For cues from the 3-day condition, however, 

subjects were markedly faster to make decisions in the predictive condition compared to the non-

predictive condition. To be clear, this does not mean they were ‘better’—simply that they spent less 

time deliberating about which response to make and, by extension, which outcome to ‘reveal.’ The 

primary fMRI measure that is used is background connectivity, which is a measure of the correlation 

between BOLD responses in different ROIs over time, after regressing out task-related activity. The 

idea is that this background connectivity is a measure of communication between regions that is not 

explained by task-evoked activity. Interestingly, background connectivity between the hippocampus 

and early visual cortex showed an interaction between delay and predictiveness. For predictive cues, 

connectivity tended to be stronger for the 3-day cues whereas for non-predictive cues, connectivity 

tended to be weaker for the 3-day cues. In other words, a longer delay seemed to increase 

connectivity for predictive cues but weaken connectivity for non-predictive cues. Another potentially 

interesting finding was that pattern similarity between shared cues with different outcomes tended to 

decrease in the 3 day condition (compared to the same day condition) but only for predictive cues. 

This was somewhat true in hippocampus, and in EVC. Interestingly, however, at least for the 

hippocampus, pattern similarity among non-shared cues showed a qualitatively different pattern with 

no evidence of a decrease in similarity for the 3 day condition.  

 

While the manuscript addresses an interesting topic (delay-dependent changes in hippocampal-cortical 

interactions), I have several concerns that limit my enthusiasm. First, the results are discussed in 

terms of hippocampal predictions, but there is remarkably little in the results/analyses to compel or 

motivate a “prediction” account. I realize this interpretation is related to a previous, related paper, but 

the current study just doesn’t seem to have any clear evidence that predictions are even occurring. 

Second, for several of the analyses, I have questions and/or concerns about how the analyses were 

performed and whether the interpretations are appropriate.  

 

Comments:  

 

1. The idea of using background connectivity to measure “predictions” that are generated by the 

hippocampus and then sent to EVC is not particularly intuitive to me. I can understand why we would 

expect predictions to be generated during the actual trials, but why would predictions also be going on 

“in the background?” Put another way, the fact that global BOLD signal in hippocampus is correlated 

with global BOLD signal in early visual cortex AFTER regressing out the task effects does not seem like 

an obvious marker of predictions being sent between these regions. Indeed, prior work from these 



authors has used much more direct measures of prediction (e.g., by measuring reinstatement of 

predicted activity patterns). No clear rationale is provided as to why background connectivity is the 

right measure for the current question.  

 

2. The changes in background connectivity strongly parallel the differences in reaction times across 

conditions—to a degree that raises serious concerns about what the background connectivity is 

actually reflecting. Specifically, this raises the obvious concern that the background connectivity 

measure is affected by reaction time. I’m not exactly sure how to test this with the current data, but it 

seems like a potentially serious issue. To be clear, I think the behavioral data are interesting, but 

given that the background connectivity approach involves regressing out task effects, and the task 

effects are based on trials with very substantial reaction time differences, it seems entirely plausible 

that the residuals would be influenced by the length of the trial that is being regressed out. Thus, it is 

hard to imagine that these RT differences would NOT influence the connectivity measures. If the RT 

differences do drive the differences in background connectivity, then it is obviously not appropriate to 

interpret the background connectivity as a measure of ‘communication’ between regions; rather it 

could just be a statistical artifact of regressing out task-related activity when the task conditions differ 

in reaction times.  

 

3. Was Distinct cue similarity always based on cues that had different button presses (i.e., left vs. 

right). If not, then the relatively greater similarity among distinct cues could obviously be an artifact 

of the fact that the Different cue similarity includes trials with a common motor response whereas the 

Shared cue trials were necessarily restricted to trials that had opposite motor responses.  

 

4. The pattern similarity results are interesting, but not overwhelmingly compelling. For one, the 

hippocampal interaction for shared cue data is only marginally significant. Additionally, for EVC, 

although there is a significant interaction between delay and predictiveness for the within-cue data 

and not for the across-cue data, it seems extremely unlikely that the 3-way interaction between delay, 

predictiviness and within-cue/across-cue is significant. For hippocampus, this three-way interaction 

might well be significant, though I don’t think it is reported. But EVC certainly seems to show a very 

similar pattern for the within-cue and the across-cue analyses.  

 

5. I was not fully clear on how the pattern similarity analyses were performed. Was there a separate 

parameter estimate for each trial in each run? Were correlations ever obtained between data from the 

same run, or was this restricted to across-run correlations? If same-run analyses were performed, are 

there any differences between the shared-cue and across-cue analyses in terms of lag effects? For 

example, depending on whether or not the trial order included consecutive repeats of the same 

condition, there might be a bias such that across-cue analyses were systematically based on trials that 

were further apart (in terms of mean trial lag), which could artificially make the across-cue similarity 

values increase. In any case, more detail is required about these analyses.  

 

6. There is an interesting idea raised in the Discussion that in the no delay condition, the hippocampus 

might still be generating predictions, but they are as likely to be correct as incorrect which is why 

there is no difference for the predictive vs. non-predictive conditions. Yet, this argument seems to be 

contradicted by the behavioral data in that subjects were, in fact, required to reach 100% accuracy in 

a test of prediction memory before entering the scanner. Obviously, there is a change in behavior over 

time (reflected in RTs) and I do think that change is interesting, but given that accuracy was forced to 

be at ceiling, that seems to argue against the idea that subjects are generating inaccurate predictions 

in the no delay condition.  

 

 

 



Reviewer #3:  

Remarks to the Author:  

In this manuscript, Hindy et al. present an intriguing follow-up to their prior work on a hippocampal 

role in predictive coding in visual cortex. They find that predictive cue-action-outcome sequences 

learned 3 days before fMRI scanning are associated with faster responses, greater state-based 

connectivity between hippocampus (HPC) and early visual cortex (EVC), and more dissimilar neural 

patterns in HPC and EVC versus sequences learned on the same days as scanning. Both the 

predictiveness of the sequences and the 3-day delay in learning had significant impacts on all 

measures. The authors argue that these findings point to a specific role for the HPC in binding cue-

action-outcomes that exhibit regularity and that interactions between HPC and EVC for these 

predictive events strengthen over time.  

 

Overall, this work is timely, well-conducted, and novel. The findings coalesce into a consistent package 

with fairly straightforward theoretical implications. This work will undoubtedly impact the field and 

motivate new research into the HPC as one of the brain’s engines for prediction. There are, however, 

several issues detailed below that should be fully considered.  

 

Major concerns  

 

1) After reading the introduction, I already had the overall gist of my review in mind: too incremental. 

However, after reading the manuscript in its entirety, it is clearly much more than a simple follow-up 

to the authors’ prior’s work and represents a novel contribution in its own right. As such, I think the 

introduction does not appropriately set the stage for the research. Although the authors have 

attempted to answer big important questions, the introduction has a much too narrow focus on their 

Nature Neuroscience paper. As is, the intro is not necessarily wrong, but it fails to motivate the larger 

question of hippocampal-cortical interactions for predictive coding to the more general audience of 

Nature Communications readers.  

 

2) The authors motivate the study with two competing accounts of HPC’s involvement in predictive 

coding: 1) HPC is endowed with the computations for prediction, thus should always be engaged in 

learning regularities and 2) HPC’s role in prediction is restricted to early learning before consolidation 

at which point the baton is passed to cortical processes. Reasonably, they then run a task with 

manipulations of time thereby allowing for a test of two accounts. However, their findings do not seem 

to align well with either of the accounts. HPC processes and representations are not involved 

immediately after learning (thus ruling out account 1), but are involved after a 3 day delay (providing 

support against account 2). Although these findings are consistent with the authors’ non-specific 

predictions that HPC-EVC interactions would depend on lag and predictiveness, they do not support 

either of the competing accounts. What updates in theory are needed to support the current findings? 

The authors provide hints of this in the discussion, but an explicit appreciation of this divergence from 

more conventional views of HPC function should be expanded.  

 

3) Why background connectivity? Don’t worry, I’m a fan of background connectivity and think the 

approach is underappreciated in the field. But, very little is provided to justify why background 

connectivity is a good measure for this study. More importantly, what do the connectivity findings 

imply at a mechanistic level, especially in light of their previous findings? I think the preferred 

argument is that this coupled activity arises due to HPC-guided cortical reinstatement. A more 

thorough motivation for using background connectivity and speculation for why functional coupling is 

mechanistically important for predictive coding would strengthen the manuscript and potentially 

encourage wider adoption of such connectivity methods.  

 

4) At first glance, the difference in choice RT for predictive vs. nonpredictive sequences at a delay 



provides converging evidence for the authors’ claims. However, I hesitate on understanding what is 

driving this effect. Although there appears to be a bit of speeding for the delay predictive sequences, 

relative to no delay, the majority of this effect seems to be in slower responses to the delay 

nonpredictive sequences. Given that there are no “wrong” responses, what is slowing RTs to the 

nonpredictive sequences? In the discussion, the authors do describe an account of hippocampal-based 

strengthening of sparse representations for predictive associations, which is line with relatively faster 

responses to predictive sequences. But, what makes delayed nonpredictive slower relative to no 

delay? It may be that loosely-bound, weak representations of each nonpredictive cue-action-outcome 

sequence are all retrieved and compete for action selection. Also, I’m interested to see if individual 

differences in this behavioural effect are related to neural measures, either differences in connectivity 

or representational similarity (e.g., are faster RTs correlated with greater pattern dissimilarity for 

predictive sequences?). In any case, I do think the RT effect is interesting and may shed light on the 

mechanisms at play, but would appreciate the authors giving this effect more consideration in the 

discussion.  

 

5) Pattern dissimilarity in EVC immediate suggests separation is occurring without the hippocampus. 

However, whereas the HPC results for the shared cue sequences are clearly different than the distinct 

cue sequences, EVC shows the same pattern for both. Two questions about the GLMs for estimating 

neural patterns in this analysis: 1) Were the action arrows included as part of the pattern-defining 

regressors (i.e., was the entire trial sequence modelled or jus the cue? 2) Were all combinations of 

action pairs (left-right, left-left, right-right) included in the nonpredictive similarity comparisons? If the 

answer to both of these is yes, it may be that nonpredictive similarity is biased higher due to the 

matched visual stimulus from the action arrow (i.e., left-left and right-right trial pairs). The predictive 

similarity comparisons were always different actions, thus had less objective visual similarity across 

the sequence.  

 

Assuming this confound isn’t present or impacting the presented results, an extended discussion of 

these EVC pattern dissimilarity findings seems warranted. Is a different non-hippocampal top-down 

signal separating EVC patterns early in learning? Or is this an intrinsic computation of EVC?  

 

Minor comments  

 

Subiculum was not included in the hippocampal ROI. This is fine, as the authors’ hypotheses about 

which subfields should matter are motivated by their prior work. However, the subiculum is a large 

portion of the hippocampus and its exclusion should be noted somewhere earlier in the paper than the 

methods.  

 

pg. 11: In reporting stats for the interaction for the cross correlation between EVC and lagged HPC 

time series, a t stat is reported that should likely be a F stat.  

 

It is unclear which part of each trial was included in the GLM parameters estimates for the multivariate 

patterns used in the representational similarity analysis. Were patterns based on models of the cue 

onset and duration or were the action and outcome also included in the model?  
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Responses to Editor 
 
Your manuscript entitled "Hippocampal-neocortical interactions sharpen over time for 
predictive actions" has now been seen by 3 referees, whose comments are appended below. You 
will see that while the reviewers find your work of interest, they raised substantial concerns that 
must be addressed. In light of these comments, we cannot accept the manuscript for publication, 
but would be interested in considering a revised version that addresses these serious concerns. 
 

We are pleased with the excitement about the potential significance of our study and very much 
appreciate the thoughtful comments, ideas, and suggestions from all three reviewers. We are 
confident that we have resolved all concerns raised by the reviewers and are grateful that the 
suggested revisions have substantially improved the manuscript.  

