Supplementary Information

A general strategy for diversifying complex natural products to polycyclic scaffolds with medium-sized rings

Zhao et al

Table of Contents

I. Supplementary Discussion

Supplementary Figures 1-4
II. Supplementary Methods: Experimental procedures and characterization data
General remarks
General procedure
A-ring expansion of dehydroepiandrosterone (DHEA) and cholesterol 11
Supplementary Figure 5. Synthesis of 3a, 3b, 4a, 5a-c, 6a and 6b 11
D-ring expansion of isosteviol 16
Supplementary Figure 6. Syntheses of 8-10 17
D-ring expansion of dehydroepiandrosterone (DHEA) and estrone 19
Supplementary Figure 7. Syntheses of medium ring scaffold 14-18 19
C-H oxidation/ring expansion of dehydroepiandrosterone, cholesterol, isosteviol, estrone and
diosgenin
Supplementary Figure 8. Electrochemical allylic oxidation/ring expansion of natural products 25
Supplementary Figure 9. Syntheses of 24
Supplementary Figure 10. Copper-mediated C-H oxidation/C-ring expansion of DHEA and
estrone
Supplementary Figure 11. Benzylic C-H oxidation
C-H oxidation/ring expansion of picfeltarraegenin and kirenol35
Supplementary Figure 12. C-H oxidation/ring expansion of picfeltarraegenin and kirenol35
Derivatization of medium ring scaffolds
Supplementary Figure 13. Formation of carbamates 40
Supplementary Figure 14. Synthesis of azide
Supplementary Figure 15. Synthesis of imides
Supplementary Figure 16. Ring-cleavage of 5b and 5c
Cheminformatic analysis of medium ring library
Supplementary Figure 17-20
X-Ray reports
Supplementary Figure 26-236 (Copies of NMR spectra) 119
Supplementary Figure 237-318 (Copies of LC-MS spectra)
III. Supplementary References

I. Supplementary Discussion

Supplementary Figure 1. Medium-sized ring scaffolds.

Supplementary Figure 2. Full compound set (continued on next page).

Supplementary Figure 2 (continued). Full compound set (continued on next page).

Supplementary Figure 2 (continued). Full compound set.

Supplementary Figure 3. Medium sized ring library used in PCA and PMI analyses (continued on next page) (30 structures).

Supplementary Figure 3 (continued). Medium sized ring library used in PCA and PMI analyses (30 structures).

Supplementary Figure 4. Cheminformatic analyses of medium ring library. Expanded version of PCA and PMI plots of 30 medium ring library (Med Lib) members, established reference sets of 40 top selling drugs in 2016 (Drugs), 25 top steroid drugs by prescriptions and retail sales in 2016 (Ster Drugs), 25 diverse steroids and terpenoid natural products (NPs) and 25 diverse medium ring natural products (Med NPs). The hypothetical average structure for each series (-AVG) is also shown. **a.** PCA plot of PC1 versus PC2. **b.** PCA plot of PC1 versus PC3. **c.** PCA plot of PC2 versus PC3. **d.** PMI plot showing the three-dimensional shape of the lowest energy conformations of each compound. 72% of the total variation is represented in the first three principal components. There are significant overlaps between the synthesized medium ring scaffolds and steroid drugs and steroids and terpenoid natural products. See **Supplementary Data Set** for complete data and **Supplementary Methods** for details on parameter and compound selection.

II. Supplementary Methods: Experimental procedures and characterization data.

General remarks.

All reactions in non-aqueous media were conducted under a positive pressure of dry argon in glassware that had been dried in oven prior to use unless noted otherwise. Anhydrous solutions of reaction mixtures were transferred via an oven dried syringe or cannula. All solvents were dried prior to use unless noted otherwise. Thin layer chromatography was performed using precoated silica gel plates (EMD Chemical Inc. 60, F254). Flash column chromatography was performed with silica gel (Silicycle, 40-63 µm). Infrared spectra (IR) were obtained on a Bruker Equinox 55 Spectrophotometer. ¹H and ¹³C nuclear magnetic resonance spectra (NMR) were obtained on a

Bruker 400 MHz or Varian Unity-Inova 500 MHz recorded in ppm (δ) downfield of TMS ($\delta = 0$) in CDCl₃, DMSO-*d*₆, unless noted otherwise. Signal splitting patterns were described as singlet (s), doublet (d), triplet (t), quartet (q), quintet (quint), or multiplet (m), with coupling constants (*J*) in hertz. High resolution mass spectra (HRMS) were performed by Analytical Instrument Center at the School of Pharmacy. The liquid chromatography mass spectrometry LC-MS analysis of final products was processed on Agilent 1290 Infinity II LC system using Poroshell 120 EC-C18 column (5 cm × 2.1 mm, 1.9 µm) for chromatographic separation. Agilent 6120 Quadrupole LC/MS with multimode Electrospray Ionization plus atmospheric pressure chemical ionization (MM-ES+APCI) was used for detection. The mobile phases were 5.0% methanol and 0.1% formic acid in purified water (A) and 0.1% formic acid in methanol (B). The gradient was held at 5% (0-0.2 min), increased to 100% at 2.5 min, then held at isocratic 100% B for 0.4 min and then immediately stepped back down to 5% for 0.1 min re-equilibration. The flow rate was set at 0.8 mL/min. Column temperature was set at 40 °C. The purities of all the final compounds were determined to be over 95% by LC-MS.

General procedure.

Procedure A: General procedure for formation of β -keto ester

A solution of *N*-diisopropylamine (1.3 equiv) in tetrahydrofuan (THF) was cooled to -78 °C. To the above solution was added *n*-BuLi (1.25 equiv) dropwise. The resulting solution was stirred for 45 min under argon. To the above reaction mixture was added a solution of ketone (1.0 equiv) in THF at -78 °C. The reaction mixture was kept for 2 h at this temperature. Ethyl cyanoformate (1.3 eq) was added to the above solution. The resulting mixture was stirred at -78 °C for 1 h. The reaction was allowed to warm to room temperature. After quenching with NH₄Cl solution, the mixture was diluted with ethyl acetate and washed with brine (50 mL × 2). The combined organic phase was dried over sodium sulfate and concentrated under vacuum. Flash column chromatography over silica gel afforded the β -keto ester.

Procedure B: General procedure for alkylation of β -keto ester

To a solution of β -keto ester (1.0 equiv) and hexamethylphosphoramide (HMPA) (2.0 equiv) in THF (10 mL/mmol) was added NaH (1.3 equiv) under argon. The reaction mixture was stirred for 1 h. Then alkyl iodide (5.0 equiv) was added. The mixture was stirred for 24 h. After quenching with NH₄Cl solution, the mixture was diluted with ethyl acetate and washed with NaS₂O₃ and brine. The organic phase was dried over sodium sulfate and concentrated under vacuum to afford the crude product. Flash column chromatography over silica gel afforded the product.

Procedure C: General procedure of Backman rearrangement

To a solution of ketone (1.0 equiv) in EtOH (10 mL/mmol) was added hydroxylamine hydrochloride (10.0 equiv) and KOAc (10.0 equiv). The reaction mixture was heated at reflux for 3 h. The mixture was cooled to room temperature. The volatile EtOH was removed under vacuum and the resulting residue was diluted with ethyl acetate and washed with brine (20 mL \times 2). The organic phase was dried over sodium sulfate and concentrated under vacuum to afford crude product which was directly used in the next step without further purification.

To a solution of the above crude product in pyridine (5.0 mL/mmol) was added p-

toluenesulfonyl chloride (2.0 equiv) and dimethylaminopyridine (0.1 equiv). The resulting reaction mixture was heated at 60 °C overnight, cooled to room temperature, diluted with ethyl acetate (100 mL), and washed with 2 N HCl, NaHCO₃ and brine sequentially. The organic phase was dried over sodium sulfate and concentrated under vacuum. Flash column chromatography over silica gel afforded the lactam product.

Procedure D: General procedure of removing TBS group

To a solution of the TBS ether in THF/H₂O (5:1) was added TsOH (0.1 equiv). The reaction mixture was stirred overnight. The mixture was diluted with EtOAc, and washed with brine (10 mL \times 2). The organic phase was dried over sodium sulfate and concentrated under vacuum. Flash column chromatography over silica column afforded the alcohol.

Procedure E: General procedure of removing TBS group

A mixture of TBS ether and Pd/C (10%) in MeOH was hydrogenated at room temperature for 96 h under hydrogen atmosphere. The suspension was filtered through a pad of celite and the pad was washed with CH₂Cl₂. The combined filtrates were concentrated to dryness. Flash column chromatography over silica column afford of the alcohol.

Procedure F: General procedure for formation of carbamates

To a solution of alcohol (0.10 mol) in THF (2 mL) was added carbonyldiimidazole (32.4 mg, 0.20 mmol) and Et₃N (20.2 mg, 0.20 mmol). The reaction mixture was stirred at room temperature overnight. The volatile dichloromethane was removed under vacuum and the residue was dissolved in toluene (4 mL), amine (0.50 mmol), Et₃N (40.4 mg, 0.40 mmol) and dimethylaminopyridine (5.0 mg) were added to the reaction mixture. The reaction mixture was heated at 90 °C for 4 h. The mixture was cooled to room temperature then diluted with ethyl acetate (50 mL), and washed with brine (10 mL × 2). The organic phase was dried over sodium sulfate and concentrated under vacuum. Flash column chromatography over silica gel afforded the carbamates.

Procedure G: General procedure for formation of carbamates

To a solution of alcohol (0.10 mol) in dichloromethane (2 mL) was added *N*, *N*-dialkyl-1*H*imidazole-1-carboxamide (0.20 mmol) and *t*-BuOK (22.4 mg, 0.20 mmol). The reaction mixture was stirred at room temperature overnight. The mixture was diluted with ethyl acetate (30 mL) and washed with brine (10 mL \times 2). The organic phase was dried over sodium sulfate and concentrated under vacuum. Flash column chromatography over silica gel afforded the carbamates.

Procedure H: General procedure for formation of imides

To a solution of **8** (44.2 mg, 0.1 mol) in dichloromethane (0.5 mL) and toluene (3.0 mL) was added amine (0.5 mmol). The reaction mixture was stirred for 30 min and then heated at reflux for 2 h. The mixture was cooled to room temperature, and concentrated under vacuum. Flash column chromatography over silica gel afforded the imide. (Note, DMF was used as solvent for amino acids).

Procedure I: General procedure for formation of imides

A solution of **6a** (0.50 mmol) in aqueous NaOH (30%, 5 mL) and THF (5 mL) was stirred for 2 h at 50 °C. The reaction mixture was cooled to 0 °C and then NaBH₄ (76 mg, 2.00 mmol) was added

in one portion. The reaction mixture was allowed to warm to room temperature and stirred for 3 h. The reaction mixture was concentrated under vacuum, acidified by the slow addition of 1N HCl, extracted with EtOAc (3×30 mL). The combined organic extracts were washed with H₂O (30 mL), brine (30 mL), and dried over Na₂SO₄. The organic phase was concentrated under vacuum and used for the next step.

To a solution of the above crude product in dichloromethane (0.5 mL) and toluene (3.0 ml) was added amine (0.5 mmol). The reaction mixture was stirred for 30 min then heated at reflux for 2 h. The mixture was cooled to room temperature, and concentrated under vacuum. Flash column chromatography over silica gel afforded the imide.

To a solution of the above imide in dichloromethane (5 mL) was added Dess-Martin periodinane (848 mg, 2.0 mmol). The reaction mixture was stirred at room temperature for 3 h. The mixture was diluted with ethyl acetate (30 mL) and washed with NaS₂O₃ (10 mL) and brine (10 mL \times 2). The organic phase was dried over sodium sulfate and concentrated under vacuum. Flash column chromatography over silica gel afforded the final imide product.

A-ring expansion of dehydroepiandrosterone (DHEA) and cholesterol.

Supplementary Figure 5. Synthesis of 3a, 3b, 4a, 5a-c, 6a and 6b. The TBS ether 1c was synthesized as reported¹. **2a-c** were prepared following general procedure A. Alkylation of **2a** and **2b** was performed following general procedure B.

Syntheses of 2a-c.

Tetrapropylammonium perruthenate (526 mg, 1.5 mmol) was added to the solution of 1 (30.0 mmol), 4-methylmorpholine N-oxide (7.02 g, 30.0 mmol) and molecular sieves (1.5 g) in CH_2Cl_2 (150 mL). After stirring at rt for 1 h, the suspension was filtered through a pad of celite and the pad was washed with CH_2Cl_2 , concentrated under reduced pressure. Flash column chromatography over short silica column afford off white solid of **S1a-c**.

S1a, yield: 95%. Its spectral data obtained were identical to those reported in literature.²
S1b, yield: 90%. Its spectral data obtained were identical to those reported in literature.³

S1c, yield: 92%. Its spectral data obtained were identical with those reported in literature.¹

2a, yield: (74%). ¹**H NMR** (500 MHz, CDCl₃) δ 12.17 (s, 1H), 4.28 – 4.06 (m, 2H), 3.98 – 3.79 (m, 4H), 2.30 (d, J = 15.7 Hz, 1H), 2.11 (ddd, J = 18.6, 5.5, 1.4 Hz, 1H), 2.05 – 1.91 (m, 2H), 1.87 – 1.50 (m, 5H), 1.52 – 1.13 (m, 12H), 0.96 – 0.67 (m, 8H). ¹³**C NMR** (126 MHz, CDCl₃) δ 172.9, 170.7, 119.4, 96.4, 65.1, 64.5, 60.3, 60.1, 53.4, 50.2, 45.8, 40.8, 36.8, 35.6, 34.7, 34.1, 33.3, 30.7, 30.6, 27.9, 22.6, 20.6, 14.6, 14.3, 11.5. **IR**: \bar{v} 3402, 2932, 2855, 1652, 1039, 1207, 1094, 1053, 912, 835, 779, 712 cm⁻¹. **HRMS** (ESI) m/z: anal. calculated for [C₂₄H₃₆O₅ + H]⁺: 405.2636, found: 405.2631.

2b, yield: (75%). ¹**H NMR** (400 MHz, CDCl₃) δ 12.19 (s, 1H), 4.43 – 4.06 (m, 2H), 2.31 (d, J = 15.7 Hz, 1H), 2.13 (ddd, J = 18.6, 5.4, 1.3 Hz, 1H), 2.07 – 1.95 (m, 2H), 1.90 – 1.74 (m, 2H), 1.69 (dd, J = 12.8, 3.0 Hz, 1H), 1.64 – 0.94 (m, 25H), 0.92 (d, J = 6.5 Hz, 3H), 0.88 (dd, J = 6.6, 1.8 Hz, 6H), 0.75 (s, 3H), 0.68 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 173.0, 170.8, 96.5, 60.2, 56.4, 56.3, 53.6, 42.5, 40.9, 40.0, 39.5, 36.8, 36.2, 35.8, 35.4, 34.7, 33.4, 31.5, 28.2, 28.1, 28.0, 24.2, 23.8, 22.8, 22.6, 21.2, 18.7, 14.3, 12.0, 11.6. **IR**: \bar{v} 3398, 2868, 1738, 1654, 1466, 1309, 1265, 1205, 1053, 941, 705 cm⁻¹. **HRMS** (ESI) m/z: anal. calculated for [C₃₀H₅₀O₃ + Na]⁺: 481.3652, found: 481.3649.

2c, yield: (80%). ¹**H NMR** (400 MHz, CDCl₃) δ 12.18 (s, 1H), 4.31 – 4.09 (m, 2H), 3.56 (t, *J* = 8.3 Hz, 1H), 2.32 (d, *J* = 15.7 Hz, 1H), 2.13 (ddd, *J* = 18.5, 5.5, 1.2 Hz, 1H), 2.08 – 1.95 (m, 1H), 1.88 (dtd, *J* = 13.2, 9.3, 5.7 Hz, 1H), 1.82 – 1.65 (m, 3H), 1.65 – 1.18 (m, 12H), 1.13 – 0.96 (m, 2H), 0.95 – 0.78 (m, 11H), 0.76 (s, 3H), 0.72 (s, 3H), 0.02 (s, 3H), 0.01 (s, 3H). ¹³C **NMR** (101 MHz, CDCl₃) δ 173.0, 170.7, 96.5, 81.8, 60.2, 54.0, 50.6, 43.2, 41.0, 37.2, 36.9, 35.5, 34.8, 33.4, 31.1, 30.9, 28.0, 25.9, 23.5, 20.9, 18.2, 14.3, 11.6, 11.3, -4.5, -4.8. **HRMS** (ESI) m/z: anal. calculated for [C₂₈H₄₈O₄Si + H]⁺: 477.3395, found: 477.3397.

Syntheses of 3a, 3b and 4a.

S2a, yield: (62%). ¹**H** NMR (500 MHz, CDCl₃) δ 4.30 – 4.11 (m, 2H), 3.96 – 3.81 (m, 4H), 3.60 – 3.40 (m, 2H), 2.69 (t, *J* = 14.1 Hz, 1H), 2.62 (d, *J* = 13.8 Hz, 1H), 2.12 (dd, *J* = 14.1, 3.3 Hz, 1H), 2.00 (dddd, *J* = 28.7, 14.5, 10.5, 3.7 Hz, 2H), 1.79 (dtt, *J* = 14.1, 9.3, 5.2 Hz, 2H), 1.67 (dddd, *J* = 21.5, 15.0, 8.0, 3.8 Hz, 4H), 1.60 – 1.17 (m, 15H), 0.93 (s, 3H), 0.84 (s, 3H), 0.75 – 0.65 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 208.3, 173.3, 119.4, 65.3, 64.6, 61.5, 58.1, 54.5, 50.1, 50.0, 48.5, 46.0, 45.3, 44.4, 36.9, 35.3, 34.5, 34.2, 30.9, 30.6, 28.3, 28.0, 22.7, 21.1, 14.5, 14.1, 12.7. IR: $\bar{\nu}$ 3408, 2939, 1709, 1445, 1307, 1118, 1035, 952, 856, 736 cm⁻¹. HRMS (ESI) m/z: anal. calculated for [C₂₇H₄₁ClO₅ + Na]⁺: 503.2535, found: 503.2537.

S2b, yield: (66%). ¹**H** NMR (400 MHz, CDCl₃) δ 4.29 – 4.07 (m, 2H), 3.64 – 3.34 (m, 2H), 2.70 (t, J = 14.1 Hz, 1H), 2.61 (d, J = 13.8 Hz, 1H), 2.12 (dd, J = 14.1, 3.3 Hz, 1H), 2.09 – 1.93 (m, 2H), 1.89 – 1.74 (m, 2H), 1.74 – 1.62 (m, 2H), 1.59 – 1.40 (m, 6H), 1.42 – 0.96 (m, 21H), 0.93 (s, 3H), 0.91 (d, J = 6.5 Hz, 3H), 0.88 (d, J = 1.8 Hz, 3H), 0.86 (d, J = 1.8 Hz, 3H), 0.66 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 208.4, 173.2, 61.4, 58.1, 56.2, 56.2, 54.6, 49.9, 48.4, 45.2, 44.4, 42.6, 39.9, 39.5, 36.7, 36.1, 35.8, 34.9, 34.4, 31.6, 28.3, 28.2, 28.0, 27.9, 24.2, 23.8, 22.8, 22.5, 21.6, 18.6, 14.0, 12.6, 12.1. **IR**: \bar{v} 3455, 2938, 2868, 1737, 1714, 1443, 1219, 1092, 1025, 736 cm⁻¹. **HRMS** (ESI) m/z: anal. calculated for $[C_{33}H_{55}ClO_3 + \text{Na}]^+$: 557.3732, found: 557.3721.

To a solution of **S2** (1.8 mol) in DMF (10 mL) was added NaN₃ (1.17 g, 18.0 mmol). The reaction mixture was heated at 80 °C for 3 h. The mixture was cooled to room temperature, diluted with diethyl ether (150 mL), and washed with brine (50 mL \times 3). The organic phase was dried over sodium sulfate and concentrated under vacuum to afford a crude product which was directly used in the next step without further purification.

The above keto azide was dissolved in trifluoroacetic acid (10.0 mL) and the solution was stirred at room temperature. Gas evolution occurred immediately. After 1 h, the reaction mixture was evaporated under vacuum to remove trifluoroacetic acid and diluted with 100 mL of ethyl acetate, and the solution was washed with saturated aqueous NaHCO₃ and brine (1×25 mL). The organic layer was dried over sodium sulfate and evaporated in vacuum to give an oil. The crude product was purified by flash chromatography to give the lactam **3a** or **3b** as yellow oil.

3a, yield: 84%. ¹**H NMR** (500 MHz, CDCl₃) δ 4.26 (dqd, J = 12.3, 7.1, 1.6 Hz, 1H), 4.20 – 4.08 (m, 1H), 3.76 (ddd, J = 11.3, 8.4, 2.9 Hz, 1H), 3.52 (ddd, J = 12.4, 9.5, 7.3 Hz, 1H), 2.85 – 2.69 (m, 2H), 2.44 (dd, J = 19.1, 8.6 Hz, 2H), 2.15 – 1.97 (m, 3H), 1.97 – 1.89 (m, 1H), 1.89 – 1.69 (m, 4H), 1.68 – 1.44 (m, 5H), 1.39 – 1.21 (m, 8H), 0.98 (qd, J = 12.7, 3.9 Hz, 1H), 0.86 (s, 3H), 0.82 (s, 3H), 0.73 (td, J = 11.3, 10.9, 3.6 Hz, 1H). ¹³**C NMR** (126 MHz, CDCl₃) δ 220.9, 174.4, 173.8, 67.8, 61.7, 55.0, 51.3, 50.5, 48.8, 47.4, 44.8, 42.8, 40.7, 39.7, 35.8, 33.9, 31.5, 30.6, 30.1, 21.7, 20.8, 20.7, 14.1, 13.8, 12.3. **IR**: *v* 3456, 3002, 1665, 1441, 1266, 1102, 1082, 1043, 914, 734 cm⁻¹. **IR**: \bar{v} 3451, 1736, 1631, 1439, 1365, 1266, 1227, 1205, 1123, 1048, 1024, 734 cm⁻¹. **HRMS** (ESI) m/z: anal. calculated for [C₂₅H₃₇NO₄ + H]⁺: 416.2795, found: 416.2815.

3b, yield: 78%. ¹**H** NMR (400 MHz, CDCl₃) δ 4.25 (dq, J = 10.8, 7.1 Hz, 1H), 4.13 (dq, J = 10.7, 7.1 Hz, 1H), 3.75 (ddd, J = 11.7, 8.3, 3.1 Hz, 1H), 3.51 (ddd, J = 11.8, 9.3, 7.1 Hz, 1H), 2.83 – 2.64 (m, 2H), 2.44 (ddd, J = 12.8, 6.5, 3.0 Hz, 1H), 2.15 – 1.93 (m, 3H), 1.78 (dtt, J = 16.6, 6.8, 3.8 Hz, 2H), 1.68 – 1.18 (m, 18H), 1.17 – 0.92 (m, 10H), 0.90 (d, J = 6.5 Hz, 3H), 0.87 (d, J = 1.9 Hz, 3H), 0.85 (d, J = 1.9 Hz, 3H), 0.78 (s, 3H), 0.64 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.5, 173.9, 67.8, 61.6, 56.4, 56.2, 55.0, 50.6, 48.8, 44.8, 42.8, 42.2, 40.9, 40.0, 39.5, 39.4, 36.1, 35.7, 34.3, 31.8, 30.4, 28.2, 28.0, 24.1, 23.8, 22.8, 22.5, 21.4, 20.8, 18.6, 14.0, 12.3, 12.0. IR: \bar{v} 3454, 2946, 2868, 1632, 1444, 1366, 1151, 1121, 1025, 735, 701 cm⁻¹. HRMS (ESI) m/z: anal. calculated for [C₃₃H₅₅NO₃ + H]⁺: 514.4255, found: 514.4256.