 
 
In particular, the reviewers raise several doubts related to the strength of your results and 
interpretations. Reviewer 1 notes a confound, and Reviewers 2 and 3 question the 
appropriateness of your background connectivity measure, its influence on your interpretations, 
and the extent to which your results support the proposed account. Each of the reviewers 
provide suggestions for additional analyses that would strengthen the conclusions that can be 
drawn, which we strongly recommend you follow.  
 

In order to address each reviewer’s concerns, the revised manuscript includes two new 
subsections in the Results, each new subsection with its own new figure, along with three new 
supplementary figures. Additionally, we have thoroughly revised the Introduction and 
Discussion with respect to the rationale and interpretation of our background connectivity 
measure and have substantially expanded the Methods with respect to the pattern similarity 
analyses. 
 
New findings from analyses suggested by the reviewers strengthen the results and support the 
interpretation that hippocampal-neocortical interactions initially reflect indiscriminate binding 
of co-occurring events and that nonpredictive associations are pruned over time through offline 
processing. In particular, Figure 5 (“Verbal predictions for nonpredictive actions”) displays a 
newly discovered link between behavior and background connectivity. Figure 3 (“Specificity 
within V1/V2”) reveals the robustness of the background connectivity effects within early 
visual cortex. Figure S1 (“RT vs. background connectivity”) confirms that reaction time does 
not account for background connectivity effects. Figure S2 (“Resampled pattern similarity and 
contrast-to-noise ratios”) confirms that button-press differences do not account for pattern 
similarity effects. Finally, Figure S3 (“Background connectivity vs. pattern similarity”) reveals 
how background connectivity and pattern similarity are related across participants. Together, 
these new analyses substantially strengthen the body of evidence for our conclusions and we 
are very grateful for being prompted to include them.  
 

 
Reviewer 3 also has suggestions for reframing the paper that we agree will increase the impact of 
your work.  
 

We have followed Reviewer 3’s thoughtful suggestions for reframing the paper in order to 
more directly focus on the novel contribution and larger significance of the ideas so that they 
will be obvious to the extremely broad audience of Nature Communications. 
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In your revision, please address these and the other concerns raised by the reviewers. 
 

We thank the reviewers for their highly constructive feedback. We directly address each 
concern below.  
 

 
 

Responses to Reviewer #1 
 

The manuscript focuses on interactions between hippocampus and visual cortex, and how these 
change over time after participants learn to associate actions with outcomes. Some of the actions 
reliably predicted their outcome, while other actions did not. Immediately after learning these 
associations, connectivity between hippocampus and visual cortex was similar for predictive and 
non-predictive actions. However, three days after learning, predictive action-outcome 
associations led to stronger hippocampal-neocortical interactions than non-predictive actions. 
The authors furthermore report that in visual cortex the neural representations of predictive 
outcomes are more distinct than the representations of non-predictive outcomes.  
 
The manuscript is very well written and the work appears mostly methodologically sound (but 
see below). The results are novel and timely. The finding that hippocampus-neocortical 
interactions sharpen over time for predictive (but not non-predictive) outcomes is interesting, 
and suggests that predictiveness plays a role in consolidation-related processes. My enthusiasm is 
dampened, however, by a potential confound in one of the analyses that makes it difficult to 
interpret some of the results, as explained below.  
 

We are pleased that the reviewer found the study novel and timely. Additionally, we are 
indebted to the reviewer for their thoughtful and helpful feedback that prompted us to clarify 
the pattern similarity analyses, probe the retinotopic specificity of background connectivity 
within early visual cortex, and more carefully consider links between behavioral and neural 
effects. 

 
 
- Are visual stimuli more distinct for predictive versus non-predictive actions?  
The authors find that neural representations of predictable outcomes are less similar to one 
another than those of non-predictable outcomes, but I wonder to what degree this effect is driven 
by the visual stimuli, rather than predictability per se. Consider, for example, two outcomes (a 
and b) and two sequences (1 and 2). In the predictable condition, outcome a will be more likely in 
sequence 1, and outcome b in sequence 2. In the non-predictable condition, however, either 
outcome will be equally likely for sequence 1 and 2. To address neural similarity, the authors 
calculated the correlation across voxels for sequences that shared the same cue but contained 
different outcomes. As far as I understand their analysis, this would be a correlation between 
sequence 1 and 2 in the example above. However, this analysis would automatically result in 
reduced similarity for the predictable condition, even when there was no neural effect due to 
predictability, simply because of the way the sequences were constructed (i.e., across trials, 
sequences 1&2 share fewer visual stimuli/outcomes in the predictable condition).  
 

We thank the reviewer for pointing this out and acknowledge that the original submission was 
ambiguous in its description of how patterns were constructed for multivariate similarity 
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analyses. In fact, comparisons between cue-outcome transitions were identical with respect to 
visual stimulation for predictive and nonpredictive events. That is, for both predictive and non-
predictive actions, either of two outcomes followed a cue with equal probability. For instance, 
predictive cue “A” corresponded two possible cue-outcome (stimulus-stimulus) transitions: “A-
left-B” and “A-right-C”. Likewise, nonpredictive cue “D” corresponded to two possible cue-
outcome transitions: “D-[left/right]-E” and “D-[left/right]-F”. We have made revisions 
throughout the manuscript in order to clarify the pattern similarity analyses. In the Results, on 
page 17, we are now explicit that cue-outcome transitions were identically constructed with 
respect to visual stimuli for predictive vs. non-predictive actions. In the Methods, on page 35, 
we now explain in detail exactly how multivariate patterns were estimated and compared.  
 
While visual stimulation was identical across conditions, we averaged across left and right 
button presses for cue-outcome visual transitions with nonpredictive actions but not predictive 
actions. Importantly, averaging in this way balanced the number of observations used to 
estimate neural patterns for each condition, thereby equating the contrast-to-noise ratio (CNR; 
Wald 2012, Neuroimage) of patterns for each condition (Figure S2B). Equating CNR across 
conditions is important because voxel-level variability strongly influences pattern similarity 
(Davis et al 2014, Neuroimage; Bhandari et al 2018, JOCN). In the revised manuscript, we 
have taken multiple measures outlined below in order to address any potential concerns about 
this approach.  
 
First, we motivate averaging across nonpredictive left and right button presses based on a prior 
study with the same task in which nonpredictive actions could not be decoded in either the 
hippocampus or early visual cortex (Hindy et al., 2016 Nature Neuroscience).  
 
Second, we note that—along with the reported interactions between predictiveness and 
timescale—predictiveness significantly interacted with comparisons of within-cue vs. across-
cue pattern similarity in both the hippocampus and EVC (ps< .01; Results, page 18; Figure 
7B). While interactions between predictiveness and timescale are interpretable on their own, 
interactions between predictiveness and within-cue/across-cue similarity are important for 
interpreting main effects of predictiveness on within-cue similarity. Because across-cue 
similarity was calculated on the same multivoxel patterns as within-cue similarity, differences 
between measures control for any differences in how we estimated the multivoxel patterns for 
predictive vs. nonpredictive events. 
 
Finally, in Figure S2, all of the within-cue pattern similarity effects replicated in follow-up 
control analyses in which we additionally computed the within-cue similarity between left and 
right nonpredictive actions. For this analysis, we separately modeled each nonpredictive cue-
action-outcome sequence, and measured within-cue similarity specifically between cue-action-
outcome sequences that shared the same cue but differed in both the action and the outcome 
(e.g., “D-left-E vs. D-right-F” and “D-left-F vs. D-right-E”). Importantly, splitting up 
nonpredictive actions in this way cut in half the number of trials for estimating each neural 
pattern. Thus, in order to calculate within-cue similarity in the same way for predictive events, 
we randomly designated each predictive event as belonging to either the “Rand a” or “Rand b” 
dataset. This resampling equated the contrast-to-noise ratio among patters for predictive and 
nonpredictive actions. 
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Results: Multivariate pattern similarity, p. 17, line 13: 
“Critically, visual stimulation was the same for cue-outcome transitions containing either 
predictive or non-predictive actions: either of two outcomes followed a cue and double-sided 
arrow with equal probability. But since nonpredictive actions could not be decoded in either the 
hippocampus or EVC in a prior study with the same action-based prediction task3, we averaged 
across left and right button presses for visual transitions that contained nonpredictive actions. 
However, all of the pattern similarity effects replicated in follow-up analyses with resampled 
data that split between left and right nonpredictive actions (Fig. S2). Moreover, predictiveness 
significantly interacted in each ROI with comparisons of within-cue vs. across-cue pattern 
similarity of the exact same multivoxel patterns (ps < .01; Fig. 7B).” 
 
Results: Multivariate pattern similarity, p. 18, line 21: 
“However, as noted above, within-cue vs. across-cue similarity reliably interacted with 
predictiveness in both the hippocampus F(1, 23) = 8.95, p = .007) and EVC (F(1, 23) = 11.33, 
p = .003).” 
 
Methods: Multivariate pattern similarity, p. 34, line 15: 
“Each cue-outcome transition was modeled with its own regressor and temporal derivative, 
constructed by convolving a boxcar function that matched the average trial duration for the 
condition (between 2188 and 2643 ms, depending on the participant’s mean response time) 
with a double-gamma hemodynamic response function. This resulted in 8 regressors of interest: 
4 regressors for the cue-outcome transitions associated with predictive actions (e.g., A1-left-B1 
and A1-right-C1), and 4 regressors for the cue-outcome transitions associated with 
nonpredictive actions (e.g., D1-[left/right]-E1 and D1-[left/right]-F1).” 
 
Methods: Multivariate pattern similarity, p. 35, line 12: 
“Cue-outcome transitions were visually identical for predictive and nonpredictive actions – 
either of two outcomes stimuli followed a cue stimulus and a double-sided arrow with equal 
probability as one another. However, while button presses differed across alternative visual 
transitions for each predictive cue, this was not the case for nonpredictive cues (in which either 
button press could produce either outcome). Since nonpredictive actions could not be decoded 
in either the hippocampus or EVC during action-based prediction in a previous study with the 
same task paradigm3, we averaged across left and right button presses in order to estimate the 
multivoxel patterns for visual transitions with nonpredictive actions. Importantly, averaging in 
this way balanced the number of observations used to estimate neural patterns for each 
condition, thereby equating the contrast-to-noise ratio (CNR)55 of patterns for each condition 
(Fig. S2B). Equating CNR across conditions is important for comparing pattern similarity 
across conditions because voxel-level variability strongly influences multivoxel correlations 
among patterns56,57.  

As a follow-up control analysis to ensure that averaging across left and right button 
presses for visual transitions with nonpredictive actions did not bias the primary findings, we 
additionally calculated the within-cue pattern similarity between visual transitions with left vs. 
right button presses for nonpredictive actions (Fig. S2). For this analysis, each nonpredictive 
cue-action-outcome sequence was modeled with its own regressor and temporal derivative 
(e.g., D1-left-E1, D1-left-F1, D1-right-E1, and D1-right-F1). Within-cue similarity was then 
measured specifically between cue-action-outcome sequences that shared the same cue but 
differed in both the action and the outcome (e.g., “D1-left-E1 vs. D1-right-F1” and “D1-left-F1 
vs. D1-right-E1”). Notably, splitting up trials in this way for nonpredictive actions cut in half 
the number of trials for estimating the neural pattern for each cue-outcome visual transition 
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(from about 5 trials per run in the primary analyses to about 2.5 trials per run in the resampled 
analysis). In order to calculate pattern similarity in the same way for visual transitions 
containing either predictive or nonpredictive actions (and thereby equate CNR across 
conditions), we randomly resampled trials with predictive actions as belonging to either the 
“Rand a” or “Rand b” dataset. Then, we calculated within-cue pattern similarity separately for 
each randomly sampled dataset (e.g., “A1a-left-B1a vs. A1a-right-C1a” and “A1b-left-B1b vs. 
A1b-right-C1b”) before averaging together correlation coefficients in the same way as for 
visual transitions containing nonpredictive actions.” 