Ketone **3a** (498 mg, 1.2 mmol) was dissolved in MeOH (10 ml) and cooled to -78 °C. NaBH₄ (67.2 mg, 2.4 mmol) was then added, and the solution was stirred for 3 h at this temperature. The reaction mixture was quenched with NH₄Cl solution, the mixture was diluted with ethyl acetate (100 mL), and washed with brine (50 mL × 2). The organic phase was dried over sodium sulfate and concentrated in vacuum. Flash column chromatography over silica column afford of **4a** as a white solid. Yield: (470 mg, 94%). ¹H NMR (500 MHz, CDCl₃) δ 4.25 (dq, *J* = 10.8, 7.1 Hz, 1H), 4.13 (dq, *J* = 10.8, 7.1 Hz, 1H), 3.74 (ddd, *J* = 11.5, 8.1, 3.1 Hz, 1H), 3.62 (t, *J* = 8.6 Hz, 1H), 3.51 (ddd, *J* = 11.8, 9.3, 7.2 Hz, 1H), 2.87 – 2.65 (m, 2H), 2.44 (ddd, *J* = 12.8, 6.5, 3.0 Hz, 1H), 1.01 – 0.80 (m, 3H), 1.89 – 1.37 (m, 10H), 1.37 – 1.20 (m, 7H), 1.05 (td, *J* = 12.9, 4.2 Hz, 1H), 1.01 – 0.80 (m, 3H), 0.80 (s, 3H), 0.73 (s, 3H), 0.66 (ddd, *J* = 12.3, 10.2, 3.9 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 174.5, 173.9, 81.8, 67.8, 61.6, 55.1, 50.9, 50.6, 48.8, 44.8, 42.9, 42.7, 40.8, 39.6, 36.8, 34.3, 31.3, 30.5, 30.3, 23.3, 21.0, 20.8, 14.1, 12.3, 11.1. IR: \bar{v} 3395, 3052, 1731, 1622, 1445, 1265, 1066, 855, 702 cm⁻¹. HRMS (ESI) m/z: anal. calculated for [C₂₅H₃₉NO₄ + H]⁺: 418.2952, found: 418.2960.

Syntheses of 5a-c.

To a solution of compound **2** (6.0 mol) in toluene (40 mL) was added NaH (288 mg, 7.2 mmol, 60%) under Ar. The reaction mixture was stirred for 2 h. Then DMAD (1.97 g, 12.0 mol) was added. The mixture was stirred for 30 mins. After quenching with NH₄Cl solution, the mixture was diluted with ethyl acetate (150 mL), and washed with brine (50 mL \times 2). The organic phase was dried over sodium sulfate and concentrated in vacuum. Flash column chromatography over silica column afforded **5** as yellow oil.

5a, yield: (62%). ¹**H NMR** (500 MHz, CDCl₃) δ 12.96 (d, J = 2.1 Hz, 1H), 4.34 – 4.06 (m, 2H), 3.98 – 3.82 (m, 4H), 3.71 (s, 6H), 3.33 (d, J = 13.0 Hz, 1H), 2.67 – 2.53 (m, 1H), 1.97 (ddd, J =14.5, 11.6, 3.1 Hz, 1H), 1.88 (d, J = 12.9 Hz, 1H), 1.85 – 1.67 (m, 3H), 1.67 – 1.57 (m, 2H), 1.57 – 1.33 (m, 6H), 1.33 – 1.15 (m, 7H), 0.83 (s, 3H), 0.79 – 0.64 (m, 4H). ¹³C **NMR** (126 MHz, CDCl₃) δ 180.2, 171.6, 170.1, 168.2, 138.4, 133.5, 119.1, 98.2, 65.1, 64.5, 61.3, 52.2, 52.1, 52.0, 50.5, 46.7, 45.9, 41.5, 37.8, 36.8, 35.7, 34.3, 31.3, 30.8, 22.6, 22.6, 21.4, 14.5, 13.9, 11.4. **IR**: \bar{v} 3395, 2948, 1720, 1602, 1444, 1311, 1297, 1238, 1210, 1135, 1018, 950, 702, 673 cm⁻¹. **HRMS** (ESI) m/z: anal. calculated for [C₃₀H₄₂O₉ + Na]⁺: 569.2721, found: 569.2707. LC-MS (t_R = 3.61 min, λ = 254 nm, purity >99%).

5b, yield: (74%). ¹**H NMR** (400 MHz, CDCl₃) δ 12.95 (t, J = 1.6 Hz, 2H), 4.34 – 4.04 (m, 2H), 3.71 (d, J = 1.2 Hz, 6H), 3.32 (d, J = 12.9 Hz, 1H), 2.58 (ddd, J = 12.7, 9.1, 2.1 Hz, 1H), 2.08 – 1.93 (m, 1H), 1.85 (dd, J = 21.3, 10.7 Hz, 2H), 1.80 – 1.41 (m, 8H), 1.41 – 1.19 (m, 11H), 1.19 – 0.93 (m, 9H), 0.92 – 0.82 (m, 9H), 0.71 (d, J = 1.3 Hz, 3H), 0.65 (d, J = 1.3 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 180.3, 171.7, 170.1, 168.3, 138.7, 133.4, 98.2, 61.3, 56.7, 56.1, 52.4, 52.2, 51.9, 46.8, 42.5, 41.5, 40.1, 39.5, 37.7, 36.8, 36.1, 35.7, 35.4, 32.1, 31.4, 28.3, 28.0, 24.1, 23.8, 22.8, 22.5, 21.9, 18.6, 13.9, 12.2, 11.4. **IR**: v 3433, 2936, 2867, 1654, 1600, 1358, 1296, 1235, 1214, 1173, 1018, 859, 675 cm⁻¹. **HRMS** (ESI) m/z: anal. calculated for [C₃₆H₅₆O₇+ Na]⁺: 623.3918, found: 623.3904.

5c, yield: (68%). ¹**H** NMR (500 MHz, CDCl₃) δ 12.96 (d, *J* = 2.0 Hz, 1H), 4.25 (dq, *J* = 10.9, 7.2 Hz, 1H), 4.17 (dq, *J* = 10.7, 7.0 Hz, 1H), 3.71 (s, 6H), 3.54 (t, *J* = 8.3 Hz, 1H), 3.33 (d, *J* = 12.9 Hz,

1H), 2.59 (ddd, J = 12.8, 9.2, 2.2 Hz, 1H), 1.97 – 1.82 (m, 2H), 1.83 – 1.74 (m, 2H), 1.74 – 1.65 (m, 1H), 1.62 (d, J = 12.8 Hz, 1H), 1.57 – 1.14 (m, 11H), 1.02 – 0.79 (m, 13H), 0.71 (s, 3H), 0.69 (s, 3H), 0.00 (d, J = 4.3 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 180.3, 171.7, 167.0, 168.3, 138.6, 133.5, 98.2, 81.6, 61.3, 52.7, 52.2, 52.0, 50.9, 46.9, 43.3, 41.5, 37.9, 37.3, 36.8, 35.5, 31.7, 31.3, 31.1, 25.8, 23.5, 21.6, 18.1, 13.9, 11.5, 11.4, -4.5, -4.8. **IR**: \bar{v} 3371, 2953, 1722, 1654, 1312, 1212, 1173, 1020, 883, 797, 672 cm⁻¹. **HRMS** (ESI) m/z: anal. calculated for [C₃₄H₅₄O₈Si + Na]⁺: 641.3480, found: 641.3457. LC-MS (t_R = 1.16 min, λ = 254 nm, purity >99%).

Syntheses of 6a and 6c.

5a or **5c** (4.0 mmol) was dissolved in AcOH (20 ml) and concentrated HCl (40 ml). The reaction mixture was heated at reflux for 48 h. The mixture was cooled to room temperature, diluted with ethyl acetate (200 mL), and washed with brine (50 mL \times 2). The organic phase was dried over sodium sulfate and concentrated under vacuum. Flash column chromatography over silica column afforded **6a** or **6c**.

6a, yield: (60%). **¹H NMR** (500 MHz, CDCl₃) δ 3.72 (dd, J = 18.4, 1.5 Hz, 1H), 3.39 (d, J = 18.3 Hz, 1H), 2.87 – 2.75 (m, 1H), 2.75 – 2.68 (m, 1H), 2.42 (ddd, J = 19.3, 8.9, 1.1 Hz, 1H), 2.26 (dd, J = 15.9, 2.2 Hz, 1H), 2.19 (ddd, J = 12.6, 6.3, 2.5 Hz, 2H), 2.04 (dt, J = 19.2, 9.0 Hz, 2H), 1.99 – 1.76 (m, 4H), 1.62 – 1.42 (m, 4H), 1.42 – 1.30 (m, 2H), 1.23 (tdd, J = 18.7, 7.8, 4.1 Hz, 3H), 0.98 (s, 3H), 0.85 (s, 3H), 0.67 (ddd, J = 12.1, 10.2, 3.6 Hz, 1H). ¹³C **NMR** (126 MHz, CDCl₃) δ 220.1, 206.4, 165.0, 164.1, 141.5, 140.7, 51.2, 50.0, 49.1, 47.5, 42.6, 40.2, 35.7, 35.0, 31.2, 31.0, 30.2, 29.3, 21.5, 20.9, 15.1, 13.8. **IR**: \bar{v} 2924, 2852, 1768, 1454, 1366, 1264, 1216, 1049, 939, 913, 736 cm⁻¹. **HRMS** (ESI) m/z: anal. calculated for [C₂₃H₂₈O₅ + H]⁺: 385.2010, found: 385.1999.

6c, yield: (64%). ¹**H** NMR (500 MHz, CDCl₃) δ 4.53 (dd, J = 9.2, 7.8 Hz, 1H), 3.71 (dd, J = 18.4, 1.5 Hz, 1H), 3.37 (d, J = 18.3 Hz, 1H), 2.79 (d, J = 14.6 Hz, 1H), 2.71 (dd, J = 15.9, 12.4 Hz, 1H), 2.24 (dd, J = 15.9, 2.2 Hz, 1H), 2.20 – 2.04 (m, 3H), 2.01 (s, 3H), 1.95 – 1.84 (m, 1H), 1.76 (dt, J = 12.9, 3.4 Hz, 1H), 1.68 (dq, J = 13.1, 3.5 Hz, 1H), 1.57 (dddd, J = 12.3, 9.2, 6.7, 3.5 Hz, 1H), 1.54 – 1.41 (m, 3H), 1.41 – 1.17 (m, 3H), 1.11 (td, J = 13.1, 3.9 Hz, 1H), 1.05 – 0.84 (m, 5H), 0.77 (s, 3H), 0.62 (ddd, J = 12.0, 10.2, 3.6 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 206.7, 171.0, 165.0, 164.2, 141.6, 140.6, 82.4, 50.6, 49.9, 49.2, 42.6, 42.3 (two Carbon), 40.2, 36.5, 35.2, 31.0, 30.9, 29.4, 27.5, 23.3, 21.0, 21.0, 15.1, 12.1 HRMS (ESI) m/z: anal. calculated for C₂₅H₃₂NaO₆ [M + H]⁺: 451.2091, found: 451.2099.

D-ring expansion of isosteviol.

Supplementary Figure 6. Syntheses of 8-10. General procedure C was used for formation of 9.

To a flame-dried 250 mL round-bottomed flask was added isosteviol **1d** (6.36 g, 20.0 mmol) and dry THF (100 mL). Upon dissolution, LiOH•H₂O (1.26 g, 30 mmol) was added and the reaction was stirred for 1 h at room temperature under an atmosphere of Ar. Me₂SO₄ (2.8 mL, 30.0 mmol) was slowly added, then a reflux condenser was fitted to the flask and the temperature was raised to 80 °C for 3 h. The mixture was cooled to room temperature, Et₃N (5.0 mL) was added and the mixture was stirred for 30 min. The reaction mixture was diluted with 200 mL of ethyl acetate, and the solution was washed with brine (3 × 50 mL). The organic layer was dried over sodium sulfate and evaporated under vacuum to give a white solid **S3**. Yield: (6.57 g, 99%).

Ketone **S3** (332 mg, 1.0 mol) was dissolved in dry DCM/Et₂O (1:1, 6.0 mL). BF₃•Et₂O (0.3 ml) and ethyl diazoethanoate (0.3 ml) was added. The reaction mixture was stirred for 48 h. The mixture was diluted with ethyl acetate (50 mL), and washed with NaHCO₃ (20 mL × 2) and brine (20 mL × 2). The organic phase was dried over sodium sulfate and concentrated under vacuum. Flash column chromatography over silica column afforded 7. Yield: (264 mg, 63%). ¹H NMR (500 MHz, CDCl₃) δ 12.31 (s, 1H), 4.22 (dddd, *J* = 17.9, 10.8, 7.1, 3.7 Hz, 2H), 3.66 (s, 3H), 2.86 (dd, *J* = 17.0, 1.9 Hz, 1H), 2.28 – 2.06 (m, 1H), 2.00 – 1.64 (m, 6H), 1.60 – 1.48 (m, 2H), 1.48 – 1.37 (m, 1H), 1.30 (t, *J* = 7.1 Hz, 3H), 1.27 – 1.22 (m, 3H), 1.18 (s, 3H), 1.13 – 0.96 (m, 7H), 0.85 (dd, *J* = 12.4, 3.9 Hz, 2H), 0.74 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 177.8, 175.9, 172.4, 97.5, 60.1, 58.3, 58.0, 51.2, 51.1, 45.5, 43.8, 40.0, 38.2, 37.9, 37.9, 37.1, 34.0, 32.0, 28.8, 23.8, 12.0, 19.7, 19.0, 14.4, 13.7. HRMS (ESI) m/z: anal. calculated for [C₂₅H₃₈O₅ + Na]⁺: 441.2611, found: 441.2602.

To a solution of compound 7 (4.18 g, 10.0 mol) in toluene (80 mL) was added NaH (480 mg, 12.0 mmol, 60%) under Ar. The reaction mixture was stirred for 2 h. Then DMAD (2.84 g, 2.0 mol) was added. The mixture was stirred for 20 min. After quenching with NH₄Cl solution, the mixture was diluted with ethyl acetate (200 mL), and washed with brine (50 mL \times 2). The organic phase was dried over sodium sulfate and concentrated under vacuum. Flash column chromatography over short silica column afforded a yellow oil, which was directly used in the next step.

The above product was dissolved in AcOH (30 ml) and concentrated HCl (30 ml). The reaction mixture was heated at reflux for 48 h. The mixture was cooled to room temperature, diluted with ethyl acetate (200 mL), and washed with brine (50 mL × 2). The organic phase was dried over sodium sulfate and concentrated in vacuum. Flash column chromatography over silica column afforded **8**. Yield: (1.77 g, 40% for two steps). ¹H NMR (500 MHz, CDCl₃) δ 3.91 (dd, *J* = 18.6, 1.7 Hz, 1H), 3.61 (s, 3H), 3.17 (dd, *J* = 18.6, 1.5 Hz, 1H), 2.84 (d, *J* = 14.1 Hz, 1H), 2.44 (dq, *J* = 13.6, 3.1 Hz, 1H), 2.27 – 1.96 (m, 3H), 1.87 (dd, *J* = 14.8, 2.7 Hz, 1H), 1.83 – 1.74 (m, 2H), 1.70 (dd, *J* = 13.0, 3.3 Hz, 1H), 1.58 (ddt, *J* = 14.1, 5.2, 2.8 Hz, 1H), 1.37 (ddt, *J* = 28.6, 13.5, 2.2 Hz, 3H), 1.12 (s, 3H), 1.10 (s, 3H), 1.06 – 1.00 (m, 2H), 1.00 – 0.86 (m, 4H), 0.81 (td, *J* = 13.1, 4.3 Hz, 1H), 0.61 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 209.9, 177.3, 165.4, 164.1, 142.9, 140.6, 58.4, 56.9, 51.0, 49.2, 48.2, 43.6, 40.0, 39.9, 39.4, 37.9, 37.2, 37.0, 34.1, 28.8, 28.3, 23.5, 19.2, 18.8, 18.0, 13.8. IR: \bar{v} 3374, 3054, 1816, 1723, 1398, 1346, 1272, 1191, 1170, 1094, 1035, 974, 894, 853, 738 cm⁻¹. HRMS (ESI) m/z: anal. calculated for [C₂₆H₃₄O₆ + Na]⁺: 465.2248, found: 465.2231.

To a solution of **7** (585 mg, 1.4 mol) in DMSO (10 ml) was added LiCl (616 mg, 14 mmol). The reaction mixture was heated at reflux for 3 h. The mixture was cooled to room temperature, diluted with ethyl acetate (150 mL), and washed with brine (50 mL × 3). The organic phase was dried over sodium sulfate and concentrated in vacuum. Flash column chromatography over silica column afforded **S4**. Yield: (388 mg, 80%). ¹**H NMR** (500 MHz, CDCl₃) δ 3.64 (s, 3H), 2.55 – 2.38 (m, 1H), 2.29 – 2.11 (m, 3H), 1.82 (tdd, *J* = 19.7, 10.9, 5.2 Hz, 5H), 1.75 – 1.69 (m, 1H), 1.65 – 1.50 (m, 3H), 1.44 (dtd, *J* = 14.1, 4.5, 2.2 Hz, 1H), 1.32 – 1.16 (m, 5H), 1.16 – 1.08 (m, 2H), 1.08 – 0.92 (m, 6H), 0.87 (td, *J* = 13.2, 4.4 Hz, 1H), 0.73 (s, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 219.3, 177.8, 57.8, 57.6, 51.3, 51.2, 45.4, 44.3, 43.8, 39.8, 38.5, 38.2, 38.0, 37.9, 34.3, 29.4, 28.7, 24.7, 20.6, 20.0, 18.9, 13.3. **IR**: \bar{v} 2986, 1738, 1447, 1373, 1240, 121, 1047, 940, 747 cm⁻¹. **HRMS** (ESI) m/z: anal. calculated for [C₂₂H₃₄O₃ + H]⁺: 347.2581, found: 347.2573.

9, Yield: (78.0 mg, 60% for two steps). ¹H NMR (500 MHz, CDCl₃) δ 5.20 (s, 1H), 3.64 (s, 3H),

2.55 (tt, J = 14.2, 2.2 Hz, 1H), 2.43 – 2.26 (m, 1H), 2.16 (td, J = 14.7, 14.1, 3.3 Hz, 2H), 2.04 – 1.70 (m, 5H), 1.70 – 1.49 (m, 5H), 1.49 – 1.40 (m, 1H), 1.33 (td, J = 12.6, 5.7 Hz, 1H), 1.17 (s, 3H), 1.16 (s, 3H), 1.13 – 0.91 (m, 4H), 0.85 (ddd, J = 22.3, 11.6, 4.0 Hz, 2H), 0.64 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 177.7, 175.9, 58.4, 57.2, 53.2, 51.2, 48.4, 43.8, 41.4, 41.4, 39.6, 38.1, 37.6, 35.3, 34.1, 32.5, 28.7, 28.3, 19.6, 18.9, 17.8, 13.8. **IR**: \bar{v} 3055, 1736, 1640, 1422, 1265, 1046, 896 cm⁻¹. **HRMS** (ESI) m/z: anal. calculated for [C₂₂H₃₅NO₃ + H]⁺: 362.2690, found: 362.2686. LC-MS ($t_R = 2.46 \text{ min}, \lambda = 210 \text{ nm}, \text{purity >99\%}$).

To a solution of lactam **9** (173 mg, 0.48 mol, 1.0 eq) in DCM (20 mL) was added DIBAL-H (1.0 ml, 1.0 mmol, 1 M) at -78 °C under Ar. The reaction mixture was stirred for 30 min at this temperature. After quenching with 2 N HCl, the mixture was diluted with ethyl acetate (100 mL), and washed with brine (20 mL \times 2). The organic phase was dried over sodium sulfate and concentrated in vacuum. Flash column chromatography over silica column afforded **10**. Yield: (89.5 mg, 56%). ¹H NMR (500 MHz, CDCl₃) δ 5.65 (s, 1H), 3.72 (d, *J* = 10.8 Hz, 1H), 3.45 (d, *J* = 10.8 Hz, 1H), 2.89 (dd, *J* = 18.3, 2.4 Hz, 1H), 1.89 (d, *J* = 18.4 Hz, 1H), 1.84 – 1.70 (m, 3H), 1.70 – 1.20 (m, 15H), 1.18 (s, 3H), 1.04 – 0.95 (m, 4H), 0.95 – 0.88 (m, 4H), 0.84 (td, *J* = 13.1, 4.0 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 173.7, 65.2, 57.7, 57.6, 51.8, 49.4, 44.6, 40.2, 39.8, 39.8, 38.6, 37.4, 35.6, 35.4, 28.9, 26.9, 18.6, 18.5, 18.0, 16.5. IR: \bar{v} 3193, 2979, 2844, 1645, 1403, 1222, 1034, 953, 737 cm⁻¹. HRMS (ESI) m/z: anal. calculated for [C₂₁H₃₅NO₂ + H]⁺: 334.2741, found: 334.2729.

D-ring expansion of dehydroepiandrosterone (DHEA) and estrone.

Supplementary Figure 7. Syntheses of medium ring scaffold 14-18. 11 and 13 were prepared as

general procedure A. Alkylation of **17** was performed as procedure B. The relative stereochemistry of **14** was confirmed by NOE experiment. The ring expansion failed to work when changing the TBS group of **S6b** to carbamate.

Syntheses of 12, 17 and 18.

S5a⁴ and S5b⁵ were synthesized as reported by literature.

11, yield: (80%). ¹H NMR (500 MHz, CDCl₃) δ 7.20 (d, J = 8.6 Hz, 1H), 6.72 (dd, J = 8.5, 2.7 Hz, 1H), 6.65 (d, J = 2.8 Hz, 1H), 4.21 (q, J = 7.1 Hz, 2H), 3.78 (s, 3H), 3.19 (dd, J = 9.9, 8.4 Hz, 1H), 2.91 (dd, J = 10.3, 6.2 Hz, 2H), 2.34 (dddd, J = 38.5, 22.8, 9.5, 3.7 Hz, 3H), 2.17 – 1.91 (m, 3H), 1.71 – 1.39 (m, 5H), 1.29 (t, J = 7.1 Hz, 3H), 0.99 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 212.2, 169.4, 157.6, 137.6, 131.7, 126.3, 113.8, 111.6, 61.4, 55.2, 54.3, 48.9, 48.0, 44.0, 37.9, 31.9, 29.6, 26.5, 26.4, 25.8, 14.2, 13.2. **IR**: \bar{v} 3453, 2938, 1749, 1609, 1454, 1367, 1324, 1265, 1217, 1149, 1037, 900, 862, 785, 703 cm⁻¹. **HRMS** (ESI) m/z: anal. calculated for [C₂₂H₂₈O₄ + Na]⁺: 379.1880, found: 379.1872.

13, yield: (88%). ¹**H NMR** (400 MHz, CDCl₃) δ 4.18 (q, J = 7.1 Hz, 2H), 3.68 – 3.34 (m, 1H), 3.10 (dd, J = 10.0, 8.4 Hz, 1H), 2.37 – 2.07 (m, 1H), 1.95 (td, J = 12.8, 10.0 Hz, 1H), 1.89 – 1.75 (m, 2H), 1.75 – 1.53 (m, 5H), 1.53 – 1.16 (m, 13H), 1.16 – 1.04 (m, 1H), 1.02 – 0.79 (m, 18H), 0.77 – 0.61 (m, 1H), 0.04 (s, 6H). ¹³**C NMR** (101 MHz, CDCl₃) δ 212.5, 169.5, 71.9, 61.3, 54.5, 54.3, 49.0, 48.7, 45.0, 38.5, 37.1, 35.7, 34.7, 32.0, 31.8, 30.9, 28.4, 26.6, 25.9, 20.4, 18.2, 14.1, 13.2, 12.3, -4.6. **IR**: \bar{v} 3397, 2857, 1751, 1641, 1449, 1324, 1265, 1144, 1092, 1006, 868, 834, 736, 672 cm⁻¹. **HRMS** (ESI) m/z: anal. calculated for [C₂₈H₄₈O₄Si + Na]⁺: 499.3214, found: 499.3195.

A mixture of **11** or **13** (5.28 mmol), MgCl₂ (1.03 g, 10.56 mmol) and pyridine (3.8 mL, 47.2 mmol) in DCM (30.0 mL) under an argon atmosphere was stirred at rt for 30 mins. Next, a solution of acid chloride (10.56 mmol) in DCM (15.0 mL) was added dropwise over 2 h and the resulting mixture was stirred for another two hours at rt. The mixture was then diluted with DCM (30 mL) and washed with 10% aq. HCl (30 mL). The aqueous layer was then extracted with DCM (2×30 mL) and the combined organic extracts dried over sodium sulfate and concentrated in vacuum. Flash

column chromatography over silica column afforded S6 as yellow oil.

S6a, yield: (79%). ¹**H** NMR (500 MHz, CDCl₃) δ 7.31 (dd, J = 20.9, 4.4 Hz, 5H), 7.15 (d, J = 8.6 Hz, 1H), 6.70 (dd, J = 8.6, 2.7 Hz, 1H), 6.63 (d, J = 2.8 Hz, 1H), 5.22 (t, J = 6.2 Hz, 1H), 5.07 (s, 2H), 4.20 (q, J = 6.9 Hz, 2H), 3.76 (s, 3H), 3.44 (q, J = 6.4 Hz, 2H), 3.03 (dt, J = 18.4, 5.7 Hz, 1H), 2.97 – 2.79 (m, 4H), 2.34 (dd, J = 12.6, 4.6 Hz, 1H), 2.21 (td, J = 10.9, 4.0 Hz, 1H), 2.13 – 1.80 (m, 3H), 1.69 – 1.37 (m, 5H), 1.25 (t, J = 7.1 Hz, 3H), 1.00 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 208.2, 199.8, 167.9, 157.5, 156.1, 137.4, 136.4, 131.5, 128.3, 127.9, 127.9, 126.1, 113.7, 111.5, 74.0, 66.5, 62.3, 55.0, 49.8, 47.2, 43.5, 40.1, 37.8, 35.9, 32.1, 30.5, 29.3, 26.3, 25.6, 14.2, 13.8. IR: \bar{v} 3410, 1720, 1656, 1501, 1454, 1265, 1238, 1148, 1009, 736, 702 cm⁻¹. HRMS (ESI) m/z: anal. calculated for $[C_{33}H_{39}NO_7 + Na]^+$: 584.2619, found: 584.2609.

S6b, yield: (92%). ¹**H NMR** (500 MHz, CDCl₃) δ 7.52 – 7.04 (m, 5H), 5.11 (d, J = 27.6 Hz, 3H), 4.20 (qd, J = 7.5, 4.4 Hz, 2H), 3.54 (tt, J = 10.3, 4.6 Hz, 1H), 3.44 (d, J = 7.3 Hz, 2H), 3.06 – 2.80 (m, 2H), 2.74 (dd, J = 13.0, 5.6 Hz, 1H), 1.93 (t, J = 13.1 Hz, 1H), 1.80 (ddd, J = 13.0, 10.1, 2.6 Hz, 2H), 1.75 – 1.59 (m, 3H), 1.59 – 1.13 (m, 13H), 1.15 – 1.01 (m, 2H), 0.96 (s, 3H), 0.89 (s, 9H), 0.81 (s, 3H), 0.68 (ddd, J = 14.8, 10.9, 4.1 Hz, 1H), 0.06 (s, 6H). ¹³**C NMR** (101 MHz, CDCl₃) δ 208.6, 200.1, 168.1, 156.1, 136.5, 128.4, 128.0, 74.0, 71.8, 66.5, 62.3, 54.2, 49.6, 48.2, 44.8, 40.1, 38.5, 37.0, 35.9, 35.6, 34.6, 32.2, 31.8, 30.9, 30.6, 28.2, 25.9, 20.3, 18.2, 14.2, 13.8, 12.2, -4.6. **IR**: \bar{v} 3443, 2857, 1723, 1516, 1453, 1229, 1142, 863, 834, 775 cm⁻¹. **HRMS** (ESI) m/z: anal. calculated for [C₃₉H₅₉NO₇Si + Na]⁺: 704.3953, found: 704.3943.

A mixture of compound **S6** (3.82 mmol) and Pd/C (0.30 g, 10%) in EtOAc (50 mL) was hydrogenated at rt for 24 h under hydrogen atmosphere. The suspension was filtered through a pad of celite and the pad was washed with CH_2Cl_2 . The combined filtrates were concentrated to dryness. Flash column chromatography over silica column afforded **12** or **17** as a colorless oil.

12, yield: (90%). ¹**H NMR** (500 MHz, CDCl₃) δ 7.16 (d, J = 8.7 Hz, 1H), 6.72 (dd, J = 8.7, 2.7 Hz, 1H), 6.63 (d, J = 2.8 Hz, 1H), 5.67 (dd, J = 8.9, 4.8 Hz, 1H), 4.39 – 4.02 (m, 2H), 3.91 (ddd, J = 13.8, 8.9, 5.3 Hz, 1H), 3.78 (s, 3H), 3.54 (td, J = 13.2, 5.3 Hz, 1H), 3.44 – 3.23 (m, 2H), 2.87 (q, J = 13.8, 8.9, 5.3 Hz, 1H), 3.78 (s, 3H), 3.54 (td, J = 13.2, 5.3 Hz, 1H), 3.44 – 3.23 (m, 2H), 2.87 (q, J = 13.8, 8.9, 5.3 Hz, 1H), 3.78 (s, 3H), 3.54 (td, J = 13.2, 5.3 Hz, 1H), 3.44 – 3.23 (m, 2H), 2.87 (q, J = 13.8, 8.9, 5.3 Hz, 1H), 3.78 (s, 3H), 3.54 (td, J = 13.2, 5.3 Hz, 1H), 3.44 – 3.23 (m, 2H), 2.87 (q, J = 13.8, 8.9, 5.3 Hz, 1H), 3.44 – 3.23 (m, 2H), 2.87 (q, J = 13.8, 8.9, 5.3 Hz, 1H), 3.78 (s, 3H), 3.54 (td, J = 13.2, 5.3 Hz, 1H), 3.44 – 3.23 (m, 2H), 2.87 (q, J = 13.8, 8.9, 5.3 Hz, 1H), 3.78 (s, 2H), 3.88 (s,

= 6.1, 5.1 Hz, 2H), 2.47 – 2.25 (m, 2H), 2.18 – 1.85 (m, 3H), 1.79 (dt, J = 13.1, 3.2 Hz, 1H), 1.67 – 1.29 (m, 5H), 1.25 (t, J = 7.2 Hz, 3H), 1.12 (s, 3H), 1.03 (dd, J = 10.5, 5.2 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 209.8, 180.5, 168.6, 157.7, 137.3, 131.3, 126.2, 113.6, 111.9, 63.9, 61.6, 55.2, 48.7, 48.4, 43.5, 41.0, 38.8, 35.8, 34.0, 29.9, 27.4, 26.8, 25.7, 14.2, 14.1. IR: \bar{v} 2990, 1666, 1502, 1442, 1366, 1266, 1228, 1216, 857, 743 cm⁻¹. HRMS (ESI) m/z: anal. calculated for [C₂₅H₃₃NO₅ + H]⁺ : 428.2432, found: 428.2427. LC-MS (t_R (major) = 2.52 min, t_R (minor) = 2.63 min, λ = 254 nm, purity 97%).

17, yield: (95%). ¹H NMR (400 MHz, CDCl₃) δ 4.35 – 3.97 (m, 3H), 3.97 – 3.75 (m, 1H), 3.53 (tt, J = 10.5, 4.8 Hz, 1H), 2.79 (dd, J = 12.9, 6.4 Hz, 1H), 2.61 (ddd, J = 19.1, 5.6, 1.1 Hz, 1H), 2.22 (ddd, J = 19.1, 10.1, 7.1 Hz, 1H), 1.97 – 1.81 (m, 2H), 1.79 – 1.59 (m, 4H), 1.59 – 1.15 (m, 14H), 1.06 (s, 3H), 0.85 (d, J = 22.7 Hz, 15H), 0.68 – 0.57 (m, 1H), 0.04 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 202.3, 180.5, 167.0, 71.9, 66.2, 62.4, 54.4, 51.0, 46.9, 46.3, 44.9, 38.5, 37.1, 35.6, 34.7, 34.3, 33.6, 31.8, 31.1, 30.4, 28.4, 25.9, 20.6, 18.2, 14.5, 14.0, 12.3, -4.6. HRMS (ESI) m/z: anal. calculated for [C₃₁H₅₃NO₅Si + H]⁺: 548.3766, found: 548.3750.

To a solution of compound **17** (1.09 g, 2.0 mol) and HMPA (716 mg 4.0 mmol) in THF (20 mL) was added NaH (104 mg, 2.6 mmol, 60%) under Ar. The reaction mixture was stirred for 1 h. Then 1-Chloro-3-iodopropane (2.08 g, 10.0 mol) was added. The mixture was stirred for 24 h. After quenching with NH₄Cl solution, the mixture was diluted with ethyl acetate (60 mL), and washed with NaS₂O₃ (20 mL) and brine (20 mL \times 2). The organic phase was dried over sodium sulfate and concentrated in vacuum to afford crude product which was directly used in the next step without further purification.

To a solution of the above product in DMF (10 mL) was added NaN₃ (1.17 g, 18.0 mmol). The reaction mixture was heated at 80 °C for 3 h. The mixture was cooled to room temperature, diluted with diethyl ether (150 mL), and washed with brine (50 mL × 3), and the combined organic extracts was dried over sodium sulfate and concentrated in vacuum. Flash column chromatography over silica column afforded **S7** as a yellow oil. Yield: (756 mg, 60% for two steps). ¹H NMR (500 MHz, CDCl₃) δ 5.57 (dd, J = 8.6, 5.0 Hz, 1H), 4.22 (dq, J = 10.9, 7.2 Hz, 1H), 4.18 – 4.03 (m, 2H), 3.73 (ddd, J = 13.4, 8.5, 5.0 Hz, 1H), 3.55 (tt, J = 10.4, 4.7 Hz, 1H), 3.47 (ddd, J = 15.3, 11.9, 5.2 Hz, 1H), 3.25 (dddd, J = 21.7, 18.9, 11.0, 5.7 Hz, 3H), 2.18 (dd, J = 15.3, 4.3 Hz, 1H), 2.11 – 1.98 (m, 1H), 1.95 – 1.74 (m, 3H), 1.74 – 1.57 (m, 4H), 1.57 – 1.15 (m, 15H), 1.15 – 1.04 (m, 4H), 1.00 – 0.84 (m, 10H), 0.84 – 0.72 (m, 4H), 0.05 (s, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 210.5, 180.5, 171.9, 71.8, 65.1, 61.4, 53.5, 51.5, 49.0, 46.8, 44.6, 38.6, 38.3, 38.0, 37.0, 36.9, 36.2, 34.4, 33.1,

31.8, 31.8, 31.4, 28.7, 25.9, 25.0, 20.0, 18.2, 14.3, 14.1, 12.4, -4.6. **HRMS** (ESI) m/z: anal. calculated for $[C_{34}H_{58}N_4O_5Si + Na]^+$: 653.4069, found: 653.4061.

The keto azide **S7** (126 mg, 0.20 mmol) was dissolved in 5.0 mL of trifluoroacetic acid and the solution was stirred for 5 days. The reaction mixture was diluted with 30 mL of ethyl acetate, and the solution was washed with saturated aqueous NaHCO₃ and brine (1 × 25 mL). The organic layer was dried over sodium sulfate and evaporated under vacuum to give an oil. The crude product was purified by flash chromatography to give lactam **18** as a yellow oil. Yield: (33.2 mg, 34%). ¹**H NMR** (500 MHz, CDCl₃) δ 5.88 (dd, *J* = 11.1, 2.3 Hz, 1H), 4.91 (tt, *J* = 11.5, 5.2 Hz, 1H), 4.38 (ddt, *J* = 13.7, 11.1, 9.1 Hz, 1H), 4.15 (dddd, *J* = 17.8, 10.7, 7.1, 3.7 Hz, 2H), 3.98 (td, *J* = 9.3, 8.3, 2.9 Hz, 1H), 3.50 (td, *J* = 9.5, 6.5 Hz, 1H), 3.00 (ddt, *J* = 13.7, 9.8, 1.9 Hz, 1H), 2.79 (ddd, *J* = 12.8, 9.0, 1.6 Hz, 1H), 2.64 (dd, *J* = 13.7, 3.3 Hz, 1H), 2.42 (dt, *J* = 12.8, 9.5 Hz, 1H), 2.20 – 2.00 (m, 3H), 1.91 (qt, *J* = 7.6, 4.1 Hz, 2H), 1.84 – 1.41 (m, 12H), 1.33 – 1.17 (m, 8H), 1.10 (s, 3H), 1.09 – 0.99 (m, 1H), 0.93 – 0.84 (m, 1H), 0.83 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 178.5, 172.9, 170.1, 78.5, 68.6, 60.6, 53.1, 49.9, 46.3, 44.7, 44.2, 41.1, 38.2, 37.8, 36.6, 36.4, 36.3, 35.9, 33.2, 32.2, 31.3, 28.9, 26.8, 23.9, 20.1, 15.2, 14.1, 12.1. **IR**: \bar{v} 3427, 3055, 2855, 2099, 1738, 1664, 1366, 1265, 1134, 1019, 868, 703 cm⁻¹. **HRMS** (ESI) m/z: anal. calculated for [C₂₈H₄₄N₂O₅ + H]⁺: 489.3323, found: 489.3310.

General protocol for syntheses of 14-16.

To a solution of **13** (514 mg, 1.08 mol,) in dry MeCN (10 mL) was added 2-(trimethylsilyl) phenyl trifluoromethanesulfonate (644 mg, 2.16 mmol) and CsF (328 mg, 2.16 mmol) under Ar. The reaction mixture was heated at 80 °C for 3 h. The mixture was cooled to room temperature, diluted with ethyl acetate (50 mL), and washed with brine (20 mL × 2). The organic phase was dried over sodium sulfate and concentrated in vacuum. Flash column chromatography over silica column afforded **14** as white solid; Yield: (286 mg, 48%) and **15** as yellow oil. Yield: (16.1 mg, 2.7%). **14** can be converted to **15** by 1M TBAF in THF at room temperature for 6 h. **14**, **¹H NMR** (400 MHz, CDCl₃) δ 7.55 – 7.28 (m, 3H), 7.14 (dd, *J* = 7.6, 1.2 Hz, 1H), 4.17 – 3.94 (m, 2H), 3.87 (dd, *J* = 9.2, 4.6 Hz, 1H), 3.51 (td, *J* = 10.7, 5.4 Hz, 1H), 2.37 (ddd, *J* = 14.7, 9.2, 3.3 Hz, 1H), 2.03 (qd, *J* = 10.8, 10.4, 4.0 Hz, 2H), 1.76 – 1.53 (m, 5H), 1.53 – 1.08 (m, 16H), 1.04 – 0.81 (m, 11H), 0.78 (s, 3H), 0.68 – 0.55 (m, 1H), 0.04 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 213.8, 173.5, 140.2, 134.3, 130.5, 129.1, 128.0, 127.6, 71.9, 61.30, 53.4, 50.7, 49.5, 46.0, 44.2, 38.4, 37.6, 36.9, 35.6, 35.5, 31.7, 30.9, 28.6, 28.1, 25.9, 20.3, 18.2, 14.9, 13.9, 12.2, -4.6 IR: \bar{v} 2944, 2865, 1447, 1366, 967, 902, 807, 836,

739 cm⁻¹. **HRMS** (ESI) m/z: anal. calculated for $[C_{34}H_{52}O_4Si + H]^+$: 553.3708, found: 553.3686. **15**, ¹**H NMR** (500 MHz, CDCl₃) δ 7.39 (td, J = 7.6, 1.5 Hz, 1H), 7.30 (td, J = 7.4, 1.2 Hz, 1H), 7.28 – 7.18 (m, 1H), 7.09 (d, J = 7.6 Hz, 1H), 4.39 – 4.12 (m, 2H), 3.69 (dd, J = 12.6, 5.9 Hz, 1H), 3.47 (tt, J = 10.9, 4.7 Hz, 1H), 2.32 (td, J = 13.3, 5.4 Hz, 1H), 1.94 (dq, J = 12.9, 3.5 Hz, 1H), 1.72 (dd, J = 9.3, 3.0 Hz, 1H), 1.68 – 1.51 (m, 4H), 1.50 – 1.11 (m, 13H), 0.99 – 0.76 (m, 12H), 0.76 – 0.66 (m, 5H), 0.55 (td, J = 11.3, 3.5 Hz, 1H), 0.01 (s, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 215.6, 172.7, 139.9, 134.3, 130.9, 127.3, 126.0, 124.3, 71.9, 61.0, 53.0, 49.0, 45.7, 44.1, 43.8, 38.3, 37.9, 36.9, 36.6, 35.5, 31.7, 31.3, 30.7, 28.5, 25.9, 20.5, 18.2, 14.1, 14.0, 12.2, -4.6. HRMS (ESI) m/z: anal. calculated for $[C_{34}H_{52}O_4Si + Na]^+$: 575.3527, found: 575.3505.

To a solution of compound **13** (143 mg, 0.3 mol,) in dry THF (10 mL) was added NaH (15.6 mg, 0.39 mmol, 60%) under Ar. The reaction mixture was stirred for 2 h. Then methyl phenylpropargylate (96 mg, 0.6 mol) was added. The mixture was heated at reflux for 24 h. The mixture was cooled to room temperature and 2 N HCl (2.0 ml) was added. The reaction mixture was heated at reflux for another 2 h. The mixture was cooled to room temperature, diluted with ethyl acetate (50 mL), and washed with NaHCO₃ (20 mL × 2) and brine (20 mL × 2). The organic phase was dried over sodium sulfate and concentrated in vacuum. Flash column chromatography over silica column afforded **16** as yellow oil; Yield: (76.2 mg, 46% for two steps). ¹**H NMR** (500 MHz, CDCl₃) δ 7.40 (q, *J* = 5.2, 4.8 Hz, 3H), 7.26 – 7.09 (m, 2H), 3.94 – 3.84 (m, 1H), 3.84 – 3.73 (m, 1H), 3.68 (dq, *J* = 10.9, 5.2 Hz, 1H), 3.64 – 3.49 (m, 4H), 2.52 (td, *J* = 14.2, 13.4, 5.4 Hz, 1H), 2.29 – 2.14 (m, 1H), 2.03 – 1.60 (m, 10H), 1.60 – 1.17 (m, 11H), 1.13 – 0.95 (m, 5H), 0.89 – 0.86 (m, 4H). ¹³**C NMR** (126 MHz, CDCl₃) δ 210.6, 170.6, 163.8, 148.4, 136.5, 131.8, 128.3, 127.8, 127.8, 126.9, 71.1, 60.9, 53.2, 52.0, 49.3, 47.9, 44.4, 44.1, 37.9, 36.8, 36.7, 36.2, 35.6, 31.3, 30.9, 28.4, 27.9, 20.5, 13.7, 13.6, 12.2. **IR**: \bar{v} 3456, 3016, 2944, 1435, 1229, 1046, 898, 737, 702 cm⁻¹. **HRMS** (ESI) m/z: anal. calculated for [C₃₂H₄₂O₆ + H]⁺: 523.3054, found: 523.3042.

C-H oxidation/ring expansion of dehydroepiandrosterone, cholesterol, isosteviol, estrone and Diosgenin.

Syntheses of 14-16.

Supplementary Figure 8. Electrochemical allylic oxidation/ring expansion of natural products. 19g,⁶ **19h**⁷ were synthesized as procedure reported by literature. The electrochemical allylic oxidation was performed by following procedures reported by Baran's group⁸ using IKA ElectraSyn 2.0. General procedure C was used for Backman rearrangement of **S8**. TBS group of **21g** and **21i** was removed following procedure D, while TBS group of **21h** was removed following procedure E.

19g, ¹**H NMR** (500 MHz, CDCl₃) δ 5.32 (dt, J = 5.4, 2.0 Hz, 1H), 4.07 – 3.68 (m, 4H), 3.49 (tt, J = 10.9, 4.7 Hz, 2H), 2.36 – 2.22 (m, 1H), 2.17 (ddd, J = 13.3, 5.0, 2.3 Hz, 1H), 2.07 – 1.90 (m, 2H), 1.87 – 1.76 (m, 2H), 1.76 – 1.64 (m, 2H), 1.64 – 1.33 (m, 7H), 1.26 (qd, J = 11.9, 6.3 Hz, 1H), 1.13 – 0.93 (m, 5H), 0.90 (s, 9H), 0.87 (s, 3H), 0.06 (s, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 141.5, 120.9, 119.5, 72.5, 65.2, 64.5, 50.63, 50.0, 45.7, 42.8, 37.4, 36.6, 34.2, 32.2, 32.1, 31.3, 30.6, 25.9, 22.8, 20.5, 19.4, 18.2, 14.2, -4.6. **HRMS** (ESI) m/z: anal. calculated for C₂₇H₄₆O₃ [M + Na]⁺ : 469.3108, found: 469.3118.

20g, yield: 0.5 mmol scale, 68%, 2.5 mmol scale, 49%. ¹H NMR (500 MHz, CDCl₃) δ 5.65 (d, *J* = 1.7 Hz, 1H), 4.01 – 3.78 (m, 4H), 3.68 – 3.52 (m, 1H), 2.53 – 2.32 (m, 3H), 2.30 – 2.16 (m, 1H), 2.00 – 1.87 (m, 2H), 1.87 – 1.70 (m, 3H), 1.69 – 1.34 (m, 8H), 1.18 (s, 3H), 0.88 (s, 9H), 0.85 (s, 3H), 0.05 (s, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 201.6, 166.0, 125.7, 118.6, 71.2, 65.1, 64.4, 49.9, 46.1, 45.3, 44.3, 42.5, 38.3, 36.4, 34.1, 31.7, 29.6, 25.8, 25.0, 20.6, 18.1, 17.3, 14.4, -4.7, -4.7.