 

 
 

Figure S2. Resampled pattern similarity and contrast-to-noise ratios. (A) In primary analyses of 
pattern similarity among cue-outcome visual transitions (Fig. 7), we averaged across left and right 
button presses for visual transitions with nonpredictive actions but not predictive actions. To ensure 
that averaging in this way did not bias the primary findings, here we calculated the within-cue 
similarity between visual transitions with left vs. right nonpredictive button presses. Additionally, in 
order to calculate within-cue similarity in the same way for visual transitions with predictive actions, 
we resampled trials with predictive actions as belonging to either the “Rand a” or “Rand b” dataset.  
(B) We calculated the contrast-to-noise ratio across voxels (CNR = √(𝑥	̅^2/𝜎^2	)) of patterns entered 
into each analysis. Compared to the primary analyses, CNR of the resampled patterns was significantly 
lower in both the hippocampus (F(1, 23) = 15.32, p < .001) and EVC (F(1, 23) = 57.75, p < .001). 
Within each analysis, however, CNR did not differ between predictive and nonpredictive events (ps > 
.36). (C) Within-cue pattern similarity was lower overall among resampled patterns than in the primary 
analyses. However, differences in pattern similarity among the conditions were similar to those 
observed in the primary analysis of within-cue pattern similarity, including marginally reliable 
interactions between timescale and predictiveness in both the hippocampus (F(1, 23) = 3.39, p = .08) 
and EVC (F(1, 23) = 2.97, p = .10). In the hippocampus, within-cue similarity did not differ among 

Fig S2. Resampled pattern similarity and contrast-to-noise ratios
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visual transitions trained immediately before the scan (t(23) = 0.15, p = .88), but was reliably lower 
for predictive events after a 3-day delay (t(23) = 2.56, p = .18). In EVC, within-cue similarity was 
marginally lower for predictive vs. nonpredictive events immediately after training (t(23) = 1.78, p = 
.09), and reliably lower after the 3-day delay (t(23) = 4.53, p < .001). Error bars indicate ±1 SEM of 
the difference between predictive and nonpredictive actions at each timescale. ***p < .001; *p < .05; 
~p < .1. Source data are provided as a Source Data file. 

 
 
I wonder to what degree this also holds for the actual sequences used in the experiment. One way 
to address this concern would be to perform a correlation analysis on the visual 
stimuli/sequences themselves to determine the amount of overlap in visual stimulation, both 
when they do and don’t share a cue.  
 

We thank the reviewer for this thoughtful suggestion. Certainly, we agree that equating the 
amount of overlap in visual stimulation across conditions is critical in order to interpret pattern 
similarity differences in early visual cortex as due to anything other than differences in visual 
overlap. For this reason, we were very careful to counterbalance the assignment of the visual 
stimuli across conditions for this study (Methods, page 26).  
 
Notably, while overlap of visual stimulation was purposely equated across conditions for this 
study, we are currently working on a separate study in which we manipulate the visual 
similarity of cues and outcomes across different contexts. Indeed, the reviewer’s suggestion has 
directly inspired new and important analyses for that study. 

 
Methods: Stimuli, p. 26, line 11: 
“We counterbalanced the assignment of images to 3-day delay and no delay conditions and to 
sequences containing either predictive or nonpredictive actions, and randomly assigned images 
to serve as cues or outcomes. The Psychophysics Toolbox42 for MATLAB (MathWorks) was 
used for stimulus presentation and response collection.” 

 
 
- A direct link between neural and behavioral effects?  
It would strengthen the results if the neural effects predicted behavior. Does the strength of 
hippocampal-neocortical interactions predict behavioral (reaction time) effects, across runs 
and/or participants?  
 

We thank the reviewer for prompting us to more thoroughly consider possible relationships 
between behavioral and neural effects. Differences across conditions in background 
connectivity were not correlated with reaction time in the scanner either across participants or 
across fMRI runs (Figure S1). Critically, however, a different behavioral measure—consistency 
of verbal predictions outside of the scanner for nonpredictive actions—is in fact related to 
background connectivity (Figure 5). This direct link between neural and behavioral effects 
especially strengthens the results because it suggests a specific mechanism underlying the 
interaction in background connectivity between timescale and predictiveness. Specifically, 
background connectivity may have been enhanced above baseline for both conditions 
immediately after training, while reduced specifically for nonpredictive actions after the 3-day 
delay. Such changes in consistency could not be examined for predictive actions, because 
participants were required to be 100% accurate in that condition. We have added a new section 
to the Results (“Verbal predictions for nonpredictive actions” on page 13) and have expanded 
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the Discussion (on page 21) in order to incorporate this important interaction between neural 
and behavioral effects. 
 
Results: Verbal predictions for nonpredictive actions, p. 13, line 14: 
“There are multiple potential explanations for the observed interaction between timescale and 
predictiveness in background connectivity. First, it could be that background connectivity 
between hippocampus and EVC was at equivalent baseline levels for both predictive and 
nonpredictive immediately after training, while enhanced specifically for predictive actions 
after the 3-day delay. Alternatively, it could be that background connectivity was already 
enhanced above baseline for both predictive and nonpredictive actions immediately after 
training, while reduced specifically for nonpredictive actions after the 3-day delay. Beyond the 
control correlations across matched runs that could be used to infer a baseline correlation for 
the context, behavior on the verbal tests before and after the fMRI scan can be used to help 
disentangle these possibilities. While participants were required to be 100% accurate in 
identifying outcomes of predictive actions, there were no correct or incorrect responses for 
nonpredictive actions. Nonetheless, participants could be consistent or inconsistent in their 
verbal predictions of unpredictable outcomes. We quantified this behavior for nonpredictive 
actions based on how consistently each participant mapped each outcome onto specific cue-
action combinations (Fig. 5A). In fact, participants were significantly less consistent in verbally 
identifying expected outcomes of nonpredictive actions learned before the 3-day delay than for 
nonpredictive actions immediately before the scan (t(23) = 3.86, p < .001), suggesting that 
action-based prediction may have diminished over time for nonpredictive events (Fig. 5B).  

Are consistent vs. inconsistent predictions sufficient to modulate hippocampal-
neocortical interactions for nonpredictive actions? In total, 14 of the 24 participants were 100% 
consistent in identifying outcomes for nonpredictive cues and actions immediately after 
training, while 4 participants were 100% consistent after the 3-day delay. We reasoned that 
participants who were consistent in verbally identifying the outcomes of nonpredictive actions 
may have likewise maintained stronger visual predictions for nonpredictive actions than 
participants who were inconsistent in their responses. If so, such differences across participants 
may also be reflected in their hippocampal-neocortical interactions. Indeed, background 
connectivity during nonpredictive actions tended to be greater among participants who made 
100% consistent test responses than among participants who made inconsistent responses (Fig. 
5C). While this difference between participants was not significant immediately after training 
(t(22) = 1.25, p = .22), it was significant after the 3-day delay (t(22) = 2.85, p = .009). 
Moreover, among participants with 100% consistent test responses, background connectivity 
was the same for predictive and nonpredictive actions at each timescale (ps > .79).” 
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Figure 5. Verbal predictions for nonpredictive actions. (A) Verbal tests administered immediately 
before and after each fMRI scan included sequences with nonpredictive actions as well as sequences 
with predictive actions. (B) Participants more consistently identified particular outcomes for 
nonpredictive cues and actions learned immediately beforehand than before the 3-day delay. However, 
a subset of participants for each timescale were 100% consistent in identifying outcomes of 
nonpredictive actions. (C) Participants who consistently mapped nonpredictive cues and actions to 
particular outcomes showed greater background connectivity for these nonpredictive events after the 
3-day delay. Error bars indicate ±1 SEM. ***p < .001; **p < .01. Source data are provided as a Source 
Data file. 

 
Discussion: p. 21, line 19: 
“Verbal predictions for nonpredictive actions before and after each fMRI scan—and their 
relationship across participants to background connectivity—support the idea that the 
hippocampus may at first generate spurious predictions for nonpredictive events. While 
participants were required to be 100% accurate in identifying outcomes of predictive actions, 
there were no objectively correct or incorrect responses for nonpredictive actions. However, 
participants were more than 90% consistent on average in matching nonpredictive cues and 
actions to specific unpredictable outcomes immediately after training and were significantly 
less consistent in making such predictions for nonpredictive actions after the 3-day delay. 
Moreover, the small subset of participants who were still 100% consistent in their verbal 
predictions for nonpredictive actions after the 3-day delay exhibited significantly stronger 
background connectivity during nonpredictive events than did participants who made 
inconsistent predictions.” 

 
 
- Is enhanced connectivity between hippocampus and visual cortex specific to the retinotopic 
location of the stimulus?  
It would be interesting to see the degree of overlap between voxels that respond to the retinotopic 
location of the stimuli (as identified by the visual localizer stimulus) and voxels that indicate 
enhanced connectivity with hippocampus (i.e. visual voxels identified in the partial volume 
analyses). One way to address this would be to visualize the degree of overlap on the inflated 
cortical surface.  
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We thank the reviewer for this suggestion. The revised manuscript includes a new section in the 
Results (“Specificity within V1/V2” on page 10) in which we address the retinotopic specificity 
of the background connectivity effects. Since we do not have retinotopic mapping data, we rely 
on measuring whether voxels showed reliable visual evoked responses to the experimental 
stimuli in the functional localizer. First, we note that the EVC ROI for all other analyses 
included all (1.5 mm isotropic) voxels reliably responsive to experimental stimuli in the 
localizer scan—ranging from 732 to 4,200 voxels or 6.2% to 30.0% of V1/V2. As displayed in 
Figure 3, we incrementally dilated the size of the EVC ROI from including only the 50 most 
responsive voxels to including all of V1/V2. The interaction between predictiveness and 
timescale was significant or marginally significant for ROIs ranging from 50 to 5,000 voxels 
but not significant for the mean background timeseries of all V1 and V2 voxels. Thus, while 
differences in hippocampal background connectivity were relatively widespread within V1/V2, 
they did not extend to all of V1/V2. In turn, the voxelwise background connectivity analyses 
(Figure 4) reveal the relative specificity of differences in background connectivity with respect 
to the full field of view of the scan sequence. New results are displayed in Figure 3.  
 
Results: Specificity within V1/V2, p. 10, line 13: 
“Are differences in background connectivity specific to only the voxels that are most 
responsive to the specific retinotopic location of the experimental stimuli, or are they 
widespread throughout V1/V2? The EVC ROI for each participant included (1.5 mm isotropic) 
voxels responsive to square- and diamond-masked stimuli in a localizer scan, ranging from 732 
to 4,200 voxels in volume (6.2% to 30.0% of V1/V2). To examine the specificity of 
hippocampal background connectivity within EVC, we varied the extent of the EVC ROI from 
including just the 50 voxels (<1% of V1/V2) most responsive to functional localizer stimuli to 
including all V1/V2 voxels (Fig. 3A). Immediately after training, hippocampal background 
connectivity was equivalent for predictive and nonpredictive actions regardless of the size of 
the EVC ROI (Fig. 3B). In contrast, after the 3-day delay, background connectivity was reliably 
stronger for predictive than nonpredictive actions across a wide range of ROI sizes (Fig. 3C). 
Likewise, the interaction between predictiveness and timescale was significant for ROIs 
ranging from 50 voxels to 1,000 voxels (ps < .05) and marginally reliable for 5,000 voxels 
(F(1, 23) = 3.81, p = .06). However, this interaction was not significant for the mean 
background timeseries across all V1 and V2 voxels (F(1, 23) = 0.48, p = .50). Thus, while 
differences in hippocampal background connectivity were robust to the size of the EVC ROI, 
they were not entirely pervasive within V1/V2.” 
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Figure 3. Specificity within V1/V2. (A) The volume of the EVC ROI was incrementally dilated from 
including just the 50 voxels most responsive to the experimental stimuli in the functional localizer 
scan to including all of V1/V2. (B) Across the full range of ROI sizes, background connectivity was 
equivalent for predictive and nonpredictive actions after no delay. (C) After the 3-day delay, 
background connectivity was stronger for predictive than nonpredictive actions within ROIs that 
ranged in volume from 50 voxels to 5,000 voxels but was not reliably different when all V1/V2 voxels 
were included in the EVC ROI. Error bars indicate ±1 SEM of the difference between predictive and 
nonpredictive actions at each timescale. **p < .01; *p < .05. Source data are provided as a Source Data 
file. 