HRMS (ESI) m/z: anal. calculated for $[C_{27}H_{44}O_4Si + H]^+$: 461.3082, found: 461.3069.

20h, yield: 0.5 mmol scale, 58%. ¹**H NMR** (500 MHz, CDCl₃) δ 5.75 – 5.52 (m, 1H), 4.48 (td, J = 8.0, 5.4 Hz, 1H), 3.60 (tt, J = 10.5, 4.8 Hz, 1H), 3.47 (ddd, J = 11.0, 4.5, 2.0 Hz, 1H), 3.40 (t, J = 10.9 Hz, 1H), 2.94 – 2.65 (m, 1H), 2.41 (dtd, J = 13.7, 10.8, 5.3 Hz, 3H), 1.96 – 1.78 (m, 3H), 1.77 – 1.35 (m, 13H), 1.21 (s, 3H), 1.15 (dt, J = 17.7, 5.2 Hz, 2H), 0.98 (d, J = 7.0 Hz, 3H), 0.89 (s, 9H), 0.80 (d, J = 7.0 Hz, 6H), 0.07 (s, 6H). ¹³**C NMR** (126 MHz, CDCl₃) δ 201.7, 166.0, 125.6, 109.2, 80.9, 71.2, 66.8, 61.1, 49.8, 49.5, 44.8, 42.6, 41.5, 40.9, 38.7, 38.5, 36.4, 33.7, 31.7, 31.4, 30.3, 28.8, 25.8, 20.9, 18.1, 17.3, 17.1, 16.4, 14.6, -4.7, -4.7. **IR**: \bar{v} 3354, 1675, 1377, 1174, 1077, 981, 899, 851, 836, 773, 663 cm⁻¹. **HRMS** (ESI) m/z: anal. calculated for [C₃₃H₅₄O₄Si + H]⁺: 543.3864, found: 543.3844.

20i, yield: 0.5 mmol scale, 70%. ¹H NMR (500 MHz, CDCl₃) δ 5.78 – 5.50 (m, 1H), 3.60 (tt, *J* = 10.5, 4.8 Hz, 1H), 2.39 (qdd, *J* = 14.0, 6.0, 2.0 Hz, 3H), 2.23 (dd, *J* = 12.5, 10.7 Hz, 1H), 2.03 (dt, *J* = 12.8, 3.5 Hz, 1H), 1.90 (dtt, *J* = 12.7, 7.1, 3.2 Hz, 2H), 1.82 (dq, *J* = 13.2, 3.7 Hz, 1H), 1.69 – 1.44 (m, 5H), 1.44 – 0.97 (m, 16H), 0.92 (d, *J* = 6.5 Hz, 3H), 0.91 – 0.88 (m, 9H), 0.87 (d, *J* = 2.4 Hz, 3H), 0.86 (d, *J* = 2.4 Hz, 3H), 0.06 (d, *J* = 0.8 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 202.4, 165.8, 125.8, 71.3, 54.8, 50.0, 49.92, 45.4, 43.0, 42.5, 39.4, 38.7, 38.3, 36.4, 36.2, 35.7, 31.7, 28.5, 28.0, 26.3, 25.8, 23.8, 22.8, 22.5, 21.2, 18.8, 18.1, 17.3, 11.9, -4.7, -4.7. **IR**: \bar{v} 2977, 1739, 1422, 1365, 1265, 1228, 1216, 705 cm⁻¹. **HRMS** (ESI) m/z: anal. calculated for [C₃₃H₅₈O₂Si + Na]⁺: 537.4098, found: 537.4089.

A mixture of compound **20** (6.0 mmol,) and Pd/C (100 mg, 10%) in EtOAc (100 mL) was hydrogenated at room temperature for 16 h under hydrogen atmosphere. The suspension was filtered through a pad of celite and the pad was washed with CH_2Cl_2 . The combined filtrates were concentrated to dryness. Recrystallization of the crude reaction mixture with EtOAc give product **S8**.

S8g, yield: 90%. ¹**H** NMR (500 MHz, CDCl₃) δ 4.02 – 3.69 (m, 4H), 3.53 (tt, J = 9.7, 4.6 Hz, 1H),

2.42 – 2.20 (m, 3H), 2.11 – 1.95 (m, 1H), 1.97 – 1.68 (m, 5H), 1.63 (dt, J = 12.3, 3.6 Hz, 1H), 1.55 – 1.34 (m, 7H), 1.23 – 1.04 (m, 5H), 0.97 (td, J = 13.2, 3.8 Hz, 1H), 0.86 (s, 9H), 0.82 (s, 3H), 0.03 (d, J = 1.0 Hz, 6H). ¹³**C NMR** (126 MHz, CDCl₃) δ 211.3, 118.6, 71.4, 65.1, 64.4, 55.2, 50.0, 46.6, 46.0, 45.6, 43.3, 38.4, 36.3, 35.9, 34.0, 31.5, 29.7, 25.8, 23.7, 21.3, 18.1, 14.4, 11.8, -4.7. **IR**: \bar{v} 3359, 1703, 1641, 1265, 1091, 948, 872, 835, 774, 735, 703 cm⁻¹. **HRMS** (ESI) m/z: anal. calculated for [C₂₇H₄₆O₄Si + H]⁺: 463.3238, found: 463.3224.

S8h, yield: 84%. ¹**H NMR** (500 MHz, CDCl₃) δ 4.47 (td, J = 7.9, 6.2 Hz, 1H), 3.54 (tt, J = 10.4, 4.7 Hz, 1H), 3.46 (dt, J = 10.9, 3.2 Hz, 1H), 3.38 (t, J = 10.9 Hz, 1H), 2.58 (ddd, J = 12.8, 7.7, 5.5 Hz, 1H), 2.50 (t, J = 11.3 Hz, 1H), 2.43 – 2.26 (m, 1H), 2.01 (dd, J = 12.5, 2.3 Hz, 1H), 1.83 (p, J = 6.9 Hz, 1H), 1.79 – 1.34 (m, 16H), 1.21 – 1.02 (m, 6H), 1.02 – 0.92 (m, 4H), 0.87 (d, J = 1.1 Hz, 9H), 0.79 (d, J = 6.3 Hz, 3H), 0.75 (s, 3H), 0.04 (s, 6H). ¹³**C NMR** (126 MHz, CDCl₃) δ 211.5, 109.2, 80.8, 71.4, 66.8, 61.3, 55.3, 49.3, 48.5, 46.9, 46.0, 41.2, 40.4, 38.8, 38.4, 36.2, 36.1, 32.3, 31.5, 31.4, 30.3, 28.8, 25.8, 21.6, 18.2, 17.2, 16.5, 14.6, 11.9, -4.7. **IR**: \bar{v} 2950, 1435, 1266, 1216, 1092, 1057, 981, 837 cm⁻¹. **HRMS** (ESI) m/z: anal. calculated for [C₃₃H₅₆O₄Si + H]⁺: 545.4021, found: 545.4006.

S9g, yield: 68%, ¹**H NMR** (500 MHz, CDCl₃) δ 5.22 (s, 1H), 3.99 – 3.72 (m, 4H), 3.59 – 3.37 (m, 1H), 3.31 (ddd, J = 11.1, 9.0, 3.9 Hz, 1H), 2.65 (dd, J = 14.4, 10.1 Hz, 1H), 2.14 – 1.92 (m, 1H), 1.96 – 1.69 (m, 5H), 1.70 – 1.16 (m, 10H), 1.10 (ddd, J = 12.0, 9.2, 5.9 Hz, 1H), 1.07 – 0.97 (m, 1H), 0.97 (s, 3H), 0.85 (s, 9H), 0.83 (s, 3H), 0.02 (s, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 177.5, 118.4, 70.9, 65.3, 64.5, 53.7, 52.3, 48.5, 45.6, 41.6, 41.2, 39.3, 39.3, 37.7, 33.6, 31.2, 29.4, 25.8, 23.4, 21.6, 18.1, 13.9, 12.8, -4.7, -4.7. **IR**: \bar{v} 3225, 1447, 1337, 1228, 1051, 1007, 952, 875, 800, 775 cm⁻¹. **HRMS** (ESI) m/z: anal. calculated for [C₂₇H₄₇NO₄Si + Na]⁺: 500.3167, found: 500.3148.

S9h, yield: 54%. ¹**H NMR** (500 MHz, CDCl₃) δ 5.75 (d, J = 3.6 Hz, 1H), 4.38 (q, J = 7.3 Hz, 1H), 3.59 – 3.39 (m, 3H), 3.35 (t, J = 11.0 Hz, 1H), 2.69 (dd, J = 14.3, 10.3 Hz, 1H), 2.13 (ddd, J = 11.2, 7.7, 4.3 Hz, 1H), 2.00 – 1.52 (m, 11H), 1.50 – 1.25 (m, 9H), 1.20 – 1.06 (m, 2H), 0.99 (s, 3H), 0.95 (d, J = 6.4 Hz, 3H), 0.86 (s, 9H), 0.78 (d, J = 6.3 Hz, 3H), 0.76 (s, 3H), 0.02 (s, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 177.7, 109.2, 79.6, 70.9, 66.8, 61.8, 54.0, 53.5, 51.1, 41.7, 41.2, 40.0, 39.4, 39.3, 38.8, 37.5, 32.4, 31.3, 31.2, 30.2, 28.7, 25.8, 22.1, 18.1, 17.0, 15.9, 14.4, 12.7, -4.6, -4.7. **IR**: \bar{v} 3455, 3016, 1664, 1435, 1365, 1092, 981, 736 cm⁻¹. **HRMS** (ESI) m/z: anal. calculated for [C_{33H57}NO₄Si + Na]⁺: 582.3949, found: 582.3933.

S9i, yield: 52%. ¹**H NMR** (500 MHz, CDCl₃) δ 3.45 (ddd, J = 11.0, 6.3, 4.7 Hz, 1H), 3.25 (ddd, J = 10.7, 9.1, 4.1 Hz, 1H), 2.63 (dd, J = 14.3, 10.2 Hz, 1H), 1.95 – 1.77 (m, 3H), 1.77 – 1.54 (m, 8H), 1.54 – 0.89 (m, 21H), 0.86 (d, J = 6.5 Hz, 3H), 0.82 (d, J = 1.8 Hz, 11H), 0.81 (d, J = 2.6 Hz, 3H), 0.63 (s, 3H), -0.02 (s, 6H). ¹³**C NMR** (126 MHz, CDCl₃) δ 177.6, 70.9, 55.7, 54.2, 53.4, 52.0, 42.2, 41.5, 41.0, 39.3, 39.2, 39.1, 38.6, 37.6, 35.8, 35.4, 31.2, 27.8, 27.6, 25.8, 24.9, 23.6, 22.7, 22.4, 22.1, 18.4, 18.0, 12.7, 11.4, -4.7, -4.8. **IR**: \bar{v} 3407, 2859, 1660, 1264, 1095, 1056, 1006, 874, 853, 799 cm⁻¹. **HRMS** (ESI) m/z: anal. calculated for [C₃₃H₆₁NO₂Si + Na]⁺: 554.4364, found: 554.4379.

21g, yield: 60%. ¹**H NMR** (500 MHz, CDCl₃) δ 6.41 (s, 1H), 5.40 (dd, J = 5.1, 2.5 Hz, 1H), 3.54 (ddt, J = 16.0, 10.8, 4.7 Hz, 1H), 2.72 – 2.45 (m, 3H), 2.35 (ddd, J = 13.2, 5.0, 2.4 Hz, 1H), 2.31 – 2.09 (m, 5H), 2.11 – 1.84 (m, 5H), 1.69 (td, J = 12.1, 11.1, 6.3 Hz, 2H), 1.66 – 1.38 (m, 4H), 1.33 (s, 3H), 1.15 (td, J = 13.7, 3.6 Hz, 1H), 0.99 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 213.8, 175.0, 139.8, 120.4, 71.1, 61.5, 53.1, 46.8, 41.9, 37.7, 37.5, 36.5, 34.8, 32.1, 31.4, 31.0, 22.5, 18.5, 16.7. IR: \bar{v} 3455, 2970, 1657, 1441, 1366, 1216, 1079, 1025, 897, 735 cm⁻¹. HRMS (ESI) m/z: anal. calculated for C₁₉H₃₀NO₃ [M + H]⁺: 320.2200, found: 320.2209. LC-MS ($t_R = 1.08 \text{ min}, \lambda = 210 \text{ nm}, \text{ purity >99\%}$).

21h, yellow solid. Yield: (860 mg, 84%). ¹**H NMR** (500 MHz, CDCl₃) δ 5.31 (d, J = 6.4 Hz, 1H), 4.40 (q, J = 7.3 Hz, 1H), 3.58 (tt, J = 10.9, 4.7 Hz, 1H), 3.55 – 3.43 (m, 1H), 3.37 (t, J = 10.9 Hz, 1H), 2.72 (dd, J = 14.3, 10.6 Hz, 1H), 2.15 (ddd, J = 12.4, 7.5, 5.2 Hz, 1H), 1.98 – 1.73 (m, 7H), 1.65 (dddd, J = 35.2, 20.2, 10.3, 3.5 Hz, 4H), 1.54 – 1.22 (m, 9H), 1.21 – 1.00 (m, 7H), 0.97 (d, J = 6.5 Hz, 3H), 0.80 (d, J = 6.3 Hz, 3H), 0.78 (s, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 177.3, 109.3, 79.6, 70.1, 66.9, 61.9, 54.2, 53.6, 51.1, 41.7, 41.5, 40.7, 40.1, 39.4, 39.3, 38.8, 37.4, 32.4, 31.3, 30.7, 30.2, 28.7, 22.1, 17.1, 16.0, 14.4, 12.7. **IR**: \bar{v} 3016, 1649, 1267, 1092, 1060, 980, 896, 737 cm⁻¹. **HRMS** (ESI) m/z: anal. calculated for $[C_{27}H_{43}NO_4 + H]^+$: 446.3265, found: 446.3262.

21i, white solid, yield: (86%). ¹**H NMR** (CDCl₃, 500 MHz) δ 5.33 (s, 1H), 3.60-3.54 (m, 1H), 3.31 (td, J = 9.8, 3.4 Hz, 1H), 2.69 (dd, J = 14.2, 10.9 Hz, 1H), 1.97-1.87 (m, 4H), 1.83-1.76 (m, 5H), 1.71-1.65 (m, 1H), 1.54-1.43 (m, 3H), 1.39-1.31 (m, 5H), 1.17-1.03 (m, 11H), 0.99 (s, 3H), 0.91 (d, J = 6.5 Hz, 3H), 0.87 (d, J = 2.5 Hz, 3H), 0.86 (d, J = 2.5 Hz, 3H), 0.69 (s, 3H). ¹³C **NMR** (CDCl₃, 125 MHz) δ 177.7, 70.2, 56.0, 54.6, 53.6, 52.2, 42.5, 41.6, 40.8, 39.5, 39.3, 38.8, 37.6, 36.0, 35.6, 30.8, 28.1, 27.8, 25.2, 23.8, 22.9, 22.6, 22.3, 18.6, 12.9, 11.7. **HRMS** (ESI): *m/z*: calculated for C₂₇H₄₈NO₂: [M + H]⁺ 418.3680, found: 418.3687.

Supplementary Figure 9. Syntheses of 24. The relative stereochemistry of **S10** was confirmed by X-ray crystallography. The electrochemical allylic oxidation was performed following procedures reported by Baran's group⁸ using IKA ElectraSyn 2.0. General procedure C was used for Backman rearrangement of **S10**.

To a solution of **1d** (1.40 g, 4.44 mmol) in toluene (25 mL) were added lead (IV) acetate (2.56 g, 5.78 mmol), cooper(II) acetate (44 mg, 0.22 mmol), and pyridine (1.36 g, 16.9 mmol), and the

reaction mixture was stirred at 90 °C for 15 min. Then it was diluted with ether (80 mL) and washed with 2 N HCl (3×20 mL), water (10 mL), sat. aq NaHCO₃ (2×10 mL), and brine, and the organic phase was dried over sodium sulfate. Removal of the solvent under vacuum afforded a crude product which was used in the next step without purification. To a stirred solution of this crude product in dry toluene (30 mL) was added iodine (16.6 mg, 0.05 mmol), and the reaction mixture was stirred at 90 °C for 3 h. Then it was diluted with EtOAc (80 mL) and washed with Na₂S₂O₃ (20 mL) and brine, and the organic phase was dried over sodium sulfate. Removal of the solvent under vacuum afforded a crude product which was used in the next step without purification.

To a solution of above product and ethylene glycol (2.79 g, 45 mmol) in toluene (30 mL) was added p-toluenesulfonic acid (19.0 mg, 0.1 mmol). The reaction mixture was heated at reflux overnight with a Dean-Stark trap. The mixture was cooled to room temperature, diluted with ethyl acetate (60 mL), and washed with saturated aqueous sodium bicarbonate (10 mL × 2) and brine (10 mL × 2). The organic phase was dried over sodium sulfate and concentrated in vacuum. Flash column chromatography over silica column afforded **22**. Yield: (1.09 g, 78% for three steps). ¹**H NMR** (500 MHz, CDCl₃) δ 4.09 – 3.63 (m, 4H), 2.57 – 2.23 (m, 2H), 1.97 (dt, *J* = 17.4, 8.8 Hz, 1H), 1.87 – 1.42 (m, 14H), 1.33 (td, *J* = 13.7, 3.9 Hz, 1H), 1.24 – 1.08 (m, 3H), 1.03 (s, 3H), 0.99 (d, *J* = 12.0 Hz, 1H), 0.86 (s, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 136.9, 123.6, 118.5, 65.1, 64.0, 55.0, 54.46, 47.8, 45.2, 40.9, 40.7, 38.9, 38.0, 35.7, 32.7, 23.6, 21.3, 20.7, 20.1, 19.4, 18.7. **IR**: \bar{v} 1737, 1440, 1365, 1265, 1228, 1216, 897, 742, 704 cm⁻¹. **HRMS** (ESI) m/z: anal. calculated for [C₂₁H₃₂O₂ + H]⁺: 317.2475, found: 317.2466.

23, yield: 0.5 mmol scale, 68%. ¹**H NMR** (500 MHz, CDCl₃) δ 4.04 – 3.71 (m, 4H), 2.62 (dt, *J* = 14.2, 3.5 Hz, 1H), 2.51 – 2.29 (m, 3H), 2.13 – 1.91 (m, 2H), 1.88 – 1.54 (m, 10H), 1.47 (td, *J* = 13.7, 3.4 Hz, 1H), 1.32 – 1.14 (m, 5H), 1.02 (dd, *J* = 11.5, 2.9 Hz, 1H), 0.88 (s, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 198.9, 164.1, 128.0, 118.0, 65.2, 64.2, 54.6, 53.9, 47.7, 45.3, 40.6, 39.4, 39.1, 36.1, 35.2, 33.2, 26.0, 20.8, 19.9, 18.6, 11.0. **IR**: \bar{v} 3457, 1665, 1449, 1366, 1275, 1228, 1054, 764, 663 cm⁻¹. **HRMS** (ESI) m/z: anal. calculated for [C₂₁H₃₀O₃ + H]⁺: 331.2267, found: 331.2258.

A mixture of compound 23 (484 mg, 1.46 mmol,) and PtO_2 (100 mg) in EtOAc (20 mL) was hydrogenated at room temperature for 12 h under hydrogen atmosphere. The suspension was filtered through a pad of celite and the pad was washed with CH_2Cl_2 . The combined filtrates were concentrated to dryness afforded of a crude product which was used in the next step without purification.

To a solution of above product in MeOH (10 mL) was added NaOMe (394 mg, 7.3 mmol)

under Ar atmosphere. The reaction mixture was stirred, diluted with ethyl acetate (80 mL), and washed with brine (10 mL × 2). The organic phase was dried over sodium sulfate and concentrated in vacuum. Flash column chromatography over silica column afforded **S10**. Yield: (349 mg, 72% for two steps). ¹**H NMR** (500 MHz, CDCl₃) δ 4.01 – 3.71 (m, 4H), 2.51 – 2.38 (m, 1H), 2.35 – 2.21 (m, 3H), 2.02 (ddd, J = 13.2, 6.7, 2.5 Hz, 1H), 1.75 (ddt, J = 12.7, 5.1, 2.7 Hz, 1H), 1.71 – 1.48 (m, 6H), 1.45 – 1.09 (m, 5H), 1.08 (s, 3H), 1.05 – 0.92 (m, 5H), 0.85 (s, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 213.5, 118.5, 65.1, 64.0, 54.9, 53.8, 53.7, 48.4, 45.1, 44.8, 40.3, 40.3, 39.4, 37.4, 36.9, 35.5, 23.6, 20.9, 20.0, 12.8, 11.7. **IR**: \bar{v} 2948, 1453, 1153, 1098, 1044, 997, 950, 897, 837, 735, 707 cm⁻¹. **HRMS** (ESI) m/z: anal. calculated for [C₂₁H₃₂O₃ + Na]⁺: 355.2244, found: 355.2230.

24, white solid. Yield: (100 mg, 40% for two steps). ¹**H NMR** (500 MHz, CDCl₃) δ 6.16 – 5.91 (m, 1H), 3.79 – 3.57 (m, 1H), 2.81 – 2.65 (m, 2H), 2.27 (ddt, J = 14.8, 7.6, 1.8 Hz, 1H), 2.02 – 1.84 (m, 3H), 1.77 – 1.53 (m, 5H), 1.54 – 1.22 (m, 7H), 1.21 (d, J = 6.8 Hz, 3H), 1.13 – 1.06 (m, 1H), 1.05 (d, J = 2.0 Hz, 2H), 1.01 (s, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 221.7, 177.0, 54.2, 53.9, 52.9, 48.5, 48.5, 46.8, 40.2, 39.6, 39.0, 37.1, 35.9, 30.8, 22.5, 20.6, 19.6, 19.4, 13.1. **IR**: \bar{v} 3222, 1452, 1365, 1265, 1167, 1138, 1073, 977, 901, 731, 701 cm⁻¹. **HRMS** (ESI) m/z: anal. calculated for [C₁₉ H₂₉ NO₂ + H]⁺: 304.2271, found: 304.2277.

Supplementary Figure 10. Copper-mediated C-H oxidation/C-ring expansion of DHEA and estrone. 25a and **25b** were prepared following the procedures reported by Baran's group.⁹ Protection the ketone group of **25** was realized using the standard ethylene glycol protection procedure. General procedure C was used for Backman rearrangement of **24.** The TBS of **27b** was

removed as procedure D. The ethylene glycol protection group of **27c** was removed by heating to reflux for 5 days.

S12a, yield: (90% from **25a**). ¹**H NMR** (500 MHz, CDCl₃) δ 7.05 (d, J = 8.7 Hz, 1H), 6.73 (dd, J = 8.6, 2.7 Hz, 1H), 6.68 (d, J = 2.9 Hz, 1H), 4.28 (q, J = 7.1 Hz, 1H), 4.13 (td, J = 6.7, 3.9 Hz, 1H), 4.01 (td, J = 6.8, 4.0 Hz, 1H), 3.90 (q, J = 7.0 Hz, 1H), 3.79 (s, 3H), 2.94 (dq, J = 9.8, 5.7, 4.8 Hz, 3H), 2.75 (td, J = 11.9, 5.0 Hz, 1H), 2.53 (dd, J = 15.2, 13.0 Hz, 1H), 2.17 (td, J = 11.9, 6.0 Hz, 1H), 2.12 – 2.00 (m, 2H), 1.94 – 1.73 (m, 3H), 1.58 – 1.39 (m, 2H), 1.13 (s, 3H). ¹³C **NMR** (126 MHz, CDCl₃) δ 209.3, 157.9, 137.7, 130.8, 126.1, 116.8, 114.0, 111.7, 65.8, 65.4, 58.2, 55.2, 48.8, 43.5, 43.4, 37.9, 34.6, 29.6, 26.4, 20.4, 15.0. **HRMS** (ESI) m/z: anal. calculated for [C₂₁H₂₆O₄ + H]⁺: 343.1904, found: 343.1897.

27a, yield: (66% from **S12a**). ¹**H NMR** (500 MHz, CDCl₃) δ 7.34 (d, J = 8.7 Hz, 1H), 6.75 (dd, J = 8.8, 2.8 Hz, 1H), 6.60 (d, J = 2.8 Hz, 1H), 6.10 (s, 1H), 4.12 (td, J = 7.3, 5.3 Hz, 1H), 4.05 – 3.88 (m, 3H), 3.78 (s, 3H), 3.20 – 3.00 (m, 1H), 2.80 (qd, J = 17.1, 16.5, 3.7 Hz, 4H), 2.12 (td, J = 11.2, 7.9 Hz, 1H), 2.04 – 1.67 (m, 5H), 1.56 – 1.13 (m, 5H). ¹³C **NMR** (126 MHz, CDCl₃) δ 175.7, 157.6, 138.6, 130.4, 128.8, 117.5, 113.5, 112.1, 64.8, 63.8, 61.1, 55.2, 51.2, 44.5, 43.6, 41.3, 30.7, 30.2, 26. 9, 23.7, 17.6. **IR**: \bar{v} 3386, 3054, 1645, 1503, 1379, 1318, 1172, 1132, 1062, 1034, 917, 880, 812, 702 cm⁻¹. **HRMS** (ESI) m/z: anal. calculated for [C₂₁ H₂₇ NO₄ + H]⁺: 358.2013, found: 358.2010. LC-MS (t_{R} = 1.85 min, λ = 254 nm, purity >99%).

S11, yield: (90% from **26a**). ¹**H NMR** (500 MHz, CDCl₃) δ 5.41 – 5.19 (m, 1H), 3.99 (dq, J = 11.7, 6.0, 5.6 Hz, 4H), 3.88 (q, J = 6.0 Hz, 1H), 3.48 (tt, J = 10.5, 4.6 Hz, 1H), 2.39 – 2.09 (m, 2H), 2.09 – 1.87 (m, 2H), 1.88 – 1.63 (m, 6H), 1.63 – 1.30 (m, 6H), 1.13 – 0.97 (m, 5H), 0.93 (s, 3H), 0.89 (s, 9H), 0.06 (s, 6H). ¹³**C NMR** (126 MHz, CDCl₃) δ 141.5, 120.7, 119.1, 72.4, 71.3, 64.6, 64.1, 49.2, 49.1, 48.7, 42.7, 37.3, 36.7, 33.8, 32.0, 31.2, 30.8, 29.4, 25.9, 22.3, 19.4, 18.2, 8.8, -4.6, -4.6. **IR**: \bar{v} 2857, 1436, 1306, 1092, 1034, 1001, 950, 887, 774, 704 cm⁻¹. **HRMS** (ESI) m/z: anal. calculated for [C₂₇H₄₆O₄Si + Na]⁺: 485.3058, found: 485.3048.

S12b, yield: (74% from **S11**). ¹**H NMR** (500 MHz, CDCl₃) δ 5.37 (d, J = 5.1 Hz, 1H), 4.22 (q, J = 7.1 Hz, 1H), 4.11 (td, J = 6.6, 3.9 Hz, 1H), 3.98 (td, J = 6.8, 4.0 Hz, 1H), 3.87 (q, J = 7.0 Hz, 1H), 3.49 (tt, J = 10.6, 4.9 Hz, 1H), 2.45 (dd, J = 15.9, 12.8 Hz, 1H), 2.37 – 2.20 (m, 3H), 2.13 (dq, J = 17.1, 3.8, 2.8 Hz, 1H), 2.08 – 1.89 (m, 2H), 1.88 – 1.61 (m, 6H), 1.48 (dddd, J = 35.3, 17.3, 13.2, 8.1 Hz, 3H), 1.12 (s, 3H), 1.06 (s, 3H), 1.02 (dd, J = 13.6, 3.8 Hz, 1H), 0.90 (s, 9H), 0.07 (s, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 210.7, 141.1, 120.6, 116.8, 72.1, 65.9, 65.4, 57.6, 50.7, 49.8, 42.6, 38.5, 36.9, 36.9, 34.4, 31.8, 31.2, 30.6, 25.9, 20.8, 19.0, 18.2, 15.1, -4.6. IR: \bar{v} 3367, 2933, 1713, 1641, 1377, 1252, 1187, 1087, 954, 886, 834, 669 cm⁻¹. HRMS (ESI) m/z: anal. calculated for [C₂₇H₄₄O₄Si + NH₄]⁺: 461.3082, found: 461.3066.

27b, yield: (40% from **S11**). ¹**H NMR** (500 MHz, CDCl₃) δ 6.16 (s, 1H), 5.36 (dt, J = 4.5, 2.2 Hz, 1H), 4.10 (tt, J = 4.8, 3.1 Hz, 1H), 4.05 – 3.82 (m, 3H), 3.53 (dt, J = 11.3, 6.2 Hz, 1H), 2.66 (t, J = 13.1 Hz, 1H), 2.52 – 2.38 (m, 1H), 2.32 (ddd, J = 13.1, 5.0, 2.4 Hz, 1H), 2.28 – 2.16 (m, 1H), 2.16 – 1.71 (m, 10H), 1.70 – 1.58 (m, 1H), 1.58 – 1.45 (m, 1H), 1.41 (s, 3H), 1.35 – 1.22 (m, 1H), 1.15 (td, J = 13.7, 3.7 Hz, 1H), 0.98 (s, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 176.7, 139.6, 120.9, 117.7, 71.2, 64.7, 63.9, 60.4, 52.0, 46.7, 41.9, 37.6, 36.9, 36.6, 35.8, 31.5, 31.4, 30.2, 24.2, 18.4, 17.0. **IR**: \bar{v} 3388, 2935, 1739, 1639, 1436, 1367, 1216, 1137, 1052, 951, 702 cm⁻¹. **HRMS** (ESI) m/z: anal. calculated for [C₂₁ H₃₁ NO₄ + H]⁺: 362.2326, found: 362.2322.

27c, yield: (32% from **S11**). ¹**H NMR** (500 MHz, CDCl₃) δ 6.41 (s, 1H), 5.40 (dd, J = 5.1, 2.5 Hz, 1H), 3.54 (ddt, J = 16.0, 10.9, 4.7 Hz, 1H), 2.73 – 2.46 (m, 3H), 2.35 (ddd, J = 13.2, 5.0, 2.4 Hz, 1H), 2.32 – 2.12 (m, 4H), 2.03 (dt, J = 13.4, 3.5 Hz, 1H), 1.93 (tdd, J = 18.9, 11.5, 2.8 Hz, 3H), 1.69 (td, J = 12.3, 11.1, 6.4 Hz, 2H), 1.64 – 1.48 (m, 2H), 1.43 (td, J = 10.7, 3.6 Hz, 1H), 1.33 (s, 3H), 1.15 (td, J = 13.7, 3.6 Hz, 1H), 0.99 (s, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 213.8, 175.0, 139.8, 120.4, 71.1, 61.4, 53.1, 46.8, 41.9, 37.7, 37.5, 36.5, 34.8, 32.1, 31.4, 31.0, 22.5, 18.5, 16.7. **IR**: \bar{v} 3318, 2928, 1656, 1449, 1372, 1265, 1167, 1120, 1024, 929, 823, 732, 662 cm⁻¹. **HRMS** (ESI) m/z: anal. calculated for [C₁₉H₂₇NO₃ + H]⁺ : 318.2064, found: 318.2056. LC-MS ($t_{R}= 0.97$ min, $\lambda = 210$ nm, purity >99%).

Procedure for synthesis of 29.

Supplementary Figure 11. Benzylic C-H oxidation.

1j was prepared following literature procedure.¹⁰

Procedure I:

To a solution of **1i** (1.42 g, 3.78 mmol) in acetonitrile (25 mL) was added tert-butyl hydroperoxide (1.14 mL, 11.40 mmol) and chromium hexacarbonyl (250 mg, 1.14 mmol). The mixture was boiled under reflux for 23 h and then cooled to room temperature. Water (100 mL) was added and the product was extracted with ether (3×20 mL). The extracts were washed with water, aqueous sodium hydrogen carbonate, and brine, dried (MgSO₄), and evaporated to give the crude product. Purification by flash chromatography afforded **28** as a white solid (469 mg, 30%).

Procedure II:

After a solution of *t*-BuOK (4.90 g, 44.5 mmol) in dry THF (50 ml) was cooled to -78 °C, LDA (29.7 ml, 1.8 M, 44.5 mmol) was added and the mixture was stirred for 30 min at -78 °C. Compound **1i** (4.4 g, 11.0 mmol) was then added to the reaction mixture and was stirred for 3h at -78 °C. Trimethyl borate (15 ml) was added, and the reaction was warmed to 0 °C, yielding a milky yellow suspension. After stirring for 2h, H₂O₂ (17 ml, 30% in water) was added, and the mixture was stirred for 1h at room temperatures. The reaction mixture was cooled to 0 °C and 10% Na₂S₂O₃ (100 ml) was added. After extraction with ethyl acetate and drying over Na₂SO₄, flash column chromatography yielded the alcohol which was used directly for next step.

DMSO (2.48 g, 30.0 mmol) was dissolved in DCM (40 mL) and cooled to -78 °C. (COCl)₂ (7.5 ml, 2.0 M, 15.0 mmol) was then added dropwise, and the solution was stirred for 15 min, and the above product dissolved in DCM (20 mL) was added. The reaction was kept for 50 min at this temperature. Et₃N (6.06 g, 60 mmol) was added. The reaction was allowed to warm to rt. The mixture was diluted with ethyl acetate (100 mL), and washed with NaHCO₃ (30 ml × 2) and brine (50 mL × 2). The organic phase was dried over sodium sulfate and concentrated in vacuum. Flash column chromatography over silica column afforded **28**. Yield: (2.3 g, 50% for two steps). ¹**H NMR** (400 MHz, CDCl₃) δ 7.56 (t, *J* = 2.3 Hz, 1H), 7.34 (d, *J* = 8.6 Hz, 1H), 7.11 (dt, *J* = 8.8, 2.3 Hz, 1H), 3.84 (s, 3H), 3.66 (t, *J* = 8.3 Hz, 1H), 2.74 (dt, *J* = 17.0, 2.4 Hz, 1H), 2.46 (td, *J* = 11.4, 4.6 Hz, 1H), 2.42 - 2.29 (m, 1H), 2.20 (ddd, *J* = 16.6, 13.6, 1.7 Hz, 1H), 2.03 - 1.81 (m, 3H), 1.74 - 1.41 (m, 3H), 1.30 (q, *J* = 13.0, 11.0 Hz, 3H), 0.90 (d, *J* = 1.7 Hz, 9H), 0.75 (d, *J* = 1.7 Hz, 3H), 0.04 (dd,

J = 5.5, 1.7 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 198.2, 158.1, 139.8, 133.4, 126.6, 121.5, 109.5, 81.4, 55.5, 49.6, 44.1, 43.4, 43.1, 40.2, 36.6, 30.8, 25.8, 25.6, 23.0, 18.1, 11.2, -4.5, -4.8. **IR**: \bar{v} 3372, 2956, 1737, 1608, 1418, 1319, 1170, 1070, 909, 867, 813, 770, 667 cm⁻¹. **HRMS** (ESI) m/z: anal. calculated for [C₂₅H₃₈O₃Si + H]⁺: 415.2663, found: 415.2657.

29, yield: 54% from **28**. ¹**H NMR** (500 MHz, CDCl₃) δ 8.08 (s, 1H), 7.18 (d, J = 8.5 Hz, 1H), 6.76 (dd, J = 8.5, 2.6 Hz, 1H), 6.58 (d, J = 2.6 Hz, 1H), 4.87 (dd, J = 9.3, 7.6 Hz, 1H), 3.81 (s, 3H), 2.46 (dd, J = 12.7, 8.8 Hz, 2H), 2.37 – 2.24 (m, 1H), 2.15 (dd, J = 12.8, 2.1 Hz, 1H), 2.08 – 1.94 (m, 3H), 1.90 (dt, J = 12.9, 3.2 Hz, 1H), 1.83 – 1.62 (m, 3H), 1.42 (dtd, J = 40.7, 12.6, 5.1 Hz, 2H), 0.93 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 174.0, 158.6, 138.3, 129.2, 126.1, 112.0, 107.8, 86.2, 55.4, 48.8, 45.5, 44.0, 44.0, 36.4, 35.5, 26.9, 24.9, 23.5, 12.0. IR: \bar{v} 3016, 1435, 1366, 1228, 1091, 899, 764 cm⁻¹. HRMS (ESI) m/z: anal. calculated for [C₁₉ H₂₅ NO₃ + H]⁺ : 316.1907, found: 316.1899. LC-MS (t_R = 2.92 min, λ = 254 nm, purity 95%).

C-H oxidation/ring expansion of picfeltarraegenin and kirenol.

Supplementary Figure 12. C-H oxidation/ring expansion of picfeltarraegenin and kirenol. The electrochemical allylic oxidation was performed following procedure reported by Baran's group⁸ using IKA ElectraSyn 2.0. General procedure C was used for Backman rearrangement. The relative stereochemistry of **35** and **39** was confirmed by NOE experiment.

To a solution of **30** (2.42 g, 5.0 mol,) in DCM (60 mL) was added MOMCl (1.21 g, 15.0 mmol), DIPEA (2.58 g, 20.0 mmol) and DMAP (12.2 g, 0.10 mmol). The reaction mixture was heated at reflux for 48 h. The mixture was cooled to room temperature, diluted with ethyl acetate (80 mL), and washed with 2N HCl (20 mL \times 2), NaHCO₃ (20 ml \times 2) and brine (20 mL \times 2). The organic phase was dried over sodium sulfate and concentrated in vacuum. Flash column chromatography over silica column afforded 31 as a vellow oil. Yield: (2.29 g, 80%). ¹H NMR (500 MHz, CDCl₃) δ 5.66 (dt, J = 6.4, 2.2 Hz, 1H), 5.37 (s, 1H), 4.70 (d, J = 6.8 Hz, 1H), 4.57 (d, J = 6.8 Hz, 1H), 4.52 (d, J = 6.9 Hz, 1H), 4.40 (d, J = 6.9 Hz, 1H), 3.91 (t, J = 7.6 Hz, 1H), 3.36 (s, 3H), 3.32 (s, 3H), 3.16 (d, J = 14.6 Hz, 1H), 3.07 (dd, J = 11.5, 4.3 Hz, 1H), 2.83 - 2.71 (m, 1H), 2.69 (d, J = 6.9 Hz, 1H), 2.69 (d, J = 6.9 Hz, 1H), 3.07 (dd, J = 6.9 Hz,1H), 2.50 (d, *J* = 14.4 Hz, 1H), 2.35 (ddt, *J* = 19.1, 8.3, 2.7 Hz, 1H), 2.19 (d, *J* = 12.6 Hz, 1H), 1.98 - 1.82 (m, 4H), 1.76 - 1.59 (m, 3H), 1.55 (d, J = 13.5 Hz, 1H), 1.38 (s, 3H), 1.29 - 1.20 (m, 9H), 1.15 (s, 3H), 1.04 (s, 3H), 0.94 (s, 3H), 0.85 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 213.2, 206.5, 195.8, 142.1, 117.9, 100.3, 97.4, 95.8, 90.3, 82.4, 78.1, 56.5, 56.1, 55.5, 49.3, 48.7, 48.1, 47.6, 42.9, 42.5, 41.9, 35.3, 30.2, 27.4, 24.8, 24.4, 23.7, 22.1, 21.2, 20.1, 19.6, 19.6, 19.6, 19.5, 18.5. **IR**: *σ* 3455, 2946, 1591, 1440, 1365, 1267, 1145, 1045, 1001, 916, 805, 734, 702 cm⁻¹. HRMS (ESI) m/z: anal. calculated for [C₃₄H₅₂O₇ + H]⁺: 573.3786, found: 573.3768.

To a solution of **31** (2.29 g, 4.0 mol,) in EtOH (100 mL) was added NaBH₄ (2.28 g, 60.0 mmol) at 0 °C. The reaction mixture was stirred at rt for 24 h. After quenching with NH₄Cl solution, EtOH was removed in vacuum then the reaction mixture was diluted with ethyl acetate (200 mL), and washed with brine (40 mL × 2). The organic phase was dried over sodium sulfate and concentrated in vacuum. Flash column chromatography over silica column afforded **32** as a yellow oil. Yield: (1.38 g, 60%). ¹H NMR (500 MHz, CDCl₃) δ 5.68 (dt, *J* = 4.3, 2.1 Hz, 1H), 4.72 (dd, *J* = 8.4, 6.7 Hz, 2H), 4.66 (d, *J* = 6.5 Hz, 1H), 4.57 (td, *J* = 8.4, 7.6, 2.1 Hz, 3H), 4.02 – 3.84 (m, 1H), 3.36 – 3.43 (m, 7H), 3.12 – 2.99 (m, 2H), 2.68 – 2.54 (m, 2H), 2.37 (ddt, *J* = 19.0, 8.1, 2.6 Hz, 1H), 2.19 (ddd, *J* = 11.8, 7.4, 4.2 Hz, 2H), 1.97 – 1.81 (m, 3H), 1.80 – 1.54 (m, 4H), 1.41 (dt, *J* = 13.5, 10.2 Hz, 1H), 1.36 – 1.20 (m, 8H), 1.16 (s, 3H), 1.04 (s, 3H), 0.93 (d, *J* = 7.4 Hz, 6H), 0.88 (s, 3H), 0.86 (d, *J* = 6.7 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 213.8, 142.1, 118.0, 97.0, 95.8, 85.0, 82.9, 82.4, 79.8, 79.0, 56.8, 55.5, 54.0, 49.8, 48.5, 48.4, 47.9, 42.7, 41.9, 41.5, 39.8, 35.3, 33.5, 27.5, 26.5, 24.8, 24.4, 23.7, 21.2, 20.1, 19.6, 18.8, 18.8, 18.7. HRMS (ESI) m/z: anal. calculated for C₃₄H₅₆O₇ [M + Na]⁺ : 599.3918, found: 599.3910.

To a solution of 32 (1.00 g, 1.74 mol,) in DCM (40 mL) was added MOMCl (431 mg, 5.22 mmol), DIPEA (1.12 g, 8.7 mmol) and DMAP (12.2 mg, 0.10 mmol). The reaction mixture was heated at reflux for 48 h. The mixture was cooled to room temperature, diluted with ethyl acetate (80 mL), and washed with 2N HCl (20 mL \times 2), NaHCO₃ (20 ml \times 2) and brine (20 mL \times 2). The organic phase was dried over sodium sulfate and concentrated in vacuum. Flash column chromatography over silica column afforded S13 as a yellow oil. Yield: (906 mg, 84%). ¹H NMR $(500 \text{ MHz}, \text{CDCl}_3)$ δ 5.68 (dt, J = 6.2, 2.1 Hz, 1H), 4.73 - 4.50 (m, 6H), 4.41 (t, J = 7.4 Hz, 1H), 3.83 (dd, *J* = 6.1, 4.7 Hz, 1H), 3.45 (q, *J* = 7.6 Hz, 1H), 3.41 – 3.32 (m, 9H), 3.07 (dd, *J* = 11.6, 4.3 Hz, 1H), 3.01 (d, J = 14.6 Hz, 1H), 2.77 (d, J = 6.7 Hz, 1H), 2.46 (d, J = 14.6 Hz, 1H), 2.36 (ddt, J = 19.0, 8.0, 2.6 Hz, 1H), 2.20 (td, J = 13.4, 6.7 Hz, 2H), 1.94 (dd, J = 19.1, 6.1 Hz, 1H), 1.87 (dd, J = 9.7, 6.0 Hz, 2H), 1.83 – 1.63 (m, 5H), 1.60 (d, *J* = 13.2 Hz, 1H), 1.41 (dt, *J* = 13.2, 10.2 Hz, 1H), 1.26 (s, 3H), 1.23 (s, 3H), 1.15 (s, 3H), 1.03 (s, 3H), 0.95 (d, J = 6.8 Hz, 3H), 0.94 (s, 3H), 0.85 (d, J = 6.8 Hz, 3H), 0.94 (s, 3H), 0.85 (d, J = 6.8 Hz, 3H), 0.95 (d, J = *J* = 6.9 Hz, 3H), 0.84 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 214.6, 142.0, 118.2, 97.0, 96.7, 95.8, 86.1, 85.3, 82.5, 80.4, 79.1, 55.9, 55.7, 55.7, 55.5, 49.7, 48.7, 48.6, 47.1, 43.2, 43.0, 41.9, 36.2, 35.4, 33.8, 27.5, 25.7, 24.9, 24.4, 23.9, 21.2, 20.6, 20.2, 19.8, 19.0, 18.5. IR: v 3455, 2950, 1692, 1267, 1228, 1146, 1099, 1037, 917, 736 cm⁻¹. **HRMS** (ESI) m/z: anal. calculated for $[C_{36}H_{60}O_8 + Na]^+$: 643.4180, found: 643.4160.