 
Methods: Early visual cortex, p. 32, line 5: 
“Additionally, in order to examine the specificity of background connectivity within V1/V2, we 
incrementally varied the size of the EVC ROI from including all of V1/V2 (mean = 11,828 
voxels, s.d. = 2,464 voxels) to including only the 50 voxels in V1/V2 most responsive in an 
overall contrast of square- and diamond-masked stimuli in the localizer compared to baseline 
fixation.” 

 
 

Responses to Reviewer #2 
 
The manuscript by Hindy and colleagues uses human fMRI to probe interactions between 
hippocampus and early visual cortex during a cue-action-outcome learning task. Prior to fMRI 
scanning, subjects completed two training sessions (one just before scanning, one 3 days prior to 
scanning) during which they repeated saw various fractals and had to choose an action (left or 
right response) that led to an outcome. For half of the fractals, responses were highly predictive 
of outcomes (95% predictive) whereas for the other half of fractals, responses were non-
predictive of outcomes (50% predictive). Thus, the two critical factors were whether a given cue 
was a predictive vs. non-predictive cue and then whether the cue was learned 3 days prior or just 
prior (same day) to scanning. During scanning, subjects essentially completed the same task with 
alternating blocks of predictive vs. non-predictive cues, and 3-day vs. same-day cues.  
 
Behaviorally, subjects’ reaction times in selecting actions did not differ for predictive vs. non-
predictive cues learned the same day as scanning. For cues from the 3-day condition, however, 
subjects were markedly faster to make decisions in the predictive condition compared to the non-
predictive condition. To be clear, this does not mean they were ‘better’—simply that they spent 
less time deliberating about which response to make and, by extension, which outcome to 
‘reveal.’ The primary fMRI measure that is used is background connectivity, which is a measure 
of the correlation between BOLD responses in different ROIs over time, after regressing out 
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task-related activity. The idea is that this background connectivity is a measure of 
communication between regions that is not explained by task-evoked activity. Interestingly, 
background connectivity between the hippocampus and early visual cortex showed an 
interaction between delay and predictiveness. For predictive cues, connectivity tended to be 
stronger for the 3-day cues whereas for non-predictive cues, connectivity tended to be weaker for 
the 3-day cues. In other words, a longer delay seemed to increase connectivity for predictive cues 
but weaken connectivity for non-predictive cues. Another potentially interesting finding was that 
pattern similarity between shared cues with different outcomes tended to decrease in the 3 day 
condition (compared to the same day condition) but only for predictive cues. This was somewhat 
true in hippocampus, and in EVC. Interestingly, however, at least for the hippocampus, pattern 
similarity among non-shared cues showed a qualitatively different pattern with no evidence of a 
decrease in similarity for the 3 day condition.  
 
While the manuscript addresses an interesting topic (delay-dependent changes in hippocampal-
cortical interactions), I have several concerns that limit my enthusiasm. First, the results are 
discussed in terms of hippocampal predictions, but there is remarkably little in the 
results/analyses to compel or motivate a “prediction” account. I realize this interpretation is 
related to a previous, related paper, but the current study just doesn’t seem to have any clear 
evidence that predictions are even occurring. Second, for several of the analyses, I have questions 
and/or concerns about how the analyses were performed and whether the interpretations are 
appropriate.  
 

We thank the reviewer for the highly constructive feedback that has helped us significantly 
improve the manuscript. We thoroughly address all specific concerns and questions in our 
responses below. Furthermore, we now strengthen the direct evidence of prediction by relating 
background connectivity to performance on verbal outcome prediction tests outside of the 
scanner. This behavioral data is described in a new section of the Results called “Verbal 
predictions for nonpredictive actions” that was inspired by comment 5 from this reviewer. 
Please find details about these new results in our response to comment 5 below. 
 

 
Comments:  
 
1. The idea of using background connectivity to measure “predictions” that are generated by the 
hippocampus and then sent to EVC is not particularly intuitive to me. I can understand why we 
would expect predictions to be generated during the actual trials, but why would predictions also 
be going on “in the background?” Put another way, the fact that global BOLD signal in 
hippocampus is correlated with global BOLD signal in early visual cortex AFTER regressing out 
the task effects does not seem like an obvious marker of predictions being sent between these 
regions. Indeed, prior work from these authors has used much more direct measures of 
prediction (e.g., by measuring reinstatement of predicted activity patterns). No clear rationale is 
provided as to why background connectivity is the right measure for the current question.  
 

We thank the reviewer for pointing out the missing justification for measuring background 
connectivity in the first place. This very important point was also raised by Reviewer #3. Based 
on the feedback from both reviewers, we have revised the Introduction and Discussion to 
include rationale for why background connectivity is appropriate for measuring hippocampal 
involvement in predictive coding and how this involvement may change as a function of time. 
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In the Introduction (on page 3) as well as the Discussion (on page 25), we detail in two ways 
the rationale and advantage to measuring background connectivity.  
 
First, we hypothesize that the intrinsic coupling of the hippocampus and EVC, beyond 
correlations in stimulus-evoked information, may be enhanced when action-based prediction is 
hippocampally mediated. We motivate this hypothesis by findings in human neurophysiology 
that link perceptual inference to long-range oscillatory synchronization between the 
hippocampus and visual cortex (Sehatpour et al., 2008, PNAS), together with the observation 
that stimulus-evoked responses and coherent spontaneous fluctuations are linearly 
superimposed in human fMRI data (Fox et al 2006, Nature Neuroscience).  
 
Second, we now include specific rationale for why background connectivity in particular may 
be useful for probing hippocampal involvement in perception as a function of time, beyond 
measurements of stimulus-evoked activity. While correlated classification of stimulus-evoked 
responses is suggestive of hippocampal-neocortical interactions, such correlations depend upon 
the fidelity and precision of mnemonic representations in both the hippocampus and visual 
cortex. Because background correlations may more directly reflect hippocampal-neocortical 
interactions themselves, we reasoned that it may provide a more general index of hippocampal 
involvement in perception across different memory-retrieval contexts. 
 
Introduction, p. 3, line 20: 
“Beyond correlations in stimulus-evoked information, we hypothesized that the intrinsic 
coupling of the hippocampus and EVC may be enhanced during action-based prediction. This 
hypothesis is motivated by findings in human neurophysiology that link perceptual inference to 
long-range oscillatory synchronization between the hippocampus and visual cortex6,7, together 
with the observation that stimulus-evoked responses and coherent spontaneous fluctuations are 
linearly superimposed in human fMRI data8. Critically, although correlated classification of 
stimulus-evoked responses is suggestive of hippocampal-neocortical interactions, such 
correlations depend upon the precision of memories and associated predictions represented 
within each region. Therefore, along with measuring multivariate patterns in the hippocampus 
and EVC, here we used a “background connectivity” approach to quantify the temporal 
dynamics and covariance of these regions after removing stimulus-evoked responses and other 
confounding variables9,10. Because background connectivity may more directly measure 
hippocampal-neocortical interactions than stimulus-specific decoding on its own, we reasoned 
that it would provide an objective index of the contexts in which the hippocampus is and is not 
involved in action-based predictive coding.” 
 
Discussion: p. 25, line 1: 
“Hippocampal-neocortical interactions measured here through background connectivity are 
consistent with previous findings in human neurophysiology that link perceptual inference to 
the synchronization of long-range hippocampal-cortical oscillations6,7. Because stimulus-
evoked responses and coherent spontaneous fluctuations are linearly superimposed in human 
fMRI data8, intrinsic activity within the hippocampus and EVC can be separated from stimulus-
evoked responses and other variables9,10. And, whereas correlations in classification of 
stimulus-evoked responses depend upon the precision of memories and associated predictions 
represented within each region, background correlations may more directly reflect 
hippocampal-neocortical interactions themselves. In this way, background connectivity 
provides a more objective index of hippocampal involvement in action-based predictive coding. 
By using background connectivity to reveal consolidation-related effects on visual prediction, 
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findings here further develop the link between hippocampal representation2,39 and models of 
predictive coding in visual cortex40,41.” 

 
 
2. The changes in background connectivity strongly parallel the differences in reaction times 
across conditions—to a degree that raises serious concerns about what the background 
connectivity is actually reflecting. Specifically, this raises the obvious concern that the 
background connectivity measure is affected by reaction time. I’m not exactly sure how to test 
this with the current data, but it seems like a potentially serious issue. To be clear, I think the 
behavioral data are interesting, but given that the background connectivity approach involves 
regressing out task effects, and the task effects are based on trials with very substantial reaction 
time differences, it seems entirely plausible that the residuals would be influenced by the length 
of the trial that is being regressed out. Thus, it is hard to imagine that these RT differences 
would NOT influence the connectivity measures. If the RT differences do drive the differences in 
background connectivity, then it is obviously not appropriate to interpret the background 
connectivity as a measure of ‘communication’ between regions; rather it could just be a 
statistical artifact of regressing out task-related activity when the task conditions differ in 
reaction times.  
 

We thank the reviewer for raising the important consideration that RT differences in the 
scanner could directly affect background connectivity and other neural measures. We have 
addressed this concern in two ways:  
 
First, in Figure S1, we show that background connectivity and RT are not directly related either 
across participants or across runs. That is, RT variability across participants did not reliably 
predict the strength of the background connectivity effect (Predictive - Nonpredictive) in either 
the no-delay condition or after the 3-day delay. Likewise, RT variability across fMRI runs for 
each participant also did not background connectivity in either delay condition in either the no-
delay condition or after the 3-day delay. 
 
Second, in Figure S3, we reveal that background connectivity is however related across 
participants to pattern similarity in the hippocampus.  
 
Results: ROI background connectivity, p. 8, line 24: 
“Furthermore, although the interactions between timescale and predictability in background 
connectivity paralleled interactions in RT, differences among conditions in background 
connectivity were not correlated with RT either across participants or across runs for each 
participant (ps > .27; Fig. S1).” 
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Figure S1. RT vs. background connectivity. (A) Individual differences across participants in RT 
(Predictive – Nonpredictive) were unrelated to differences in background connectivity immediately 
after training (r(22) = -.21, p = .33) and after the 3-day delay (r(22) = -.02, p = .94). (B) In order to 
examine background connectivity across fMRI runs as a function of the RT, we ranked the runs for 
each participant based on the RT difference between predictive and nonpredictive actions before 
plotting background connectivity. For each delay condition, fMRI runs are ranked such that the RT 
was usually slower for predictive vs. nonpredictive actions for the leftmost columns, and usually faster 
for predictive than nonpredictive actions for the rightmost columns. In repeated measures ANOVAs 
based on the ranked fMRI runs, predictiveness did not interact with the RT-rank either immediately 
after training (F(1, 23) = 0.38, p = .55) or after the 3-day delay (F(1, 23) = 1.29, p = .27). Error bars 
indicate ±1 SEM of the difference between predictive and nonpredictive actions for each run. *p < .05; 
~p < .1. Source data are provided as a Source Data file. 

 
Results: Multivariate pattern similarity, p. 19, line 14: 
“Finally, multivariate pattern similarity in the hippocampus was correlated across participants 
with background connectivity only after the 3-day delay. Individual differences across 
participants in background connectivity were unrelated immediately after training to within-cue 
pattern similarity in either the hippocampus (r(22) = .11, p = .62) or EVC (r(22) = .10, p = .63; 
Fig. S3A). In contrast, after the 3-day delay, background connectivity was significantly 
negatively correlated with pattern similarity in the hippocampus (r(22) = -.62, p = .001) though 
not EVC (r(22) = -.21, p = .32; Fig S3B).” 