33, yield: 0.4 mmol scale, 58%. ¹**H NMR** (500 MHz, CDCl₃) δ 6.19 (d, J = 2.1 Hz, 1H), 4.73 (d, J = 6.8 Hz, 1H), 4.67 – 4.53 (m, 4H), 4.47 (dd, J = 8.0, 6.5 Hz, 1H), 3.88 (dd, J = 6.3, 4.5 Hz, 1H), 3.52 – 3.42 (m, 1H), 3.41 – 3.31 (m, 8H), 3.24 (dd, J = 11.2, 4.4 Hz, 1H), 3.03 – 2.91 (m, 1H), 2.68 (dd, J = 10.8, 4.4 Hz, 2H), 2.62 (ddd, J = 12.9, 4.7, 2.1 Hz, 1H), 2.46 (s, 1H), 2.24 (dt, J = 13.3, 6.7 Hz, 1H), 2.16 (dd, J = 14.2, 8.3 Hz, 1H), 1.99 (dt, J = 13.1, 4.0 Hz, 1H), 1.88 (dq, J = 13.9, 3.9 Hz, 1H), 1.83 – 1.65 (m, 4H), 1.52 (d, J = 14.0 Hz, 2H), 1.28 (s, 3H), 1.27 – 1.13 (m, 7H), 1.08 (s, 3H), 1.06 (s, 3H), 0.96 (d, J = 6.6 Hz, 3H), 0.90 (s, 3H), 0.85 (d, J = 6.7 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 211.9, 200.8, 167.8, 124.1, 96.4, 96.4, 95.9, 85.3, 85.3, 81.2, 80.4, 78.3, 58.5, 56.4, 56.1, 55.8, 55.7, 49.2, 48.7, 48.6, 47.0, 43.3, 42.6, 37.6, 36.2, 33.7, 27.0, 26.6, 24.0, 24.0, 22.2, 21.1, 20.8, 19.8, 19.0. IR: \bar{v} 3442, 2887, 1696, 1618, 1468, 1383, 1294, 1268, 1146, 1100, 880, 735, 702 cm⁻¹. HRMS (ESI) m/z: anal. Calculated for [C₃₆H₅₈O₉ + H]⁺: 635.4154, found: 635.4146.

A mixture of compound **33** (546 mg, 0.86 mmol,) and Pd/C (100 mg) in MeOH (10 mL) was hydrogenated at room temperature for 4 h under hydrogen atmosphere. The suspension was filtered through a pad of celite and the pad was washed with CH₂Cl₂. The combined filtrates were concentrated to dryness. Flash column chromatography over silica column afforded **34** as yellow oil. Yield: (491 mg, 90%). ¹**H NMR** (500 MHz, CDCl₃) δ 4.71 (d, *J* = 6.8 Hz, 1H), 4.67 – 4.50 (m, 5H), 4.45 (dd, *J* = 8.0, 6.4 Hz, 1H), 3.86 (dd, *J* = 6.3, 4.8 Hz, 1H), 3.47 (q, *J* = 7.6 Hz, 1H), 3.43 – 3.31 (m, 9H), 3.07 (dd, *J* = 11.6, 4.2 Hz, 1H), 2.96 – 2.85 (m, 1H), 2.71 (d, *J* = 6.4 Hz, 1H), 2.68 – 2.53 (m, 2H), 2.42 (s, 1H), 2.34 (dd, *J* = 17.6, 12.3 Hz, 1H), 2.22 (dt, *J* = 13.3, 6.6 Hz, 1H), 2.19 – 2.05 (m, 2H), 1.96 (s, 1H), 1.85 (dt, *J* = 12.5, 3.8 Hz, 1H), 1.82 – 1.62 (m, 2H), 1.58 (dd, *J* = 12.0, 5.8 Hz, 1H), 1.56 – 1.49 (m, 1H), 1.50 – 1.31 (m, 5H), 1.28 – 1.10 (m, 4H), 1.01 – 0.92 (m, 8H), 0.88 (s, 3H), 0.87 – 0.78 (m, 6H). ¹³**C NMR** (126 MHz, CDCl₃) δ 213.6, 213.1, 96.6, 96.7, 95.7, 85.678, 85.2, 82.8, 80.5, 78.3, 62.1, 56.0, 55.8, 55.8, 55.6, 51.3, 49.6, 49.3, 46.6, 43.3, 43.3, 41.1, 39.1, 36.1, 34.7, 33.7, 26.8, 26.2, 25.1, 25.1, 22.7, 20.6, 20.0, 19.8, 19.0, 13.7. **HRMS** (ESI) m/z: anal. calcd for C₃₆H₆₀O₉ [M + Na]⁺ : 659.4130, found: 659.4116.

35, yield: 40%. ¹**H** NMR (500 MHz, CDCl₃) δ 6.11 (t, *J* = 6.8 Hz, 1H), 4.74 – 4.53 (m, 6H), 4.49 (t, *J* = 7.3 Hz, 1H), 3.84 (t, *J* = 6.2 Hz, 1H), 3.45 (td, *J* = 8.3, 6.5 Hz, 1H), 3.36 (s, 6H), 3.35 (s, 3H), 3.09 (d, *J* = 7.6 Hz, 1H), 3.06 – 2.90 (m, 2H), 2.84 – 2.74 (m, 2H), 2.69 (dd, *J* = 14.8, 1.9 Hz, 1H), 2.55 (d, *J* = 12.7 Hz, 1H), 2.30 (td, *J* = 11.1, 5.4 Hz, 1H), 2.19 (dt, *J* = 12.8, 6.4 Hz, 1H), 1.89 – 1.62 (m, 5H), 1.59 (s, 3H), 1.46 – 1.29 (m, 2H), 1.26 (s, 3H), 1.24 – 1.14 (m, 2H), 1.12 (s, 3H), 1.10 (s, 3H), 0.94 (d, *J* = 6.6 Hz, 3H), 0.84 (d, *J* = 6.7 Hz, 3H), 0.82 (s, 3H), 0.80 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 212.1, 176.4, 97.1, 96.5, 96.0, 86.5, 84.5, 82.2, 80.5, 78.6, 63.0, 56.3, 55.9, 55.8, 55.6, 55.3, 50.3, 48.8, 46.8, 42.4, 40.2, 39.7, 39.4, 38.7, 36.1, 33.7, 26.8, 26.4, 26.3, 26.0, 21.1, 20.0, 19.8, 18.9, 17.6, 13.8. **IR**: \bar{v} 1654, 1450, 1366, 1275, 1228, 1099, 1043, 916, 664 cm⁻¹. **HRMS** (ESI) m/z: anal. calculated for [C₃₆ H₆₁ NO₉ + H]⁺: 652.4419, found: 652.4415.

To a solution of **36** (1.56 g, 4.4 mol,) in DCM (60 mL) was added MOMCl (1.41 g, 17.6 mmol), DIPEA (2.58 g, 20.0 mmol) and DMAP (12.2 g, 0.10 mmol). The reaction mixture was heated at reflux for 48 h. The mixture was cooled to room temperature, diluted with ethyl acetate (80 mL), and washed with 2N HCl (20 mL × 2), NaHCO₃ (20 ml × 2) and brine (20 mL × 2). The organic phase was dried over sodium sulfate and concentrated in vacuum. Flash column chromatography over silica column afforded **37** as a yellow oil. Yield: (1.59 g, 80%). ¹**H** NMR (500 MHz, CDCl₃) δ 5.05 (s, 1H), 4.76 – 4.63 (m, 2H), 4.59 (d, *J* = 13.3 Hz, 3H), 4.39 (t, *J* = 8.5 Hz, 1H), 4.29 (t, *J* = 7.9 Hz, 1H), 3.73 (ddd, *J* = 11.8, 7.8, 4.1 Hz, 1H), 3.55 (d, *J* = 9.4 Hz, 1H), 3.36 (d, *J* = 8.1 Hz, 6H), 3.26 (d, *J* = 9.3 Hz, 1H), 2.26 (t, *J* = 13.0 Hz, 2H), 2.04 (q, *J* = 13.2, 9.2 Hz, 2H), 1.84 (t, *J* = 8.5 Hz, 2H), 1.78 – 1.60 (m, 3H), 1.48 (tdd, *J* = 13.6, 8.9, 3.7 Hz, 1H), 1.25 (dt, *J* = 30.9, 13.0 Hz, 3H), 1.15 – 0.87 (m, 7H), 0.78 (s, 3H). ¹³**C** NMR (126 MHz, CDCl₃) δ 155.2, 142.6, 123.5, 96.7, 94.5, 79.7, 71.0, 69.9, 65.6, 55.2, 55.1, 55.0, 50.5, 45.4, 42.3, 39.4, 39.1, 36.5, 36.2, 31.0, 28.2, 22.2, 21.2, 18.1, 16.7. HRMS (ESI) m/z: anal. calculated for C₂₅H₄₀O₇ [M + Na]⁺ : 475.2666, found: 475.2653.

To a solution of **37** (1.40 g, 3.0 mol,) in 1,4-dioxane (40 mL) was added SeO₂ (780 mg, 6.0 mmol) under Ar. The reaction mixture was stirred at RT for 24 h. The suspension was filtered through a pad of celite/silica gel and the pad was washed with mixture of CH₂Cl₂/EtOAc. The combined filtrates were concentrated to dryness to afford crude product which was directly used in the next step without further purification.

DMSO (816 mg, 12.0 mmol) was dissolved in DCM (40 mL) and cooled to -78 °C. (COCl)₂ (3.0 ml, 2.0 M, 6.0 mmol) was then added dropwise, and the solution was stirred for 15 min, and the above product dissolved in DCM (10 mL) was added. The reaction was kept for 50 min at this temperature. Et₃N (2.02 g, 20 mmol) was added. The reaction was allowed to warm to rt. The mixture was diluted with ethyl acetate (100 mL), and washed with NaHCO₃ (30 ml \times 2) and brine $(50 \text{ mL} \times 2)$. The organic phase was dried over sodium sulfate and concentrated in vacuum. Flash column chromatography over silica column afford of 38 as white solid. Yield: (839 mg, 60% for two steps). A mixture of compound **38** (178 mg, 0.38 mmol) and Pd/C (36 mg, 10%) in EtOAc (20 mL) was hydrogenated at rt for 24 h under hydrogen atmosphere. The suspension was filtered through a pad of celite and the pad was washed with CH2Cl2. The combined filtrates were concentrated to dryness to afford of crude product. Flash column chromatography over silica column afforded S38 as white solid. Yield: (126 mg. 70%). ¹H NMR (400 MHz, CDCl₃) δ 4.86 – 4.76 (m, 1H), 4.76 - 4.64 (m, 2H), 4.63 - 4.53 (m, 2H), 4.39 (t, J = 8.6 Hz, 1H), 4.25 (dd, J = 8.9, 1H)7.4 Hz, 1H), 3.84 (tt, *J* = 11.6, 4.2 Hz, 1H), 3.50 (d, *J* = 9.5 Hz, 1H), 3.42 (d, *J* = 9.5 Hz, 1H), 3.37 (s, 3H), 3.35 (s, 3H), 2.54 (dd, *J* = 14.4, 3.3 Hz, 1H), 2.43 (t, *J* = 14.3 Hz, 1H), 2.25 – 2.11 (m, 2H), 2.08 – 1.99 (m, 1H), 1.86 – 1.68 (m, 2H), 1.42 (ddd, *J* = 26.4, 13.2, 3.5 Hz, 2H), 1.34 – 1.21 (m, 2H), 1.15 (d, J = 3.2 Hz, 4H), 1.13 – 1.00 (m, 5H), 0.96 (d, J = 12.0 Hz, 1H), 0.93 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) 8 210.5, 154.8, 96.7, 94.6, 78.0, 71.2, 69.5, 65.2, 55.3, 55.2, 55.2, 54.3, 44.9, 44.1, 42.9, 39.3, 38.9, 37.9, 34.9, 34.2, 33.44 27.7, 22.5, 20.6, 15.0. HRMS (ESI) m/z: anal. calculated for $C_{25}H_{40}O_8 [M + Na]^+$: 491.2615, found: 375. 491.2627.

39, yield: (44% from **S38**). ¹**H NMR** (500 MHz, CDCl₃) δ 5.30 (s, 1H), 4.78 – 4.69 (m, 1H), 4.66 (q, J = 6.8 Hz, 2H), 4.58 (s, 2H), 4.48 (t, J = 8.6 Hz, 1H), 4.27 (t, J = 8.1 Hz, 1H), 3.71 (tt, J = 12.0, 3.9 Hz, 1H), 3.56 – 3.41 (m, 2H), 3.42 – 3.23 (m, 7H), 2.52 – 2.33 (m, 2H), 2.23 (td, J = 10.9, 3.6 Hz, 2H), 2.06 – 1.90 (m, 1H), 1.84 (dt, J = 14.8, 4.4 Hz, 1H), 1.76 (s, 1H), 1.66 (ddd, J = 13.9, 5.0, 2.6 Hz, 1H), 1.53 (dd, J = 6.8, 3.5 Hz, 1H), 1.50 – 1.30 (m, 1H), 1.31 – 1.11 (m, 6H), 1.07 (s, 3H), 1.03 (t, J = 12.2 Hz, 1H), 0.95 (s, 3H). ¹³C **NMR** (126 MHz, CDCl₃) δ 177.8, 154.5, 96.6, 94.6, 78.2, 70.7, 69.3, 65.2, 55.4, 55.3, 55.2, 51.7, 46.8, 46.7, 42.3, 41.9, 40.8, 35.7, 32.7, 32.4, 28.0, 22.4, 19.8, 16.8. **HRMS** (ESI) m/z: anal. calculated for [C₂₅ H₄₁ NO₈ +H]⁺: 484.2905, found: 484.2898.

Derivatization of medium ring scaffolds.

General procedure for syntheses of carbamates.

Supplementary Figure 13. Formation of carbamates. General procedure F was used for formation of carbamates **40**, **41**, **42** and **45**. General procedure G was used for formation of carbamates **43**.

40a, white solid, yield: (15.4 mg, 29%). ¹**H NMR** (CDCl₃, 500 MHz) δ 4.56 (dd, J = 9.1, 7.9 Hz,

1H), 4.29-4.23 (m, 1H), 4.18-4.11 (m, 1H), 3.78-3.73 (m, 1H), 3.66 (br, 4H), 3.55-3.50 (m, 1H), 3.46 (br, 4H), 2.77-2.72 (m, 2H), 2.47-2.43 (m, 1H), 2.21-2.13 (m, 1H), 2.07 (d, J = 15.2 Hz, 1H), 2.03-1.99 (m, 1H), 1.81-1.76 (m, 2H), 1.69-1.58 (m, 4H), 1.53-1.43 (m, 3H), 1.38-1.15 (m, 9H), 1.06-1.00 (m, 1H), 0.91 (td, J = 12.7, 4.4 Hz, 1H), 0.80 (s, 3H), 0.77 (s, 3H), 0.70 (td, J = 11.2, 3.7 Hz, 1H). ¹³**C NMR** (CDCl₃, 125 MHz) δ 174.9, 173.9, 155.6, 83.8, 68.1, 61.8, 55.0, 50.7, 50.5, 49.0, 44.9, 42.9, 42.5, 40.7, 39.7, 37.1, 34.2, 31.4, 30.3, 28.0, 23.5, 21.0, 20.9, 14.2, 12.4, 12.4. **HRMS** (ESI): *m/z*: calculated for C₃₀H₄₇N₂O₆: [M + H]⁺ 531.3429, found: 531.3430.

40b, white solid, yield: (25.6 mg, 47%). ¹**H NMR** (CDCl₃, 500 MHz) δ 4.53 (dd, J = 8.9, 8.0 Hz, 1H), 4.29-4.22 (m, 1H), 4.17-4.11 (m, 1H), 3.78-3.74 (m, 3H), 3.58-3.48 (m, 2H), 3.18-3.13 (m, 2H), 2.77-2.72 (m, 2H), 2.47-2.43 (m, 1H), 2.19-2.12 (m, 1H), 2.06 (d, J = 14.9 Hz, 1H), 2.03-1.98 (m, 1H), 1.90 (m, 1H), 1.80-1.76 (m, 3H), 1.68-1.58 (m, 4H), 1.54-1.43 (m, 5H), 1.37-1.22 (m, 8H), 1.17 (td, J = 12.7, 3.6 Hz, 1H), 1.05-0.99 (m, 1H), 0.90 (td, J = 12.6, 4.1 Hz, 1H), 0.80 (s, 3H), 0.78 (s, 3H), 0.69 (td, J = 11.2, 3.8 Hz, 1H). ¹³**C NMR** (CDCl₃, 125 MHz) δ 174.9, 173.9, 155.6, 83.7, 68.0, 61.8, 55.0, 50.8, 50.7, 50.6, 49.0, 44.9, 42.9, 42.5, 40.8, 39.7, 37.1, 34.2, 31.4, 30.3, 28.0, 23.5, 21.0, 20.9, 14.2, 12.4, 12.4. **HRMS** (ESI): *m/z*: calculated for C₃₁H₄₉N₂O₆: [M + H]⁺ 545.3585, found: 545.3584.

40c, white solid, yield: (30.4 mg, 56%). ¹**H** NMR (CDCl₃, 500 MHz) δ 4.53 (dd, J = 9.0, 7.9 Hz, 1H), 4.29-4.22 (m, 1H), 4.17-4.11 (m, 1H), 3.78-3.73 (m, 3H), 3.58-3.48 (m, 2H), 3.20-3.13 (m, 2H), 2.77-2.71 (m, 2H), 2.47-2.42 (m, 1H), 2.19-2.12 (m, 1H), 2.05 (d, J = 15.5 Hz, 1H), 2.03-1.98 (m, 1H), 1.90 (m, 1H), 1.80-1.76 (m, 3H), 1.69-1.60 (m, 4H), 1.53-1.42 (m, 5H), 1.37-1.22 (m, 8H), 1.17 (td, J = 12.7, 3.7 Hz, 1H), 1.05-0.99 (m, 1H), 0.90 (td, J = 12.6, 4.2 Hz, 1H), 0.80 (s, 3H), 0.78 (s, 3H), 0.69 (td, J = 11.2, 3.7 Hz, 1H). ¹³C NMR (CDCl₃, 125 MHz) δ 174.6, 174.0, 156.0, 83.7, 68.0, 61.7, 55.0, 50.8, 50.7, 50.6, 48.9, 44.9, 42.9, 42.5, 40.9, 39.7, 37.1, 34.2, 31.4, 30.4, 28.0, 23.5, 21.0, 20.9, 14.2, 12.4. HRMS (ESI): *m/z*: calculated for C₃₁H₄₉N₂O₆: [M + H]⁺ 545.3585, found: 545.3585.

40d, white solid, yield: (19.0 mg, 35%). ¹**H NMR** (CDCl₃, 500 MHz) δ 4.54 (dd, J = 8.9, 7.7 Hz, 1H), 4.29-4.22 (m, 1H), 4.17-4.11 (m, 1H), 3.75 (ddd, J = 11.3, 8.6, 2.7 Hz, 1H), 3.54-3.51 (m, 4H), 2.77-2.71 (m, 2H), 2.45 (br, 5H), 2.35 (s, 3H), 2.20-2.12 (m, 1H), 2.06-1.98 (m, 2H), 1.80-1.76 (m, 2H), 1.69-1.57 (m, 4H), 1.53-1.43 (m, 3H), 1.38-1.14 (m, 10H), 1.05-0.99 (m, 1H), 0.90 (td, J = 12.6, 4.3 Hz, 1H), 0.80 (s, 3H), 0.77 (s, 3H), 0.69 (td, J = 11.2, 3.8 Hz, 1H). ¹³**C NMR** (CDCl₃, 125 MHz) δ 174.5, 174.0, 155.5, 83.7, 67.9, 61.7, 55.0, 54.5, 50.7, 48.9, 45.8, 45.0, 42.9, 42.5, 40.9, 39.7, 37.1, 34.2, 31.4, 30.4, 28.0, 23.5, 21.0, 20.9, 14.2, 12.4, 12.4. **HRMS** (ESI): *m/z*: calculated for C₃₁H₅₀N₃O₅: [M + H]⁺ 544.3745, found: 544.3739.

40e, white solid, yield: (10.3 mg, 20%). ¹**H NMR** (CDCl₃, 500 MHz) δ 4.51 (dd, J = 9.3, 7.8 Hz, 1H), 4.28-4.22 (m, 1H), 4.17-4.11 (m, 1H), 3.75 (ddd, J = 11.6, 8.5, 3.1 Hz, 1H), 3.54-3.49 (m, 1H), 3.27 (br, 4H), 2.78-2.71 (m, 2H), 2.46-2.42 (m, 1H), 2.22-2.14 (m, 1H), 2.05 (d, J = 15.3 Hz, 1H), 2.03-1.98 (m, 1H), 1.80-1.76 (m, 2H), 1.69-1.57 (m, 4H), 1.53-1.43 (m, 3H), 1.38-1.24 (m, 8H), 1.18 (td, J = 12.5, 4.0 Hz, 1H), 1.12 (t, J = 7.2 Hz, 6H), 1.05-0.99 (m, 1H), 0.90 (td, J = 13.0, 3.9 Hz, 1H), 0.80 (s, 3H), 0.78 (s, 3H), 0.69 (td, J = 11.2, 3.8 Hz, 1H). ¹³C NMR (CDCl₃, 100 MHz) δ 174.5, 174.0, 156.0, 83.2, 67.9, 61.6, 55.0, 50.6, 48.8, 44.9, 42.9, 42.4, 40.9, 39.7, 37.1, 34.2, 31.4, 30.3, 28.0, 23.5, 20.9, 20.8, 14.1, 12.4, 12.3. HRMS (ESI): *m/z*: calculated for C₃₀H₄₉N₂O₅: [M + H]⁺ 517.3636, found: 517.3631.

40f, white solid, yield: (25.3 mg, 44%). ¹**H NMR** (CDCl₃, 500 MHz) δ 7.21-7.13 (m, 4H), 4.61 (s, 2H), 4.58 (d, *J* = 8.1 Hz, 1H), 4.29-4.22 (m, 1H), 4.17-4.11 (m, 1H), 3.75 (ddd, *J* = 11.2, 8.1, 3.0 Hz, 1H), 3.69 (br, 2H), 3.55-3.49 (m, 1H), 2.85 (br, 2H), 2.78-2.72 (m, 2H), 2.47-2.42 (m, 1H), 2.23-2.15 (m, 1H), 2.07 (d, *J* = 15.2 Hz, 1H), 2.03-1.98 (m, 1H), 1.80-1.76 (m, 2H), 1.69-1.57 (m, 4H), 1.55-1.43 (m, 3H), 1.38-1.25 (m, 8H), 1.18 (td, *J* = 13.0, 3.5 Hz, 1H), 1.07-1.01 (m, 1H), 0.90 (td, *J* = 12.7, 3.8 Hz, 1H), 0.82 (s, 3H), 0.80 (s, 3H), 0.70 (td, *J* = 11.2, 3.7 Hz, 1H). ¹³C NMR (CDCl₃, 125 MHz) δ 174.8, 173.9, 155.8, 126.5, 126.3, 68.0, 61.8, 55.0, 50.7, 50.6, 49.0, 45.7, 44.9,

42.9, 42.5, 40.8, 39.7, 37.1, 34.2, 31.4, 30.4, 28.1, 23.5, 21.0, 20.9, 14.2, 12.4, 12.4. **HRMS** (ESI): *m/z*: calculated for C₃₅H₄₉N₂O₅: [M + H]⁺ 577.3636, found: 577.3646.

40g, white solid, yield: (37.5 mg, 37%). ¹**H NMR** (CDCl₃, 500 MHz) δ 4.53 (td, J = 9.3, 7.9 Hz, 1H), 4.29-4.22 (m, 1H), 4.17-4.11 (m, 1H), 3.75 (ddd, J = 11.4, 8.6, 3.1 Hz, 1H), 3.55-3.49 (m, 1H), 3.39-3.43 (m, 4H), 2.78-2.72 (m, 2H), 2.47-2.42 (m, 1H), 2.21-2.13 (m, 1H), 2.06 (d, J = 14.7 Hz, 1H), 2.03-1.98 (m, 1H), 1.88-1.83 (m, 4H), 1.79-1.77 (m, 2H), 1.69-1.57 (m, 4H), 1.54-1.43 (m, 3H), 1.37-1.24 (m, 8H), 1.17 (td, J = 12.9, 3.6 Hz, 1H), 1.05-0.99 (m, 1H), 0.90 (td, J = 12.8, 4.3 Hz, 1H), 0.80 (s, 3H), 0.78 (s, 3H), 0.69 (td, J = 11.2, 3.8 Hz, 1H). ¹³C NMR (CDCl₃, 125 MHz) δ 174.8, 173.9, 155.3, 83.1, 68.0, 61.7, 55.0, 50.7, 50.6, 49.0, 46.1, 45.8, 44.9, 42.9, 42.4, 40.8, 39.7, 37.1, 34.2, 31.4, 30.4, 28.2, 25.8, 25.1, 23.5, 21.0, 20.9, 14.2, 12.4, 12.2. HRMS (ESI): *m/z*: calculated for C₃₀H₄₇N₂O₅: [M + H]⁺ 515.3479, found: 515.3485.

40h, white solid, yield: (30.5 mg, 54%). ¹**H NMR** (CDCl₃, 500 MHz) δ 8.39 (d, J = 5.0 Hz, 1H), 7.09 (s, 1H), 7.02 (d, J = 5.3 Hz, 1H), 5.73 (t, J = 4.7 Hz, 1H), 4.56 (t, J = 8.5 Hz, 1H), 4.43 (t, J = 4.8 Hz, 2H), 4.29-4.22 (m, 1H), 4.17-4.10 (m, 1H), 3.75 (ddd, J = 11.4, 8.5, 2.9 Hz, 1H), 3.54-3.50 (m, 1H), 2.77-2.71 (m, 2H), 2.46-2.42 (m, 1H), 2.35 (s, 3H), 2.19-2.11 (m, 1H), 2.05 (d, J = 15.4 Hz, 1H), 2.03-1.98 (m, 1H), 1.86-1.74 (m, 2H), 1.68-1.57 (m, 4H), 1.54-1.42 (m, 3H), 1.37-1.25 (m, 8H), 1.17 (td, J = 12.7, 3.2 Hz, 1H), 1.04-0.98 (m, 1H), 0.90 (td, J = 12.6, 4.1 Hz, 1H), 0.79 (s, 3H), 0.77 (s, 3H), 0.68 (td, J = 11.0, 3.5 Hz, 1H). ¹³C **NMR** (CDCl₃, 125 MHz) δ 174.5, 174.0, 156.9, 156.8, 148.9, 148.0, 123.4, 122.7, 83.3, 67.9, 61.7, 55.0, 50.7, 50.7, 48.9, 46.0, 45.0, 42.9, 42.4, 41.0, 39.7, 37.1, 34.2, 31.4, 30.4, 27.8, 23.5, 21.1, 21.0, 20.9, 14.2, 12.4, 12.2. **HRMS** (ESI): *m/z*: calculated for C₃₃H₄₈N₃O₅: [M + H]⁺ 566.3588, found: 566.3584.

40i, white solid, yield: (34.2 mg, 72%). ¹**H** NMR (CDCl₃, 500 MHz) δ 4.49 (dd, J = 8.9, 8.0 Hz, 1H), 4.29-4.22 (m, 1H), 4.17-4.11 (m, 1H), 3.77 (s, 3H), 3.76-3.73 (m, 1H), 3.54-3.48 (m, 1H),

2.78-2.72 (m, 2H), 2.47-2.42 (m, 1H), 2.23-2.16 (m, 1H), 2.05 (d, J = 15.1 Hz, 1H), 2.02-1.97 (m, 1H), 1.87-1.75 (m, 2H), 1.71-1.58 (m, 5H), 1.55-1.43 (m, 2H), 1.39-1.25 (m, 8H), 1.17 (td, J = 12.9, 4.0 Hz, 1H), 1.05-0.99 (m, 1H), 0.90 (td, J = 12.5, 4.2 Hz, 1H), 0.80 (s, 3H), 0.80 (s, 3H), 0.69 (td, J = 11.2, 3.9 Hz, 1H). ¹³C NMR (CDCl₃, 125 MHz) δ 174.6, 173.9, 155.9, 86.5, 67.9, 61.7, 55.0, 54.6, 50.6, 48.9, 44.9, 42.9, 42.4, 40.9, 39.7, 37.0, 34.1, 31.4, 30.3, 27.5, 23.4, 20.9, 20.9, 14.2, 12.4, 12.1. HRMS (ESI): m/z: calculated for C₂₇H₄₂NO₆: [M + H]⁺ 476.3007, found: 476.3013.

40j, white solid, yield: (20.5 mg, 39%). ¹**H** NMR (CDCl₃, 500 MHz) δ 4.53 (dd, J = 9.3, 8.1 Hz, 1H), 4.28-4.22 (m, 1H), 4.17-4.11 (m, 1H), 3.76 (ddd, J = 11.7, 8.1, 2.7 Hz, 1H), 3.54-3.49 (m, 1H), 3.40 (t, J = 5.3 Hz, 4H), 2.77-2.71 (m, 2H), 2.46-2.42 (m, 1H), 2.20-2.12 (m, 1H), 2.05 (d, J = 15.1 Hz, 1H), 2.03-1.98 (m, 1H), 1.80-1.76 (m, 3H), 1.69-1.58 (m, 5H), 1.52-1.42 (m, 6H), 1.37-1.25 (m, 9H), 1.17 (td, J = 12.9, 3.6 Hz, 1H), 1.05-0.99 (m, 1H), 0.90 (td, J = 12.1, 4.0 Hz, 1H), 0.80 (s, 3H), 0.77 (s, 3H), 0.69 (td, J = 11.3, 4.0 Hz, 1H). ¹³C NMR (CDCl₃, 125 MHz) δ 174.4, 174.0, 155.6, 83.2, 67.9, 61.6, 55.0, 50.6, 48.8, 44.9, 44.8, 42.9, 42.4, 40.9, 39.7, 37.1, 34.2, 31.4, 30.5, 30.3, 28.0, 24.5, 23.5, 20.9, 20.8, 14.1, 12.4, 12.3. HRMS (ESI): *m*/*z*: calculated for C₃₁H₄₉N₂O₅: [M + H]⁺ 529.3636, found: 529.3640.

40k, white solid, yield: (15.3 mg, 26%). ¹**H NMR** (CDCl₃, 500 MHz) δ 7.32 (dd, J = 6.0, 4.5 Hz, 1H), 7.17 (dd, J = 5.5, 3.9 Hz, 2H), 7.09 (dd, J = 5.3, 3.5 Hz, 1H), 4.88 (s, 2H), 4.57 (t, J = 8.4 Hz, 1H), 4.28-4.22 (m, 1H), 4.17-4.10 (m, 1H), 3.75 (ddd, J = 11.5, 8.5, 3.0 Hz, 1H), 3.54-3.49 (m, 1H), 2.80-2.71 (m, 4H), 2.47-2.42 (m, 1H), 2.23-2.15 (m, 1H), 2.05 (d, J = 15.0 Hz, 1H), 2.04-1.99 (m, 1H), 1.84-1.77 (m, 5H), 1.69-1.59 (m, 4H), 1.53-1.43 (m, 3H), 1.34-1.20 (m, 10H), 1.06-1.00 (m, 1H), 0.90 (td, J = 12.9, 4.1 Hz, 1H), 0.79 (s, 3H), 0.73 (s, 3H), 0.73-0.67 (m, 1H). ¹³C **NMR** (CDCl₃, 125 MHz) δ 174.7, 174.0, 156.3, 137.5, 137.0, 129.2, 128.8, 127.3, 126.3, 83.1, 68.0, 61.7, 55.0, 50.7, 50.6, 49.1, 49.0, 45.0, 42.9, 42.4, 40.9, 39.7, 37.2, 34.2, 31.4, 30.5, 30.4, 29.3, 27.9, 23.5, 21.0, 20.9, 19.9, 14.2, 12.4, 12.2. **HRMS** (ESI): *m/z*: calculated for C₃₆H₅₁N₂O₅: [M + H]⁺ 591.3792, found: 591.3802.

40I, white solid, yield: (15.3 mg, 26%). ¹H NMR (CDCl₃, 500 MHz) δ 7.33 (dd, J = 5.7, 3.8 Hz, 1H), 7.18 (dd, J = 5.7, 3.5 Hz, 2H), 7.09 (dd, J = 5.4, 3.6 Hz, 1H), 4.88 (s, 2H), 4.59 (t, J = 8.5 Hz, 1H), 4.29-4.22 (m, 1H), 4.17-4.11 (m, 1H), 3.76 (ddd, J = 11.3, 8.1, 2.7 Hz, 1H), 3.55-3.49 (m, 1H), 2.82-2.72 (m, 4H), 2.47-2.43 (m, 1H), 2.21-2.13 (m, 1H), 2.05 (d, J = 15.2 Hz, 1H), 2.04-1.99 (m, 1H), 1.83-1.76 (m, 5H), 1.71-1.57 (m, 4H), 1.53-1.43 (m, 3H), 1.34-1.22 (m, 10H), 1.06-1.00 (m, 1H), 0.91 (td, J = 12.7, 4.0 Hz, 1H), 0.80 (s, 3H), 0.74 (s, 3H), 0.74-0.68 (m, 1H). ¹³C NMR (CDCl₃, 125 MHz) δ 174.8, 173.9, 156.4, 137.6, 137.1, 129.2, 128.7, 127.3, 126.2, 83.1, 68.0, 61.8, 55.0, 50.7, 50.6, 49.1, 49.0, 44.9, 42.9, 42.5, 40.8, 39.7, 37.2, 34.2, 31.4, 30.5, 30.4, 29.3, 27.8, 23.5, 21.0, 20.9, 19.9, 14.2, 12.4, 12.2. **HRMS** (ESI): *m/z*: calculated for C₃₆H₅₁N₂O₅: [M + H]⁺ 591.3792, found: 591.3778.

41aa, white solid, yield: (39.2 mg, 88%). ¹**H** NMR (CDCl₃, 500 MHz) δ 6.60 (s, 1H), 4.59-4.53 (m, 1H), 3.75-3.73 (m, 2H), 3.51 (td, J = 10.1, 4.1 Hz, 2H), 3.18-3.12 (m, 2H), 2.72 (dd, J = 14.4, 10.3 Hz, 1H), 2.56-2.51 (m, 1H), 2.25-2.16 (m, 2H), 1.95-1.76 (m, 9H), 1.63-1.36 (m, 8H), 1.31-1.23 (m, 2H), 1.16 (td, J = 13.6, 2.9 Hz, 1H), 1.05 (s, 3H), 0.88 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz) δ 218.8, 178.6, 155.4, 73.3, 53.6, 51.7, 50.7, 49.3, 47.5, 41.5, 39.7, 39.0, 37.3, 36.9, 35.7, 30.6, 27.5, 22.4, 21.8, 13.4, 12.8. HRMS (ESI): *m/z*: calculated for C₂₅H₃₈N₂NaO₅: [M + Na]⁺ 469.2673, found: 469.2667.

41ab, white solid, yield: (16.5 mg, 37%). ¹**H NMR** (CDCl₃, 500 MHz) δ 6.20 (s, 1H), 4.59-4.52 (m, 1H), 3.75-3.73 (m, 2H), 3.51 (td, J = 10.0, 4.1 Hz, 2H), 3.18-3.12 (m, 2H), 2.71 (dd, J = 14.4, 10.3 Hz, 1H), 2.58-2.51 (m, 1H), 2.23-2.15 (m, 2H), 1.95-1.76 (m, 9H), 1.67-1.35 (m, 8H), 1.31-1.22 (m, 2H), 1.16 (td, J = 13.8, 3.3 Hz, 1H), 1.04 (s, 3H), 0.88 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz) δ 218.7, 178.1, 73.3, 53.8, 51.6, 50.7, 49.4, 47.5, 41.5, 39.6, 39.1, 37.3, 37.0, 35.7, 30.7, 27.5, 22.5, 21.8, 13.4, 12.9. HRMS (ESI): *m/z*: calculated for C₂₅H₃₈N₂NaO₅: [M + Na]⁺ 469.2673, found: 469.2668.

41ac, white solid, yield: (12.4 mg, 28%). ¹**H** NMR (CDCl₃, 500 MHz) δ 6.50 (s, 1H), 4.61-4.55 (m, 1H), 3.66 (br, 4H), 3.51 (td, *J* = 10.3, 4.1 Hz, 1H), 2.81 (br, 4H), 2.73 (dd, *J* = 14.4, 10.4 Hz, 1H), 2.56 (s, 3H), 2.53-2.52 (m, 1H), 2.25-2.16 (m, 2H), 1.97-1.77 (m, 7H), 1.64-1.48 (m, 4H), 1.43-1.35 (m, 1H), 1.31-1.23 (m, 2H), 1.16 (td, *J* = 13.6, 2.9 Hz, 1H), 1.05 (s, 3H), 0.88 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz) δ 218.6, 178.4, 154.5, 73.8, 53.6, 53.4, 51.7, 49.3, 47.5, 44.3, 41.4, 39.6, 39.0, 37.2, 36.9, 35.6, 30.6, 27.4, 22.4, 21.8, 13.4, 12.8. **HRMS** (ESI): *m/z*: calculated for C₂₅H₄₀N₃O₄: [M + H]⁺ 446.3013, found: 446.3008.

41ad, white solid, yield: (26.1 mg, 60%). ¹**H NMR** (CDCl₃, 500 MHz) δ 5.65 (s, 1H), 4.60-4.54 (m, 1H), 3.65 (br, 4H), 3.44 (m, 4H), 3.38-3.33 (m, 1H), 2.69 (dd, *J* = 14.4, 10.7 Hz, 1H), 2.14-2.07 (m, 1H), 1.96-1.74 (m, 9H), 1.58-1.34 (m, 6H), 1.24-1.14 (m, 3H), 1.08 (td, *J* = 13.0, 4.1 Hz, 1H), 1.01 (s, 3H), 0.76 (s, 3H). ¹³C **NMR** (CDCl₃, 125 MHz) δ 177.7, 155.0, 81.0, 73.5, 53.7, 52.3, 49.1, 42.9, 41.5, 39.5, 39.2, 37.4, 37.0, 35.7, 30.0, 27.5, 24.1, 22.1, 12.9, 10.7. **HRMS** (ESI): *m/z*: calculated for C₂₄H₃₈N₂NaO₅: [M + Na]⁺ 457.2673, found: 457.2668.

41ae, Yellow oil. Yield: (27.6 mg, 64%). ¹H NMR (500 MHz, CDCl₃) δ 5.79 (s, 1H), 4.66 – 4.43 (m, 1H), 3.65 (s, 3H), 3.54 – 3.39 (m, 3H), 2.70 (dd, J = 14.4, 10.6 Hz, 1H), 2.54 (dd, J = 17.3, 8.7 Hz, 1H), 2.18 (q, J = 6.4, 5.7 Hz, 1H), 1.86 (dddd, J = 53.6, 31.0, 13.0, 5.5 Hz, 5H), 1.71 – 1.45 (m, 3H), 1.45 – 1.07 (m, 4H), 1.04 (s, 2H), 0.88 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 218.6, 177.3, 154.8, 73.3, 53.9, 51.3, 49.4, 47.4, 41.4, 39.4, 39.2, 37.2, 36.9, 35.6, 30.6, 27.4, 22.4, 21.6, 13.3, 12.8. **HRMS** (ESI) m/z: anal. calculated for [C₂₄H₃₆N₂O₅ + H]⁺: 433.2697, found: 433.2691.

41af, Yellow oil. Yield: (27.1 mg, 65%). ¹**H NMR** (500 MHz, CDCl₃) δ 5.87 (s, 1H), 4.57 (tt, J = 10.9, 4.7 Hz, 1H), 3.49 (td, J = 10.0, 3.9 Hz, 1H), 3.26 (d, J = 14.6 Hz, 2H), 2.70 (dd, J = 14.4, 10.5 Hz, 1H), 2.62 – 2.46 (m, 1H), 2.26 – 2.11 (m, 2H), 2.01 – 1.72 (m, 8H), 1.69 – 1.44 (m, 4H), 1.44 – 1.32 (m, 1H), 1.26 (tdd, J = 14.1, 11.0, 5.2 Hz, 1H), 1.21 – 1.06 (m, 6H), 1.04 (s, 3H), 0.88 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 218.7, 177.3, 155.3, 72.5, 53.9, 51.3, 49.3, 47.5, 41.4, 39.5, 39.2, 37.3, 37.0, 35.6, 30.6, 27.5, 22.4, 21.6, 13.3, 12.8. HRMS (ESI) m/z: anal. calculated for [C₂₄ H₃₈ N₂ O₄ + H]⁺ : 419.2904, found: 419.2898.

41ag, Yellow oil. Yield: (36.8 mg, 77%). ¹**H NMR** (500 MHz, CDCl₃) δ 7.24 – 7.02 (m, 4H), 6.42 (s, 1H), 4.60 (t, J = 7.4 Hz, 3H), 3.78 – 3.62 (m, 2H), 3.49 (td, J = 10.2, 9.8, 3.9 Hz, 1H), 2.84 (s, 2H), 2.71 (dd, J = 14.4, 10.6 Hz, 1H), 2.52 (dd, J = 19.1, 6.9 Hz, 1H), 2.36 – 2.03 (m, 3H), 2.01 – 1.75 (m, 6H), 1.74 – 1.38 (m, 5H), 1.28 (ddt, J = 17.9, 12.2, 5.9 Hz, 2H), 1.23 – 1.11 (m, 1H), 1.05 (s, 3H), 0.88 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 218.8, 177.5, 154.9, 126.6, 126.5, 126.3, 126.2, 73.1, 53.6, 51.3, 49.0, 47.3, 45.5, 41.3, 39.4, 39.1, 37.1, 36.9, 35.5, 30.4, 27.4, 22.3, 21.6, 13.2, 12.7. HRMS (ESI) m/z: anal. calculated for [C₂₉ H₃₈ N₂ O₄ + H]⁺ : 479.2904, found: 479.2896.

41bb, yellow oil, yield: (40.4 mg, 88%), ¹**H NMR** (400 MHz, CDCl₃) δ 5.31 (d, J = 3.1 Hz, 1H), 4.65 (tt, J = 11.5, 4.8 Hz, 1H), 3.31 (td, J = 10.0, 3.9 Hz, 1H), 2.68 (dd, J = 14.4, 10.3 Hz, 1H), 2.02 (s, 3H), 2.00 – 1.65 (m, 9H), 1.60 – 1.06 (m, 17H), 1.01 (s, 4H), 0.91 (d, J = 6.5 Hz, 3H), 0.88 (d, J = 2.1 Hz, 3H), 0.86 (d, J = 2.1 Hz, 3H), 0.69 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 177.2, 170.4, 72.4, 55.9, 54.4, 53.5, 52.1, 42.4, 41.3, 39.4, 39.2, 39.2, 38.7, 37.2, 36.4, 35.9, 35.5, 28.0, 27.7, 26.9, 25.1, 23.7, 22.8, 22.5, 22.2, 21.3, 18.5, 12.7, 11.6. **HRMS** (ESI) m/z: anal. calculated for [C₂₉H₄₉NO₃ + H]⁺: 460.3785, found: 460.3775. LC-MS (t_R = 3.60 min, λ = 210 nm, purity >99%).

41bc, white solid, yield: (21.7 mg, 41%). ¹**H** NMR (CDCl₃, 500 MHz) δ 6.56 (s, 1H), 4.61-4.55 (m, 1H), 3.65 (s, 4H), 3.45 (s, 4H), 3.32 (td, J = 10.1, 4.0 Hz, 1H), 2.70 (dd, J = 14.3, 10.7 Hz, 1H), 1.96-1.89 (m, 4H), 1.86-1.81 (m, 3H), 1.79-1.74 (m, 2H), 1.54-1.42 (m, 3H), 1.39-1.28 (m, 7H), 1.21-1.10 (m, 8H), 1.02 (s, 3H), 0.91 (d, J = 6.8 Hz, 3H), 0.87 (d, J = 2.8 Hz, 3H), 0.86 (d, J = 2.7 Hz, 3H), 0.68 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz) δ 178.9, 155.0, 73.6, 55.8, 54.1, 52.9, 52.7, 42.5, 41.4, 39.5, 39.4, 38.9, 38.6, 37.2, 36.9, 36.0, 35.6, 28.1, 27.8, 27.5, 25.0, 23.8, 22.9, 22.6, 22.3, 18.7, 12.8, 11.6. HRMS (ESI): *m/z*: calculated for C₃₂H₅₅N₂O₄: [M + H]⁺ 531.4156, found: 531.4163.

41bd, white solid, yield: (20.8 mg, 38%). ¹**H NMR** (CDCl₃, 500 MHz) δ 6.18 (s, 1H), 4.60-4.54 (m, 1H), 3.67 (br, 4H), 3.32 (td, J = 10.2, 3.8 Hz, 1H), 2.85 (br, 4H), 2.70 (dd, J = 14.3, 10.6 Hz, 1H), 2.58 (s, 3H), 1.97-1.87 (m, 4H), 1.82-1.73 (m, 5H), 1.54-1.45 (m, 3H), 1.42-1.25 (m, 7H), 1.21-1.10 (m, 8H), 1.02 (s, 3H), 0.91 (d, J = 6.6 Hz, 3H), 0.87 (d, J = 2.7 Hz, 3H), 0.86 (d, J = 2.6 Hz, 3H), 0.68 (s, 3H). ¹³C **NMR** (CDCl₃, 125 MHz) δ 178.4, 154.5, 74.1, 55.9, 54.2, 53.3, 53.1, 52.5, 44.1, 42.5, 41.4, 39.5, 39.4, 39.0, 38.7, 37.2, 36.8, 36.0, 35.6, 28.1, 27.8, 27.4, 25.1, 23.8, 22.9, 22.6, 22.3, 18.7, 12.8, 11.6. **HRMS** (ESI): *m/z*: calculated for C₃₃H₅₈N₃O₃: [M + H]⁺ 544.4473, found: 544.4467.

41be, white solid, yield: (46.2 mg, 90%). ¹**H NMR** (CDCl₃, 500 MHz) δ 6.61 (s, 1H), 4.60-4.53 (m, 1H), 3.37-3.30 (m, 5H), 2.70 (dd, J = 14.2, 10.8 Hz, 1H), 1.96-1.81 (m, 11H), 1.78-1.74 (m, 2H), 1.55-1.44 (m, 3H), 1.42-1.26 (m, 7H), 1.21-1.10 (m, 8H), 1.02 (s, 3H), 0.91 (d, J = 6.4 Hz, 3H), 0.87 (d, J = 2.7 Hz, 3H), 0.86 (d, J = 2.7 Hz, 3H), 0.68 (s, 3H). ¹³**C NMR** (CDCl₃, 125 MHz) δ 179.1, 154.8, 72.8, 55.8, 54.1, 52.9, 52.7, 46.1, 45.8, 42.5, 41.4, 39.5, 39.5, 38.9, 38.6, 37.3, 37.1, 36.0, 35.6, 28.1, 27.8, 27.7, 25.0, 23.8, 22.9, 22.6, 22.3, 18.7, 12.8, 11.6. **HRMS** (ESI): *m/z*: calculated for C₃₂H₅₅N₂O₃: [M + H]⁺ 515.4207, found: 515.4213.