 

Fig S1. RT vs. background connectivity

0

0.3

0

0.3 ~
*

Ba
ck

gr
ou

nd
 c

on
ne

ct
iv

ity
(z

)

-0.4

0.4

-250 250

B

Ba
ck

gr
ou

nd
 c

on
ne

ct
iv

ity
(z

)

RT (Pred - Nonpred)

A
Ba

ck
gr

ou
nd

 c
on

ne
ct

iv
ity

(P
re

d 
-N

on
pr

ed
) No delay:   r = -.21

3-day delay: r = -.02

RT across participants

Runs ranked by RT (Pred - Nonpred) Runs ranked by RT (Pred - Nonpred)

3-day delay
Predictive

3-day delay
Nonpredictive

No delay
Predictive

No delay
Nonpredictive

RT across fMRI runs



 

 

15 

 
 

Figure S3. Background connectivity vs. within-cue similarity. (A) Immediately after training, 
differences in background connectivity between predictive and nonpredictive actions were not reliably 
correlated across participants with the within-cue pattern similarity of either the hippocampus (r(22) 
= .11, p = .62) or EVC (r(22) = .10, p = .63). (B) After the 3-day delay, the differences in background 
connectivity between predictive and nonpredictive actions were negatively correlated across 
participants with the within-cue pattern similarity of the hippocampus (r(22) = -.62, p = .001) but not 
EVC (r(22) = -.21, p = .32). **p < .01. Source data are provided as a Source Data file. 
 

 
3. Was Distinct cue similarity always based on cues that had different button presses (i.e., left vs. 
right). If not, then the relatively greater similarity among distinct cues could obviously be an 
artifact of the fact that the Different cue similarity includes trials with a common motor response 
whereas the Shared cue trials were necessarily restricted to trials that had opposite motor 
responses.  
 

We thank the reviewer for drawing our attention to missing details in the original description of 
the multivariate similarity analyses. In the revised Methods, on page 35, we clarify that within-
cue and across-cue similarity were calculated in exactly the same way. Thus, for predictive 
actions, across-cue pattern similarity was measured across left and right button presses in the 

Fig S3. Background connectivity vs. pattern similarity
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same way as within-cue pattern similarity. For nonpredictive actions, we averaged across left 
and right button presses for the within-cue and across-cue similarity. Importantly, “predictive 
vs. nonpredictive” actions significantly interacted with “within-cue vs. across-cue” pattern 
similarity in both the hippocampus (p = .007) and EVC (p = .003).  
 
In addition to reliable interactions between predictiveness and within-cue/across-cue similarity, 
follow-up analyses further ensured that averaging across left and right button presses for 
nonpredictive events did not bias contrasts between predictive and nonpredictive actions 
(described on page 35 of the Methods and displayed in Figure S2: “Resampled pattern 
similarity and contrast-to-noise ratios”; please see above in response to Reviewer #1). For these 
follow-up analyses we calculated pattern similarity specifically between cue-action-outcome 
sequences that differed in both the action and the outcome. After equating voxel-level 
variability for predictive and nonpredictive actions (Figure S2B), all of the original within-cue 
pattern similarity effects were also found in these follow-up analyses. 
 
Results: Multivariate pattern similarity, p. 17, line 13: 
“Critically, visual stimulation was the same for cue-outcome transitions containing either 
predictive or non-predictive actions: either of two outcomes followed a cue and double-sided 
arrow with equal probability. But since nonpredictive actions could not be decoded in either the 
hippocampus or EVC in a prior study with the same action-based prediction task3, we averaged 
across left and right button presses for visual transitions that contained nonpredictive actions. 
However, all of the pattern similarity effects replicated in follow-up analyses with resampled 
data that split between left and right nonpredictive actions (Fig. S2). Moreover, predictiveness 
significantly interacted in each ROI with comparisons of within-cue vs. across-cue pattern 
similarity of the exact same multivoxel patterns (ps < .01; Fig. 7B).” 
 
Results: Multivariate pattern similarity, p. 18, line 21: 
“However, as noted above, within-cue vs. across-cue similarity reliably interacted with 
predictiveness in both the hippocampus F(1, 23) = 8.95, p = .007) and EVC (F(1, 23) = 11.33, 
p = .003).” 
 
Methods: Multivariate pattern similarity, p. 35, line 4: 
“Within-cue similarity was measured as the correlation between cue-outcome transitions 
containing the same cue but different outcomes (e.g., “A1-left-B1 vs. A1-right-C1” for 
predictive actions and “D1-[left/right]-E1 vs. D1-[left/right]-F1” for nonpredictive actions). 
Across-cue pattern similarity was measured as the correlation between cue-outcome transitions 
containing completely distinct cue and outcome stimuli (e.g., “A1-left-B1 vs. A2-right-B2” for 
predictive actions and “D1-[left/right]-E1 vs. D2-[left/right]-F2” for nonpredictive actions). For 
cue-outcome transitions with predictive actions, across-cue pattern similarity was measured 
across left and right button presses in the same way as within-cue pattern similarity.” 
 
Methods: Multivariate pattern similarity, p. 35, line 24: 
“As a follow-up control analysis to ensure that averaging across left and right button presses for 
visual transitions with nonpredictive actions did not bias the primary findings, we additionally 
calculated the within-cue pattern similarity between visual transitions with left vs. right button 
presses for nonpredictive actions (Fig. S2). For this analysis, each nonpredictive cue-action-
outcome sequence was modeled with its own regressor and temporal derivative (e.g., D1-left-
E1, D1-left-F1, D1-right-E1, and D1-right-F1). Within-cue similarity was then measured 
specifically between cue-action-outcome sequences that shared the same cue but differed in 
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both the action and the outcome (e.g., “D1-left-E1 vs. D1-right-F1” and “D1-left-F1 vs. D1-
right-E1”). Notably, splitting up trials in this way for nonpredictive actions cut in half the 
number of trials for estimating the neural pattern for each cue-outcome visual transition (from 
about 5 trials per run in the primary analyses to about 2.5 trials per run in the resampled 
analysis). In order to calculate pattern similarity in the same way for visual transitions 
containing either predictive or nonpredictive actions (and thereby equate CNR across 
conditions), we randomly resampled trials with predictive actions as belonging to either the 
“Rand a” or “Rand b” dataset. Then, we calculated within-cue pattern similarity separately for 
each randomly sampled dataset (e.g., “A1a-left-B1a vs. A1a-right-C1a” and “A1b-left-B1b vs. 
A1b-right-C1b”) before averaging together correlation coefficients in the same way as for 
visual transitions containing nonpredictive actions.” 
 

 
4. The pattern similarity results are interesting, but not overwhelmingly compelling. For one, the 
hippocampal interaction for shared cue data is only marginally significant. Additionally, for 
EVC, although there is a significant interaction between delay and predictiveness for the within-
cue data and not for the across-cue data, it seems extremely unlikely that the 3-way interaction 
between delay, predictiviness and within-cue/across-cue is significant. For hippocampus, this 
three-way interaction might well be significant, though I don’t think it is reported. But EVC 
certainly seems to show a very similar pattern for the within-cue and the across-cue analyses.  
 

We thank the reviewer for encouraging us to think more critically about statistical interactions 
in the pattern similarity results. In the revised Results, on pages 18 and 19, we explicitly 
acknowledge that the hippocampal interaction was marginally significant (p = .051), and we are 
more thorough in our reporting of relevant statistical interactions. Specifically, we now 
additionally report statistics based on 3-factor ANOVAs of predictiveness, timescale, and 
within-cue vs. across-cue similarity. Although 3-way interactions were not reliable in either 
ROI (ps > .12), these ANOVAs revealed that predictiveness reliably interacted with 
comparisons of within-cue vs. across-cue similarity in both the hippocampus (p = .007) and 
EVC (p = .003). Based on the overall body of evidence across conditions and ROIs, we think 
the pattern similarity results are at least helpful for interpreting the primary findings related to 
hippocampal-neocortical background connectivity.  
 
Results: Multivariate pattern similarity, p. 18, line 2: 
“Importantly, differentiation effects were modulated by delay condition, including a marginally 
reliable interaction between predictiveness and timescale in the hippocampus (F(1, 23) = 4.26, 
p = .051) and a significant interaction in EVC (F(1, 23) = 5.36, p = .03).” 
 
Results: Multivariate pattern similarity, p. 18, line 21: 
“However, as noted above, within-cue vs. across-cue similarity reliably interacted with 
predictiveness in both the hippocampus F(1, 23) = 8.95, p = .007) and EVC (F(1, 23) = 11.33, 
p = .003). Unlike the differentiation effect between overlapping cue-outcome transitions, 
across-cue similarity did not interact with delay condition in either the hippocampus (F(1, 23) = 
1.74, p = .20) or EVC (F(1, 23) = 0.96, p = .34), though the 3-way interaction of within-cue vs. 
across-cue similarity, predictiveness, and timescale was not reliable in either ROI (ps > .12).” 

 
 
5. I was not fully clear on how the pattern similarity analyses were performed. Was there a 
separate parameter estimate for each trial in each run? Were correlations ever obtained between 
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data from the same run, or was this restricted to across-run correlations? If same-run analyses 
were performed, are there any differences between the shared-cue and across-cue analyses in 
terms of lag effects? For example, depending on whether or not the trial order included 
consecutive repeats of the same condition, there might be a bias such that across-cue analyses 
were systematically based on trials that were further apart (in terms of mean trial lag), which 
could artificially make the across-cue similarity values increase. In any case, more detail is 
required about these analyses.  
 

We thank the reviewer for prompting us to clarify how the multivariate pattern analyses were 
performed and acknowledge that the description in the original manuscript was not adequately 
detailed. In short, each cue-outcome transition (e.g., “A1-left-B1” or “D1-[left/right]-E1”) was 
modeled within each run as a single regressor (along with its temporal derivative) so that a 
single parameter estimate was calculated at each voxel for each visual transition. This resulted 
in 8 patterns per run: 4 patterns for the cue-outcome transitions associated with predictive 
actions and 4 patterns for the cue-outcome transitions associated with nonpredictive actions. 
Within-cue and across-cue correlations reflecting pattern similarity were calculated after 
averaging these patterns across runs for each of the 8 cue-outcome transitions. Importantly, the 
trial order of the cue stimuli was randomized within and across blocks of both predictive and 
nonpredictive actions within each run. This randomization ensured that there were no 
systematic differences in trial lag for the within-cue (e.g., “A1-left-B1” vs. “A1-right-B1”) and 
across-cue (e.g., “A1-left-B1” vs. “A2-right-B2”) comparisons. We have expanded the 
Methods (on pages 34 and 35) in order to explain in detail exactly how the multivariate patterns 
of activity were estimated and compared, and therein specifically address each of the 
reviewer’s questions along with other details about the analysis. 
 
Methods: Scan task, p. 28, line 15: 
“Pairs of runs for each participant contained the same stimuli and block order, while the trial 
order of the cue stimuli was randomized within and across blocks of predictive or nonpredictive 
actions. For nonpredictive actions, the trial order of the associated outcomes was also 
randomized within and across blocks.” 
 
Methods: Multivariate pattern similarity, p. 34, line 13: 
“Multivoxel patterns in the hippocampus and EVC for each cue-outcome visual transition were 
based on parameter estimates of BOLD response amplitude in an event-related GLM for each 
run. Each cue-outcome transition was modeled with its own regressor and temporal derivative, 
constructed by convolving a boxcar function that matched the average trial duration for the 
condition (between 2188 and 2643 ms, depending on the participant’s mean response time) 
with a double-gamma hemodynamic response function. This resulted in 8 regressors of interest: 
4 regressors for the cue-outcome transitions associated with predictive actions (e.g., A1-left-B1 
and A1-right-C1), and 4 regressors for the cue-outcome transitions associated with 
nonpredictive actions (e.g., D1-[left/right]-E1 and D1-[left/right]-F1). Each GLM was fit using 
FILM with local autocorrelation correction and six motion parameters as nuisance covariates, 
as well as an additional regressor and its temporal derivative to model the single predictive 
event within each run that contained a counter-predicted outcome, along with trials for which 
the participant failed to press a button before the response deadline. Parameter estimates for 
each visual transition were then averaged across runs before calculating pattern similarity.  

Pattern similarity was measured as z-transformed Pearson correlations across voxels 
within each ROI. Within-cue similarity was measured as the correlation between cue-outcome 
transitions containing the same cue but different outcomes (e.g., “A1-left-B1 vs. A1-right-C1” 
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for predictive actions and “D1-[left/right]-E1 vs. D1-[left/right]-F1” for nonpredictive actions). 
Across-cue pattern similarity was measured as the correlation between cue-outcome transitions 
containing completely distinct cue and outcome stimuli (e.g., “A1-left-B1 vs. A2-right-B2” for 
predictive actions and “D1-[left/right]-E1 vs. D2-[left/right]-F2” for nonpredictive actions). For 
cue-outcome transitions with predictive actions, across-cue pattern similarity was measured 
across left and right button presses in the same way as within-cue pattern similarity.” 
 

 
6. There is an interesting idea raised in the Discussion that in the no delay condition, the 
hippocampus might still be generating predictions, but they are as likely to be correct as 
incorrect which is why there is no difference for the predictive vs. non-predictive conditions. Yet, 
this argument seems to be contradicted by the behavioral data in that subjects were, in fact, 
required to reach 100% accuracy in a test of prediction memory before entering the scanner. 
Obviously, there is a change in behavior over time (reflected in RTs) and I do think that change 
is interesting, but given that accuracy was forced to be at ceiling, that seems to argue against the 
idea that subjects are generating inaccurate predictions in the no delay condition.  
 

We are grateful to the reviewer for raising this concern and orienting our attention to the verbal 
tests outside the scanner as providing a key behavioral measure of prediction for nonpredictive 
actions (not just predive actions). Indeed, participants were required to be 100% accurate in 
identifying outcomes of predictive actions. However, accuracy could not be objectively 
measured for nonpredictive actions because there was no correct or incorrect response for each 
trial.  
 
However, even though there were no objectively correct or incorrect responses for 
nonpredictive actions in these tests, participants could nonetheless be consistent or inconsistent 
in their verbal predictions for each cue and action. We quantified how consistently each 
participant mapped each outcome onto specific cue-action combinations. Participants were 
significantly less consistent in verbally identifying expected outcomes of nonpredictive actions 
learned before the 3-day delay than for nonpredictive actions immediately before the scan 
(Figure 5: “Verbal predictions for nonpredictive actions”; please see above in response to 
Reviewer #1). Importantly, this result is consistent with the idea that action-based prediction 
may have diminished over time for nonpredictive events. 
 
Furthermore, behavioral differences in verbal prediction were related across participants to 
differences in background connectivity for nonpredictive actions. Those participants who were 
100% consistent in their verbal predictions for nonpredictive actions also displayed 
significantly stronger background connectivity during these events in the scanner than did 
participants who made inconsistent predictions, especially after the 3-day delay. In the revised 
manuscript, we have added a new section to the Results (“Verbal predictions for nonpredictive 
actions” on page 13) and have expanded the Discussion (on page 21) in order to incorporate 
this important interaction between neural and behavioral effects. 
 
Results: Verbal predictions for nonpredictive actions, p. 13, line 14: 
“There are multiple potential explanations for the observed interaction between timescale and 
predictiveness in background connectivity. First, it could be that background connectivity 
between hippocampus and EVC was at equivalent baseline levels for both predictive and 
nonpredictive immediately after training, while enhanced specifically for predictive actions 
after the 3-day delay. Alternatively, it could be that background connectivity was already 
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enhanced above baseline for both predictive and nonpredictive actions immediately after 
training, while reduced specifically for nonpredictive actions after the 3-day delay. Beyond the 
control correlations across matched runs that could be used to infer a baseline correlation for 
the context, behavior on the verbal tests before and after the fMRI scan can be used to help 
disentangle these possibilities. While participants were required to be 100% accurate in 
identifying outcomes of predictive actions, there were no correct or incorrect responses for 
nonpredictive actions. Nonetheless, participants could be consistent or inconsistent in their 
verbal predictions of unpredictable outcomes. We quantified this behavior for nonpredictive 
actions based on how consistently each participant mapped each outcome onto specific cue-
action combinations (Fig. 5A). In fact, participants were significantly less consistent in verbally 
identifying expected outcomes of nonpredictive actions learned before the 3-day delay than for 
nonpredictive actions immediately before the scan (t(23) = 3.86, p < .001), suggesting that 
action-based prediction may have diminished over time for nonpredictive events (Fig. 5B).  

Are consistent vs. inconsistent predictions sufficient to modulate hippocampal-
neocortical interactions for nonpredictive actions? In total, 14 of the 24 participants were 100% 
consistent in identifying outcomes for nonpredictive cues and actions immediately after 
training, while 4 participants were 100% consistent after the 3-day delay. We reasoned that 
participants who were consistent in verbally identifying the outcomes of nonpredictive actions 
may have likewise maintained stronger visual predictions for nonpredictive actions than 
participants who were inconsistent in their responses. If so, such differences across participants 
may also be reflected in their hippocampal-neocortical interactions. Indeed, background 
connectivity during nonpredictive actions tended to be greater among participants who made 
100% consistent test responses than among participants who made inconsistent responses (Fig. 
5C). While this difference between participants was not significant immediately after training 
(t(22) = 1.25, p = .22), it was significant after the 3-day delay (t(22) = 2.85, p = .009). 
Moreover, among participants with 100% consistent test responses, background connectivity 
was the same for predictive and nonpredictive actions at each timescale (ps > .79).” 

 
Discussion: p. 21, line 19: 
“Verbal predictions for nonpredictive actions before and after each fMRI scan—and their 
relationship across participants to background connectivity—support the idea that the 
hippocampus may at first generate spurious predictions for nonpredictive events. While 
participants were required to be 100% accurate in identifying outcomes of predictive actions, 
there were no objectively correct or incorrect responses for nonpredictive actions. However, 
participants were more than 90% consistent on average in matching nonpredictive cues and 
actions to specific unpredictable outcomes immediately after training and were significantly 
less consistent in making such predictions for nonpredictive actions after the 3-day delay. 
Moreover, the small subset of participants who were still 100% consistent in their verbal 
predictions for nonpredictive actions after the 3-day delay exhibited significantly stronger 
background connectivity during nonpredictive events than did participants who made 
inconsistent predictions.” 
 

 
 

Responses to Reviewer #3 
 
In this manuscript, Hindy et al. present an intriguing follow-up to their prior work on a 
hippocampal role in predictive coding in visual cortex. They find that predictive cue-action-
outcome sequences learned 3 days before fMRI scanning are associated with faster responses, 
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greater state-based connectivity between hippocampus (HPC) and early visual cortex (EVC), and 
more dissimilar neural patterns in HPC and EVC versus sequences learned on the same days as 
scanning. Both the predictiveness of the sequences and the 3-day delay in learning had 
significant impacts on all measures. The authors argue that these findings point to a specific role 
for the HPC in binding cue-action-outcomes that exhibit regularity and that interactions between 
HPC and EVC for these predictive events strengthen over time.  
 
Overall, this work is timely, well-conducted, and novel. The findings coalesce into a consistent 
package with fairly straightforward theoretical implications. This work will undoubtedly impact 
the field and motivate new research into the HPC as one of the brain’s engines for prediction. 
There are, however, several issues detailed below that should be fully considered.  
 

We are delighted by the reviewer’s enthusiasm and positive assessment of the manuscript and 
are very appreciative of their thoughtful comments and advice. Indeed, we have followed the 
reviewer’s advice on how to reframe the paper to focus on its novel contribution, how to more 
clearly motivate the background connectivity approach, how to clarify sections of the analysis, 
and how to be more explicit about the broader theoretical implications of the findings. 

 
Major concerns  
 
1) After reading the introduction, I already had the overall gist of my review in mind: too 
incremental. However, after reading the manuscript in its entirety, it is clearly much more than a 
simple follow-up to the authors’ prior’s work and represents a novel contribution in its own 
right. As such, I think the introduction does not appropriately set the stage for the research. 
Although the authors have attempted to answer big important questions, the introduction has a 
much too narrow focus on their Nature Neuroscience paper. As is, the intro is not necessarily 
wrong, but it fails to motivate the larger question of hippocampal-cortical interactions for 
predictive coding to the more general audience of Nature Communications readers.  
 

We thank the reviewer for their valuable suggestion to reframe the Introduction for the broad 
audience of Nature Communications and are pleased that they recognized the novelty and 
significance of the study despite the overly conservative framing of the original submission. 
Taking the reviewer’s advice to heart, we have substantially revised the Introduction to more 
directly focus on the novel contribution and larger significance of the findings. We still include 
an abbreviated description of the previous findings based on the multivariate decoding of 
stimulus representations. However, we use these findings to motivate our more general focus 
intrinsic coupling and background connectivity as key to deciphering how hippocampal-
neocortical interactions may provide a neural mechanism for predictive coding (as opposed to 
using these findings to motivate a specific follow-up to the previous study). From there, we 
more appropriately focus on the timescale manipulation as providing a general test between 
alternative models of the hippocampal function (as opposed to testing between alterative 
interpretations of the prior findings). Again, we thank the reviewer for their valuable advice and 
appreciate the opportunity to revise our manuscript accordingly. 

 
 
2) The authors motivate the study with two competing accounts of HPC’s involvement in 
predictive coding: 1) HPC is endowed with the computations for prediction, thus should always 
be engaged in learning regularities and 2) HPC’s role in prediction is restricted to early learning 
before consolidation at which point the baton is passed to cortical processes. Reasonably, they 
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then run a task with manipulations of time thereby allowing for a test of two accounts. However, 
their findings do not seem to align well with either of the accounts. HPC processes and 
representations are not involved immediately after learning (thus ruling out account 1), but are 
involved after a 3 day delay (providing support against account 2). Although these findings are 
consistent with the authors’ non-specific predictions that HPC-EVC interactions would depend 
on lag and predictiveness, they do not support either of the competing accounts. What updates in 
theory are needed to support the current findings? The authors provide hints of this in the 
discussion, but an explicit appreciation of this divergence from more conventional views of HPC 
function should be expanded.  
 

We thank the reviewer for these important points about the theoretical framing of the paper. We 
recognize that, although the Introduction had framed the experiment as a test between two 
competing accounts of hippocampal involvement in predictive coding, these two alternative 
accounts were never explicitly revisited. Indeed, neither of the alternative accounts would 
obviously predict identical hippocampal-neocortical interaction for predictive and 
nonpredictive actions immediately after training. We now directly address divergence of the 
findings from more conventional account of hippocampal functions, including a discussion of 
additional analyses and results that suggest specific updates in theory in order to support the 
current findings.   
 
In a new section of the Results beginning on page 13 and including the new Figure 5 (“Verbal 
predictions for nonpredictive actions”; please see above in response to Reviewer #1), we reveal 
how a relationship between hippocampal-neocortical interactions and verbal predictions for 
nonpredictive actions may help reconcile findings with models that suggest a sustained role for 
the hippocampus in memory retrieval. Specifically, new findings support the idea that the 
hippocampus may at first generate predictions even for nonpredictive events.  
 
In the revised Discussion, on page 23, we explicitly address how neural and behavioral findings 
diverge from conventional views of hippocampal function, and we outline updates to these 
theories in order to reconcile them with the current data. Ideas that were hinted at in the original 
submission are now more appropriately framed and contextualized.  

 
Discussion: p. 23, line 7: 
“At the same time that changes across time in hippocampal-neocortical interaction are 
inconsistent with a time-invariant role for the hippocampus in predictive coding, models of 
memory retrieval that posit a reduced role for the hippocampus over time11–13 would not 
obviously predict the findings: identical hippocampal-neocortical interaction during predictive 
and nonpredictive actions immediately after training followed by greater interaction 
specifically during predictive actions after a 3-day delay. In order to accommodate these 
findings, models that include the hippocampus need to include a role for predictive action in 
offline processing. Specifically, predictive action may provide a mechanism for prioritizing 
which representations are either strengthened through synaptic potentiation or weakened 
through synaptic depression during periods of offline rest29,30. Activity-dependent synaptic 
potentiation and depression may in turn be mediated by offline replay within the 
hippocampus31,32 and between the hippocampus and neocortex33,34. By transforming noisy 
recent associations into sparser remote associations, this offline processing may increase the 
efficiency and utility of hippocampal associations over time35,36. Ultimately, sparser 
hippocampal representations may increase the signal-to-noise of the hippocampal-neocortical 
interactions during action-based prediction.” 
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Results: Verbal predictions for nonpredictive actions, p. 13, line 14: 
“There are multiple potential explanations for the observed interaction between timescale and 
predictiveness in background connectivity. First, it could be that background connectivity 
between hippocampus and EVC was at equivalent baseline levels for both predictive and 
nonpredictive immediately after training, while enhanced specifically for predictive actions 
after the 3-day delay. Alternatively, it could be that background connectivity was already 
enhanced above baseline for both predictive and nonpredictive actions immediately after 
training, while reduced specifically for nonpredictive actions after the 3-day delay. Beyond the 
control correlations across matched runs that could be used to infer a baseline correlation for 
the context, behavior on the verbal tests before and after the fMRI scan can be used to help 
disentangle these possibilities. While participants were required to be 100% accurate in 
identifying outcomes of predictive actions, there were no correct or incorrect responses for 
nonpredictive actions. Nonetheless, participants could be consistent or inconsistent in their 
verbal predictions of unpredictable outcomes. We quantified this behavior for nonpredictive 
actions based on how consistently each participant mapped each outcome onto specific cue-
action combinations (Fig. 5A). In fact, participants were significantly less consistent in verbally 
identifying expected outcomes of nonpredictive actions learned before the 3-day delay than for 
nonpredictive actions immediately before the scan (t(23) = 3.86, p < .001), suggesting that 
action-based prediction may have diminished over time for nonpredictive events (Fig. 5B).  

Are consistent vs. inconsistent predictions sufficient to modulate hippocampal-
neocortical interactions for nonpredictive actions? In total, 14 of the 24 participants were 100% 
consistent in identifying outcomes for nonpredictive cues and actions immediately after 
training, while 4 participants were 100% consistent after the 3-day delay. We reasoned that 
participants who were consistent in verbally identifying the outcomes of nonpredictive actions 
may have likewise maintained stronger visual predictions for nonpredictive actions than 
participants who were inconsistent in their responses. If so, such differences across participants 
may also be reflected in their hippocampal-neocortical interactions. Indeed, background 
connectivity during nonpredictive actions tended to be greater among participants who made 
100% consistent test responses than among participants who made inconsistent responses (Fig. 
5C). While this difference between participants was not significant immediately after training 
(t(22) = 1.25, p = .22), it was significant after the 3-day delay (t(22) = 2.85, p = .009). 
Moreover, among participants with 100% consistent test responses, background connectivity 
was the same for predictive and nonpredictive actions at each timescale (ps > .79).” 

 
 
3) Why background connectivity? Don’t worry, I’m a fan of background connectivity and think 
the approach is underappreciated in the field. But, very little is provided to justify why 
background connectivity is a good measure for this study. More importantly, what do the 
connectivity findings imply at a mechanistic level, especially in light of their previous findings? I 
think the preferred argument is that this coupled activity arises due to HPC-guided cortical 
reinstatement. A more thorough motivation for using background connectivity and speculation 
for why functional coupling is mechanistically important for predictive coding would strengthen 
the manuscript and potentially encourage wider adoption of such connectivity methods.  
 

We thank the reviewer for insight into how to strengthen the justification for focusing 
specifically on background connectivity (a point that was also raised by Reviewer #2). In 
accord with the reviewer’s suggestions, we have revised the Introduction and Discussion to 
include focus on the mechanistic implications of background connectivity. Specifically, we 
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relate background connectivity to evidence from human neurophysiology that long-range 
oscillatory synchronization between the hippocampus and visual cortex is related to perceptual 
inference (Sehatpour et al., 2008, PNAS). Furthermore, we now include specific rationale for 
why background connectivity in particular is an appropriate measure for our specific questions 
about how hippocampal involvement in predictive coding may change as a function of time.  
 
Introduction, p. 3, line 20: 
“Beyond correlations in stimulus-evoked information, we hypothesized that the intrinsic 
coupling of the hippocampus and EVC may be enhanced during action-based prediction. This 
hypothesis is motivated by findings in human neurophysiology that link perceptual inference to 
long-range oscillatory synchronization between the hippocampus and visual cortex6,7, together 
with the observation that stimulus-evoked responses and coherent spontaneous fluctuations are 
linearly superimposed in human fMRI data8. Critically, although correlated classification of 
stimulus-evoked responses is suggestive of hippocampal-neocortical interactions, such 
correlations depend upon the precision of memories and associated predictions represented 
within each region. Therefore, along with measuring multivariate patterns in the hippocampus 
and EVC, here we used a “background connectivity” approach to quantify the temporal 
dynamics and covariance of these regions after removing stimulus-evoked responses and other 
confounding variables9,10. Because background connectivity may more directly measure 
hippocampal-neocortical interactions than stimulus-specific decoding on its own, we reasoned 
that it would provide an objective index of the contexts in which the hippocampus is and is not 
involved in action-based predictive coding.” 
 
Discussion: p. 25, line 1: 
“Hippocampal-neocortical interactions measured here through background connectivity are 
consistent with previous findings in human neurophysiology that link perceptual inference to 
the synchronization of long-range hippocampal-cortical oscillations6,7. Because stimulus-
evoked responses and coherent spontaneous fluctuations are linearly superimposed in human 
fMRI data8, intrinsic activity within the hippocampus and EVC can be separated from stimulus-
evoked responses and other variables9,10. And, whereas correlations in classification of 
stimulus-evoked responses depend upon the precision of memories and associated predictions 
represented within each region, background correlations may more directly reflect 
hippocampal-neocortical interactions themselves. In this way, background connectivity 
provides a more objective index of hippocampal involvement in action-based predictive coding. 
By using background connectivity to reveal consolidation-related effects on visual prediction, 
findings here further develop the link between hippocampal representation2,39 and models of 
predictive coding in visual cortex40,41.” 

 
 
4) At first glance, the difference in choice RT for predictive vs. nonpredictive sequences at a 
delay provides converging evidence for the authors’ claims. However, I hesitate on 
understanding what is driving this effect. Although there appears to be a bit of speeding for the 
delay predictive sequences, relative to no delay, the majority of this effect seems to be in slower 
responses to the delay nonpredictive sequences. Given that there are no “wrong” responses, what 
is slowing RTs to the nonpredictive sequences? In the discussion, the authors do describe an 
account of hippocampal-based strengthening of sparse representations for predictive 
associations, which is line with relatively faster responses to predictive sequences. But, what 
makes delayed nonpredictive slower relative to no delay? It may be that loosely-bound, weak 
representations of each nonpredictive cue-action-outcome sequence are all retrieved and 
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compete for action selection. Also, I’m interested to see if individual differences in this 
behavioural effect are related to neural measures, either differences in connectivity or 
representational similarity (e.g., are faster RTs correlated with greater pattern dissimilarity for 
predictive sequences?). In any case, I do think the RT effect is interesting and may shed light on 
the mechanisms at play, but would appreciate the authors giving this effect more consideration 
in the discussion.  
 

We thank the reviewer for these mindful questions, and for the suggestion to more directly 
relate behavioral and neural data. We have expanded the Discussion (on page 22) to include 
more consideration of the RT differences. Additionally, we have addressed the reviewer’s 
specific questions through new analyses in the Results. 
 
Specifically, on pages 8 and 19 of the Results and in Figure S1 (“RT vs. background 
connectivity”; please see above in response to Reviewer #2), we show that neither background 
connectivity nor pattern similarity were correlated RT. At the same time, however, background 
connectivity and hippocampal pattern similarity were significantly correlated with each other 
across participants (Figure S3: “Background connectivity vs. pattern similarity”; please see 
above in response to Reviewer #2). 
 
Additionally, on page 6 of the Results, we separately compared predictive and nonpredictive 
events across delay conditions. This revealed that while speeded RT over time for predictive 
actions was marginally significant, slower RT over time for nonpredictive actions was not 
significant.  
 
Most notably, along with RT, we now report consistency of verbal predictions as an additional 
behavioral measure that in fact is related background connectivity (Figure 5: “Verbal 
predictions for nonpredictive actions”; please see above in response to Reviewer #1).  
 
Discussion: p. 22, line 7: 
“Three days after training, participants were also significantly quicker in making predictive 
actions than in making nonpredictive actions. Although RT in the scanner did not correlate with 
background connectivity across participants, faster overall responses to predictive vs. 
nonpredictive cues after the delay are consistent with differences across conditions in 
background connectivity. Accordingly, changes in across time in hippocampal-neocortical 
interaction may underlie these changes in the perceptual fluency of cue-action-outcome 
sequences.  At the same time that strengthening of sparse hippocampal representations may 
lead to faster responses to predictive cues, weak or noisy representations for nonpredictive 
associations may lead to slower responses to nonpredictive cues. While time-dependent 
changes in perceptual fluency of tasks such as texture discrimination22 and visual contour 
integration23 may be independent of the hippocampus, hippocampal function is necessary for 
learning arbitrary associations among stimuli24. Notably, however, the statistical learning 
required for action-based prediction may involve different pathways within the hippocampus 
than other forms of hippocampally dependent learning5,24.” 
 
Results: ROI background connectivity, p. 8, line 24: 
“Furthermore, although the interactions between timescale and predictability in background 
connectivity paralleled interactions in RT, differences among conditions in background 
connectivity were not correlated with RT either across participants or across runs for each 
participant (ps > .27; Fig. S1).” 
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Results: Multivariate pattern similarity, p. 19, line 14: 
“Finally, multivariate pattern similarity in the hippocampus was correlated across participants 
with background connectivity only after the 3-day delay. Individual differences across 
participants in background connectivity were unrelated immediately after training to within-cue 
pattern similarity in either the hippocampus (r(22) = .11, p = .62) or EVC (r(22) = .10, p = .63; 
Fig. S3A). In contrast, after the 3-day delay, background connectivity was significantly 
negatively correlated with pattern similarity in the hippocampus (r(22) = -.62, p = .001) though 
not EVC (r(22) = -.21, p = .32; Fig S3B). Like background connectivity, pattern similarity in 
each ROI was not correlated with individual differences in RT at either timescale (ps > .08).” 
 
Results: Choice RT for predictive and nonpredictive actions, p. 6, line 10: 
“When predictive and nonpredictive events were separately compared across delay conditions, 
speeded RT over time for predictive actions was marginally significant (t(23) = 1.85, p = .08), 
while slower RT over time for nonpredictive actions was not significant (t(23) = 1.57, p = .13).” 
 

 
5) Pattern dissimilarity in EVC immediate suggests separation is occurring without the 
hippocampus. However, whereas the HPC results for the shared cue sequences are clearly 
different than the distinct cue sequences, EVC shows the same pattern for both. Two questions 
about the GLMs for estimating neural patterns in this analysis: 1) Were the action arrows 
included as part of the pattern-defining regressors (i.e., was the entire trial sequence modelled or 
jus the cue? 2) Were all combinations of action pairs (left-right, left-left, right-right) included in 
the nonpredictive similarity comparisons? If the answer to both of these is yes, it may be that 
nonpredictive similarity is biased higher due to the matched visual stimulus from the action 
arrow (i.e., left-left and right-right trial pairs). The predictive similarity comparisons were 
always different actions, thus had less objective visual similarity across the sequence.  
 

We thank the reviewer for prompting us to clarify ambiguities about how the pattern similarity 
analyses were performed. We address each of the reviewer’s specific questions below. First, we 
now clarify in the Methods (on page 34) the entire trial sequence (cue, action arrow, outcome) 
was modeled in pattern-defining regressors for the similarity analyses. Critically, however, the 
action arrow never impacted the visual similarity of the sequences since it was always the same 
double-sided arrow and participants chose which button to press for each trial. Second, we now 
explain in the Methods (on page 35) how exactly we calculated and compared multivariate 
patterns. For all pattern similarity analyses, comparisons between predictive events and 
comparisons between nonpredictive events were identical with respect to visual stimuli. Third, 
additional control analyses are displayed in Figure S2 (“Resampled pattern similarity and 
contrast-to-noise ratios”) in order to address a related consideration regarding motor responses 
for predictive vs. nonpredictive actions. (Please see our response to comment 1 of Reviewer #1 
for more detail on this last point.)  
 
Methods: Multivariate pattern similarity, p. 34, line 13: 
“Multivoxel patterns in the hippocampus and EVC for each cue-outcome visual transition were 
based on parameter estimates of BOLD response amplitude in an event-related GLM for each 
run. Each cue-outcome transition was modeled with its own regressor and temporal derivative, 
constructed by convolving a boxcar function that matched the average trial duration for the 
condition (between 2188 and 2643 ms, depending on the participant’s mean response time) 
with a double-gamma hemodynamic response function. This resulted in 8 regressors of interest: 
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4 regressors for the cue-outcome transitions associated with predictive actions (e.g., A1-left-B1 
and A1-right-C1), and 4 regressors for the cue-outcome transitions associated with 
nonpredictive actions (e.g., D1-[left/right]-E1 and D1-[left/right]-F1). Each GLM was fit using 
FILM with local autocorrelation correction and six motion parameters as nuisance covariates, 
as well as an additional regressor and its temporal derivative to model the single predictive 
event within each run that contained a counter-predicted outcome, along with trials for which 
the participant failed to press a button before the response deadline. Parameter estimates for 
each visual transition were then averaged across runs before calculating pattern similarity.” 
 
Methods: Multivariate pattern similarity, p. 35, line 12: 
“Cue-outcome transitions were visually identical for predictive and nonpredictive actions – 
either of two outcomes stimuli followed a cue stimulus and a double-sided arrow with equal 
probability as one another. However, while button presses differed across alternative visual 
transitions for each predictive cue, this was not the case for nonpredictive cues (in which either 
button press could produce either outcome). Since nonpredictive actions could not be decoded 
in either the hippocampus or EVC during action-based prediction in a previous study with the 
same task paradigm3, we averaged across left and right button presses in order to estimate the 
multivoxel patterns for visual transitions with nonpredictive actions. Importantly, averaging in 
this way balanced the number of observations used to estimate neural patterns for each 
condition, thereby equating the contrast-to-noise ratio (CNR)55 of patterns for each condition 
(Fig. S2B). Equating CNR across conditions is important for comparing pattern similarity 
across conditions because voxel-level variability strongly influences multivoxel correlations 
among patterns56,57.” 

 
 
Assuming this confound isn’t present or impacting the presented results, an extended discussion 
of these EVC pattern dissimilarity findings seems warranted. Is a different non-hippocampal 
top-down signal separating EVC patterns early in learning? Or is this an intrinsic computation 
of EVC?  
 

We thank the reviewer for pointing out this important finding. Indeed, we have substantially 
revised the manuscript in order to address hypotheses related to this divergence between 
background connectivity and multivariate pattern analysis. Notably, the finding that 
hippocampal-neocortical interactions were the same for predictive and nonpredictive actions 
immediately after training also appears to conflict with our previous finding based on MVPA 
(Hindy et al 2016, Nature Neuroscience).  
 
In the revised Discussion, on page 21, we build upon the idea that background connectivity and 
pattern analysis may be differentially sensitive to prediction in our task, and that background 
connectivity between the hippocampus and EVC may have been enhanced for both predictive 
and nonpredictive actions immediately after training. Importantly, this suggestion is supported 
by behavioral evidence of prediction for nonpredictive actions immediately after training 
(Figure 5: “Verbal predictions for nonpredictive actions”; please see above in response to 
Reviewer #1), along with preliminary evidence that these spurious predictions are in fact 
related to background connectivity between the hippocampus and EVC.  
 
Discussion: p. 21, line 1: 
“Immediately after training, hippocampal-neocortical interactions were the same for predictive 
and nonpredictive actions. At first glance, the absence of a difference in background 
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connectivity between these conditions may appear to be odds with the finding that multivariate 
pattern similarity in EVC was significantly reduced for predictive vs. nonpredictive actions 
even immediately after training, and with previous MVPA findings in which classifier accuracy 
was at chance in both the hippocampus and EVC for nonpredictive actions while above chance 
for predictive actions3. Critically, however, background connectivity and MVPA are 
differentially sensitive to prediction in this task. Specifically, although participants cannot 
accurately predict outcomes of nonpredictive actions, they may nonetheless inaccurately 
predict outcomes. For example, the less predictable transitions for these cues may encourage 
hypothesis testing or other attempts to continue learning, or they may be predicting both 
outcomes associated with the cue (which each still co-occur 50% of the time, far higher than 
any other outcome). Less differentiated patterns in visual cortex may in fact reflect less 
differentiated neural predictions, as opposed to a lack of prediction. Likewise, in any of these 
cases, a multivariate classifier will seek evidence of the correct outcome, and so performance 
will be at chance on average. However, to the extent that background connectivity between the 
hippocampus and visual cortex reflects the process of prediction, whether accurate or 
inaccurate, it may be enhanced for both predictive and nonpredictive actions.  

Verbal predictions for nonpredictive actions before and after each fMRI scan—and their 
relationship across participants to background connectivity—support the idea that the 
hippocampus may at first generate spurious predictions for nonpredictive events. While 
participants were required to be 100% accurate in identifying outcomes of predictive actions, 
there were no objectively correct or incorrect responses for nonpredictive actions. However, 
participants were more than 90% consistent on average in matching nonpredictive cues and 
actions to specific unpredictable outcomes immediately after training and were significantly 
less consistent in making such predictions for nonpredictive actions after the 3-day delay. 
Moreover, the small subset of participants who were still 100% consistent in their verbal 
predictions for nonpredictive actions after the 3-day delay exhibited significantly stronger 
background connectivity during nonpredictive events than did participants who made 
inconsistent predictions.” 

 
 
Minor comments  
 
Subiculum was not included in the hippocampal ROI. This is fine, as the authors’ hypotheses 
about which subfields should matter are motivated by their prior work. However, the subiculum 
is a large portion of the hippocampus and its exclusion should be noted somewhere earlier in the 
paper than the methods.  
 

We thank the reviewer for pointing this out. In the caption for Figure 4A (which displays the 
hippocampal ROI of an example participant), we now describe and motivate how we defined 
the hippocampal ROI.  
 
Results: Figure 4 caption, p. 13, line 2: 
“The hippocampal seed and ROI included CA2/3, dentate gyrus, and CA1 (but not the 
subiculum) since these subfields were linked to pattern completion during action-based 
prediction in a prior study with the same task3.” 

 
 
pg. 11: In reporting stats for the interaction for the cross correlation between EVC and lagged 
HPC time series, a t stat is reported that should likely be a F stat.  
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We thank the reviewer for pointing out this error. We have corrected the reporting of this 
statistic in the revised Results, on page 16.  
 
Results: Time-lagged background connectivity, p. 16, line 7: 
“In contrast, no such interaction was found when the hippocampus was lagged with respect to 
EVC (F(1,22) = 0.04, p = .85; Fig. 6B)” 

 
 
It is unclear which part of each trial was included in the GLM parameters estimates for the 
multivariate patterns used in the representational similarity analysis. Were patterns based on 
models of the cue onset and duration or were the action and outcome also included in the model? 
 

We thank the reviewer for prompting us to provide more detail on how the parameter-estimate 
patterns were calculated for the pattern similarity analyses (a suggestion also made by 
Reviewer #2). The GLM parameter estimates used in the similarity analyses were based on 
models of the complete cue-action-outcome sequences. Specifically, a double-gamma HRF was 
convolved with boxcar functions in which each trial was approximately 2.5 seconds in duration 
(depending on the mean response time for the participant and condition). The Methods section 
for multivariate pattern similarity (on page 34) now includes these and other details.  
 
Methods: Multivariate pattern similarity, p. 34, line 15: 
“Each cue-outcome transition was modeled with its own regressor and temporal derivative, 
constructed by convolving a boxcar function that matched the average trial duration for the 
condition (between 2188 and 2643 ms, depending on the participant’s mean response time) 
with a double-gamma hemodynamic response function.” 

 
 
 
 
 



Reviewers' Comments:  

 

Reviewer #1:  

Remarks to the Author:  

The authors have sufficiently addressed all of my previous concerns.  

 

 

 

Reviewer #2:  

Remarks to the Author:  

The authors have thoughtfully responded to the concerns I raised in my initial review (as well as the 

concerns raised by other reviewers). The new analyses/data generally alleviate the concerns I had 

flagged. There is a greater reliance on between-subjects correlations than would be ideal (particularly 

since the sample size is modest), but because these are mostly supplementary analyses, I think this is 

ok. The revisions to the Introduction, Methods, and Discussion have also improved the manuscript. 

Overall, there are some interesting results that have stood up to scrutiny and should be of broad 

interest to readers.  

 

 

 

Reviewer #3:  

Remarks to the Author:  

The revision by Hindy and colleagues offers a thorough response to my and the other reviewers' 

comments. The clarifications to the methods, as well as a comprehensive evaluation of the potential 

confounds noted during the review process satisfy my original concerns. I appreciate the authors' 

commitment to considering the reviewers' suggestions. The broader framing in the introduction and 

more in-depth consideration of the findings in the discussion appropriately place the contribution in 

the literature. As I mentioned in my original review, I think these findings will impact the field and the 

revisions only strengthen this belief.  
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Response to Reviewer #1 

 
The authors have sufficiently addressed all of my previous concerns.  
 

We thank the reviewer once again for their very helpful feedback and are pleased to have 
addressed their concerns.  

 
 
 

Response to Reviewer #2 
 

The authors have thoughtfully responded to the concerns I raised in my initial review (as well as 
the concerns raised by other reviewers). The new analyses/data generally alleviate the concerns I 
had flagged. There is a greater reliance on between-subjects correlations than would be ideal 
(particularly since the sample size is modest), but because these are mostly supplementary 
analyses, I think this is ok. The revisions to the Introduction, Methods, and Discussion have also 
improved the manuscript. Overall, there are some interesting results that have stood up to 
scrutiny and should be of broad interest to readers.  
 

We are pleased that the new analyses addressed the reviewer’s concerns and we agree that they 
significantly strengthened the manuscript. We are grateful to the reviewer for their useful 
feedback. 

 
 
 

Response to Reviewer #3 
 

The revision by Hindy and colleagues offers a thorough response to my and the other reviewers' 
comments. The clarifications to the methods, as well as a comprehensive evaluation of the 
potential confounds noted during the review process satisfy my original concerns. I appreciate 
the authors' commitment to considering the reviewers' suggestions. The broader framing in the 
introduction and more in-depth consideration of the findings in the discussion appropriately 
place the contribution in the literature. As I mentioned in my original review, I think these 
findings will impact the field and the revisions only strengthen this belief.  
 

We thank the reviewer for their thoughtful ideas on how to broaden the framing of the paper 
and we agree that these revisions will significantly strengthen the impact of the work.  
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