41bf, white solid, yield: (51.1 mg, 94%). ¹**H NMR** (CDCl₃, 500 MHz) δ 6.40 (s, 1H), 4.58-4.53 (m, 1H), 3.76 (d, J = 11.8 Hz, 2H), 3.60-3.53 (m, 1H), 3.32 (td, J = 9.9, 3.9 Hz, 1H), 3.15 (br, 2H), 2.70 (dd, J = 14.0, 10.5 Hz, 1H), 1.96-1.88 (m, 5H), 1.82-1.73 (m, 6H), 1.54-1.44 (m, 5H), 1.39-1.29 (m, 7H), 1.21-1.10 (m, 8H), 1.02 (s, 3H), 0.91 (d, J = 6.7 Hz, 3H), 0.87 (d, J = 2.7 Hz, 3H), 0.86 (d, J = 2.8 Hz, 3H), 0.68 (s, 3H). ¹³C **NMR** (CDCl₃, 125 MHz) δ 178.7, 155.4, 73.5, 55.8, 54.1, 53.0, 52.6, 50.7, 42.5, 41.4, 39.5, 39.4, 38.9, 38.6, 37.2, 36.9, 36.0, 35.6, 29.8, 28.1, 27.8, 27.5, 25.0, 23.8, 22.9, 22.6, 22.3, 18.7, 12.8, 11.6. **HRMS** (ESI): m/z: calculated for C₃₃H₅₇N₂O₄: [M + H]⁺ 545.4313, found: 545.4309.

41bg, white solid, yield: (46.2 mg, 85%). ¹**H NMR** (CDCl₃, 500 MHz) δ 6.30 (s, 1H), 4.57-4.53 (m, 1H), 3.75 (d, J = 11.0 Hz, 2H), 3.57 (br, 1H), 3.32 (td, J = 10.1, 3.6 Hz, 1H), 3.16-3.10 (m, 2H), 2.70 (dd, J = 14.2, 10.7 Hz, 1H), 1.96-1.88 (m, 5H), 1.83-1.73 (m, 6H), 1.54-1.45 (m, 5H), 1.38-1.27 (m, 7H), 1.21-1.10 (m, 9H), 1.01 (s, 3H), 0.91 (d, J = 6.5 Hz, 3H), 0.87 (d, J = 2.5 Hz, 3H), 0.86 (d, J = 2.3 Hz, 3H), 0.68 (s, 3H). ¹³C **NMR** (CDCl₃, 125 MHz) δ 178.6, 155.4, 73.5, 55.9, 54.2, 53.0, 52.5, 50.7, 42.5, 41.4, 39.5, 39.4, 39.0, 38.7, 37.3, 36.9, 36.0, 35.6, 29.8, 28.1, 27.8, 27.5, 25.1, 23.8, 22.9, 22.6, 22.3, 18.7, 12.8, 11.6. **HRMS** (ESI): m/z: calculated for C₃₃H₅₇N₂O₄: [M + H]⁺ 545.4313, found: 545.4324.

41bh, white solid, yield: (46.1 mg, 80%). ¹**H NMR** (CDCl₃, 500 MHz) δ 7.20-7.14 (m, 4H), 5.66 (s, 1H), 4.64-4.59 (m, 3H), 3.68-3.65 (m, 2H), 3.32 (td, J = 9.8, 3.7 Hz, 1H), 2.84 (br, 2H), 2.69 (dd, J = 14.2, 10.6 Hz, 1H), 1.97-1.89 (m, 4H), 1.87-1.74 (m, 5H), 1.58-1.47 (m, 3H), 1.42-1.24 (m, 7H), 1.21-1.10 (m, 8H), 1.02 (s, 3H), 0.91 (d, J = 6.3 Hz, 3H), 0.87 (d, J = 2.4 Hz, 3H), 0.86 (d, J = 2.5 Hz, 3H), 0.69 (s, 3H). ¹³**C NMR** (CDCl₃, 125 MHz) δ 177.7, 155.1, 126.5, 126.3, 73.4, 55.9, 54.4,

53.4, 52.3, 45.7, 42.5, 41.4, 39.5, 39.4, 39.2, 38.8, 37.4, 37.0, 36.0, 35.6, 28.1, 27.8, 27.6, 25.1, 23.8, 22.9, 22.6, 22.3, 18.7, 12.9, 11.7. **HRMS** (ESI): *m/z*: calculated for C₃₇H₅₇N₂O₃: [M + H]⁺ 577.4364, found: 577.4364.

41bi, white solid, yield: (38.3 mg, 65%). ¹**H NMR** (CDCl₃, 500 MHz) δ 7.32-7.30 (m, 1H), 7.17-7.15 (m, 2H), 7.09-7.07 (m, 1H), 6.62 (s, 1H), 4.87-4.84 (m, 2H), 4.62-4.57 (m, 1H), 3.34-3.30 (m, 1H), 2.82-2.67 (m, 3H), 2.05-2.02 (m, 1H), 1.96-1.92 (m, 4H), 1.83-1.74 (m, 8H), 1.54-1.45 (m, 3H), 1.40-1.27 (m, 7H), 1.22-1.10 (m, 8H), 1.00 (s, 3H), 0.91 (d, *J* = 6.7 Hz, 3H), 0.87 (d, *J* = 2.8 Hz, 3H), 0.86 (d, *J* = 2.7 Hz, 3H), 0.68 (s, 3H). ¹³**C NMR** (CDCl₃, 125 MHz) δ 179.0, 155.6, 137.5, 137.0, 129.2, 128.7, 127.3, 126.2, 72.9, 55.8, 54.1, 52.9, 52.7, 49.2, 42.5, 41.4, 39.5, 39.5, 38.9, 38.6, 37.2, 36.8, 36.0, 35.6, 30.5, 29.3, 28.1, 27.8, 27.5, 25.0, 23.8, 22.9, 22.6, 22.3, 20.0, 18.7, 12.8, 11.6. **HRMS** (ESI): *m/z*: calculated for C₃₈H₅₉N₂O₃: [M + H]⁺ 591.4520, found: 591.4512.

41bj, white solid, yield: (47.2 mg, 80%). ¹**H NMR** (CDCl₃, 500 MHz) δ 7.34-7.32 (m, 1H), 7.18-7.16 (m, 2H), 7.09-7.07 (m, 1H), 6.25 (s, 1H), 4.88-4.84 (m, 2H), 4.62-4.57 (m, 1H), 3.32 (td, *J* = 10.0, 3.8 Hz, 1H), 2.82-2.66 (m, 3H), 2.06-2.01 (m, 1H), 1.97-1.92 (m, 4H), 1.84-1.75 (m, 8H), 1.54-1.44 (m, 3H), 1.40-1.26 (m, 7H), 1.21-1.10 (m, 8H), 1.00 (s, 3H), 0.91 (d, *J* = 6.6 Hz, 3H), 0.87 (d, *J* = 2.7 Hz, 3H), 0.86 (d, *J* = 2.8 Hz, 3H), 0.68 (s, 3H). ¹³**C NMR** (CDCl₃, 125 MHz) δ 178.5, 155.6, 137.4, 137.0, 129.1, 128.7, 127.3, 126.3, 72.9, 55.9, 54.2, 53.1, 52.5, 49.1, 42.5, 41.4, 39.5, 39.4, 39.0, 38.7, 37.3, 36.9, 36.0, 35.6, 30.6, 29.3, 28.1, 27.8, 27.5, 25.1, 23.8, 22.9, 22.6, 22.3, 20.0, 18.7, 12.8, 11.6. **HRMS** (ESI): *m/z*: calculated for C₃₈H₅₉N₂O₃: [M + H]⁺ 591.4520, found: 591.4528.

41bk, white solid, yield: (36.1 mg, 58%). ¹**H** NMR (CDCl₃, 500 MHz) δ 7.31-7.23 (m, 3H), 7.11 (d, *J* = 7.2 Hz, 2H), 5.91 (s, 1H), 5.06 (d, *J* = 8.3 Hz, 1H), 4.63 (q, *J* = 6.6 Hz, 1H), 4.54-4.49 (m, 1H), 3.72 (s, 3H), 3.30 (td, *J* = 10.0, 3.9 Hz, 1H), 3.10 (qd, *J* = 13.9, 5.9 Hz, 2H), 2.68 (dd, *J* = 14.2, 10.5 Hz, 1H), 1.96-1.88 (m, 3H), 1.82-1.70 (m, 6H), 1.54-1.44 (m, 3H), 1.41-1.24 (m, 7H), 1.20-1.06 (m, 8H), 0.98 (s, 3H), 0.91 (d, *J* = 6.3 Hz, 3H), 0.87 (d, *J* = 2.6 Hz, 3H), 0.86 (d, *J* = 2.5 Hz, 3H), 0.68 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz) δ 178.0, 172.2, 155.3, 135.8, 129.3, 128.7, 127.2, 73.3, 55.9, 54.7, 54.3, 53.2, 52.4, 52.4, 42.5, 41.4, 39.5, 39.3, 39.1, 38.7, 38.3, 37.2, 36.7, 36.0, 35.6, 28.1, 27.8, 27.5, 25.1, 23.8, 22.9, 22.6, 22.3, 18.7, 12.8, 11.6. HRMS (ESI): *m/z*: calculated for C₃₈H₅₉N₂O₅: [M + H]⁺ 623.4418, found: 623.4428.

41bl, white solid, yield: (39.7 mg, 67%). ¹**H NMR** (CDCl₃, 500 MHz) δ 7.31-7.28 (m, 2H), 7.24-7.17 (m, 3H), 6.17 (s, 1H), 4.98 (d, *J* = 6.6 Hz, 1H), 4.52-4.48 (m, 1H), 3.90 (s, 1H), 3.67 (dd, *J* = 11.2, 2.7 Hz, 1H), 3.57 (dd, *J* = 11.1, 4.9 Hz, 1H), 3.31 (td, *J* = 10.2, 3.9 Hz, 1H), 2.86 (d, *J* = 6.1 Hz, 2H), 2.68 (dd, *J* = 14.2, 10.8 Hz, 1H), 1.96-1.88 (m, 3H), 1.83-1.70 (m, 6H), 1.54-1.41 (m, 3H), 1.38-1.25 (m, 7H), 1.22-1.07 (m, 9H), 0.99 (s, 3H), 0.91 (d, *J* = 6.4 Hz, 3H), 0.87 (d, *J* = 2.6 Hz, 3H), 0.86 (d, *J* = 2.5 Hz, 3H), 0.68 (s, 3H). ¹³**C NMR** (CDCl₃, 125 MHz) δ 178.5, 156.2, 137.8, 129.4, 128.6, 126.6, 73.1, 64.0, 55.9, 54.2, 53.1, 52.5, 42.5, 41.4, 39.5, 39.4, 39.0, 38.7, 37.2, 36.0, 35.6, 28.1, 27.8, 27.4, 25.1, 23.8, 22.9, 22.6, 22.3, 18.7, 12.8, 11.6. **HRMS** (ESI): *m/z*: calculated for C₃₇H₅₉N₂O₄: [M + H]⁺ 595.4469, found: 595.4475.

41bm, white solid, yield: (27.3 mg, 46%). ¹**H NMR** (CDCl₃, 500 MHz) δ 7.32-7.29 (m, 2H), 7.24-7.17 (m, 3H), 6.15 (s, 1H), 4.89 (d, *J* = 7.1 Hz, 1H), 4.53-4.47 (m, 1H), 3.91 (s, 1H), 3.67 (dd, *J* = 11.2, 2.2 Hz, 1H), 3.57 (dd, *J* = 11.1, 5.0 Hz, 1H), 3.31 (td, J = 10.2, 4.1 Hz, 1H), 2.86 (d, *J* = 7.0 Hz, 2H), 2.68 (dd, *J* = 14.3, 10.6 Hz, 1H), 1.96-1.89 (m, 4H), 1.84-1.69 (m, 6H), 1.55-1.41 (m, 3H), 1.38-1.26 (m, 7H), 1.22-1.10 (m, 8H), 0.99 (s, 3H), 0.91 (d, *J* = 6.4 Hz, 3H), 0.87 (d, *J* = 2.8 Hz, 3H), 0.86 (d, *J* = 2.8 Hz, 3H), 0.68 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz) δ 178.4, 156.2, 137.7, 129.3, 128.7, 126.7, 73.1, 64.2, 55.9, 54.2, 53.1, 52.5, 42.5, 41.4, 39.5, 39.4, 39.0, 38.6, 37.2, 36.8, 36.0, 35.6, 28.1, 27.8, 25.1, 23.8, 22.9, 22.6, 22.3, 18.7, 12.8, 11.6. HRMS (ESI): *m/z*: calculated for C₃₇H₅₉N₂O₄: [M + H]⁺ 595.4469, found: 595.4484.

41bn, white solid, yield: (30.6 mg, 56%). ¹**H NMR** (CDCl₃, 500 MHz) δ 5.95 (s, 1H), 4.80 (d, J = 8.4 Hz, 1H), 4.54-4.51 (m, 1H), 3.71 (dd, J = 11.0, 2.8 Hz, 1H), 3.63 (dd, J = 10.9, 6.5 Hz, 1H), 3.48-3.47 (m, 1H), 3.31 (td, J = 10.1, 4.0 Hz, 1H), 2.68 (dd, J = 14.4, 10.6 Hz, 1H), 1.97-1.72 (m, 10H), 1.54-1.45 (m, 3H), 1.40-1.26 (m, 7H), 1.20-1.10 (m, 9H), 1.00 (s, 3H), 0.95 (d, J = 6.7 Hz, 3H), 0.93 (d, J = 6.8 Hz, 3H), 0.91 (d, J = 6.4 Hz, 3H), 0.87 (d, J = 2.7 Hz, 3H), 0.86 (d, J = 2.6 Hz, 3H), 0.68 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz) δ 178.1, 156.9, 73.1, 64.1, 58.5, 55.9, 54.3, 53.2, 52.4, 42.5, 41.4, 39.5, 39.4, 39.1, 38.7, 37.3, 36.8, 36.0, 35.6, 28.1, 27.8, 27.4, 25.1, 23.8, 22.9, 22.6, 22.3, 19.6, 18.7, 12.8, 11.6. HRMS (ESI): m/z: calculated for C₃₃H₅₉N₂O₄: [M + H]⁺ 547.4469, found: 547.4474.

41bo, white solid, yield: (43.6 mg, 80%). ¹**H NMR** (CDCl₃, 500 MHz) δ 6.58 (s, 1H), 4.83 (d, J = 8.5 Hz, 1H), 4.56-4.51 (m, 1H), 3.71 (dd, J = 11.0, 3.0 Hz, 1H), 3.64 (dd, J = 10.6, 5.9 Hz, 1H), 3.46 (m, 1H), 3.32 (td, J = 10.2, 4.2 Hz, 1H), 2.70 (dd, J = 14.1, 10.5 Hz, 1H), 1.97-1.71 (m, 10H), 1.54-1.44 (m, 3H), 1.41-1.26 (m, 7H), 1.21-1.10 (m, 9H), 1.01 (s, 3H), 0.96 (d, J = 7.0 Hz, 3H), 0.93 (d, J = 6.8 Hz, 3H), 0.91 (d, J = 6.5 Hz, 3H), 0.87 (d, J = 2.8 Hz, 3H), 0.86 (d, J = 2.7 Hz, 3H), 0.68 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz) δ 179.0, 156.9, 73.1, 64.0, 58.5, 55.8, 54.1, 52.9, 52.7, 42.5, 41.4, 39.5, 39.4, 38.8, 38.6, 37.2, 36.7, 36.0, 35.6, 28.1, 27.8, 27.4, 25.0, 23.8, 22.9, 22.6, 22.3, 19.6, 18.7, 12.8, 11.6. HRMS (ESI): m/z: calculated for C₃₃H₅₉N₂O₄: [M + H]⁺ 547.4469, found: 547.4478.

41bp, white solid, yield: (25.5 mg, 44%). ¹**H NMR** (CDCl₃, 500 MHz) & 7.37-7.34 (m, 2H), 7.30-7.28 (m, 3H), 5.98 (s, 1H), 5.45 (s, 3H), 4.81 (s, 1H), 4.52 (m, 1H), 3.85 (m, 2H), 3.32-3.28 (m, 1H), 2.67 (dd, *J* = 13.9, 10.8 Hz, 1H), 1.96-1.68 (m, 4H), 1.80-1.68 (m, 5H), 1.54-1.43 (m, 3H), 1.40-

1.23 (m, 7H), 1.18-1.10 (m, 8H), 0.98 (s, 3H), 0.91 (d, J = 6.3 Hz, 3H), 0.87 (d, J = 2.6 Hz, 3H), 0.86 (d, J = 2.4 Hz, 3H), 0.68 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz) δ 178.2, 156.2, 128.9, 127.9, 126.6, 73.4, 55.9, 54.3, 53.1, 52.4, 42.5, 41.4, 39.5, 39.3, 39.0, 38.7, 37.2, 36.8, 36.0, 35.6, 28.1, 27.8, 25.1, 23.8, 22.9, 22.6, 22.3, 18.7, 12.8, 11.6. HRMS (ESI): *m/z*: calculated for C₃₆H₅₇N₂O₄: [M + H]⁺ 581.4313, found: 581.4304.

41bq, white solid, yield: (15.1 mg, 26%). ¹**H NMR** (CDCl₃, 500 MHz) δ 7.37-7.34 (m, 2H), 7.30-7.29 (m, 3H), 6.00 (s, 1H), 5.38 (s, 3H), 4.83 (s, 1H), 4.54 (m, 1H), 3.87 (m, 2H), 3.32-3.29 (m, 1H), 2.70-2.66 (m, 1H), 1.96-1.72 (m, 9H), 1.55-1.43 (m, 3H), 1.40-1.27 (m, 6H), 1.20-1.10 (m, 8H), 0.99 (s, 3H), 0.91 (d, *J* = 6.3 Hz, 3H), 0.87 (d, *J* = 2.6 Hz, 3H), 0.86 (d, *J* = 2.6 Hz, 3H), 0.68 (s, 3H). ¹³**C NMR** (CDCl₃, 125 MHz) δ 178.2, 156.1, 128.9, 127.9, 126.6, 73.3, 55.9, 54.3, 53.2, 52.4, 42.5, 41.4, 39.5, 39.3, 39.0, 38.7, 37.2, 36.8, 36.0, 35.6, 28.1, 27.8, 27.4, 25.1, 23.8, 22.9, 22.6, 22.3, 18.7, 12.8, 11.6. **HRMS** (ESI): *m/z*: calculated for C₃₆H₅₇N₂O₄: [M + H]⁺ 581.4313, found: 581.4303.

41ca, yield: (45.2 mg, 81%). ¹**H NMR** (500 MHz, CDCl₃) δ 5.96 – 5.67 (m, 1H), 4.53 (dt, J = 11.5, 6.4 Hz, 1H), 4.36 (d, J = 6.8 Hz, 1H), 3.76 – 3.53 (m, 4H), 3.53 – 3.12 (m, 6H), 2.67 (dd, J = 14.3, 10.5 Hz, 1H), 2.13 (t, J = 7.4 Hz, 1H), 1.97 – 1.69 (m, 8H), 1.69 – 1.52 (m, 5H), 1.52 – 1.25 (m, 6H), 1.23 – 1.04 (m, 3H), 1.00 (s, 3H), 0.93 (d, J = 5.9 Hz, 3H), 0.76 (d, J = 6.4 Hz, 3H), 0.74 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 177.0, 154.7, 109.1, 79.5, 73.4, 66.8, 66.5, 61.7, 53.8, 53.2, 51.0, 43.9, 41.6, 41.3, 38.0, 39.3, 39.2, 38.6, 37.0, 36.8, 32.3, 31.2, 30.1, 28.6, 27.3, 22.0, 17.0, 15.8, 14.3, 12.6. HRMS (ESI) m/z: anal. calculated for [C₃₂H₅₀N₂O₆ + Na]⁺: 581.3561, found: 581.3553. LC-MS ($t_R = 3.21$ min, $\lambda = 210$ nm, purity 91%).

41cb, yield: (44.0 mg, 77%). ¹**H NMR** (400 MHz, CDCl₃) δ 5.61 – 5.37 (m, 1H), 4.53 (ddd, J = 11.4, 8.8, 4.6 Hz, 1H), 4.38 (q, J = 7.0 Hz, 1H), 3.82 – 3.63 (m, 2H), 3.60 (d, J = 29.3 Hz, 1H), 3.45 (dt, J = 13.8, 6.9 Hz, 2H), 3.35 (t, J = 10.9 Hz, 1H), 3.09 (dt, J = 26.8, 9.6 Hz, 2H), 2.68 (dd, J = 14.3, 10.5 Hz, 1H), 2.14 (ddd, J = 11.3, 7.4, 4.3 Hz, 1H), 1.95 – 1.05 (m, 30H), 1.02 (s, 3H), 0.78 (d, J = 6.2 Hz, 3H), 0.76 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 177.1, 155.2, 109.2, 79.5, 73.2, 66.8, 66.0, 61.8, 43.9, 41.7, 41.4, 40.0, 39.3, 39.2, 38.7, 37.1, 36.9, 32.4, 31.2, 30.2, 28.7, 27.4, 22.3, 22.1, 17.0, 15.9, 14.4, 12.6. **HRMS** (ESI) m/z: anal. calculated for [C₃₃ H₅₂N₂O₆ + H]⁺ : 573.3898, found: 573.3889. LC-MS ($t_R = 3.09$ min, $\lambda = 210$ nm, purity 91%).

41cc, yield: (48.5 mg, 84%). ¹**H NMR** (400 MHz, CDCl₃) δ 7.47 – 7.16 (m, 5H), 5.75 – 5.45 (m, 1H), 5.01 (s, 1H), 4.57 (tt, *J* = 11.4, 4.7 Hz, 1H), 4.37 (dd, *J* = 17.5, 6.2 Hz, 3H), 3.57 – 3.19 (m, 3H), 2.68 (dd, *J* = 14.3, 10.5 Hz, 1H), 2.21 – 2.11 (m, 1H), 1.99 – 1.55 (m, 13H), 1.55 – 1.25 (m, 6H), 1.25 – 1.05 (m, 3H), 1.01 (s, 3H), 0.97 (d, *J* = 6.5 Hz, 3H), 0.79 (d, *J* = 6.4 Hz, 3H), 0.77 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 177.0, 156.0, 138.6, 128.6, 127.5, 127.4, 109.2, 79.5, 72.9, 66.8, 61.8, 54.0, 53.3, 51.0, 44.9, 41.7, 41.4, 40.0, 39.3, 39.2, 38.7, 37.1, 36.8, 32.4, 31.2, 30.2, 28.7, 27.3, 22.0, 17.0, 15.9, 14.4, 12.6. **HRMS** (ESI) m/z: anal. calculated for [C₃₅H₅₀N₂O₅ + H]⁺ : 579.3792, found: 579.3780. LC-MS (*t*_R= 3.15 min, λ = 210 nm, purity >99%).

41cd, yield: (22.8 mg, 42%). ¹**H** NMR (400 MHz, CDCl₃) δ 5.30 – 5.15 (m, 1H), 4.56 (tt, *J* = 11.5, 4.5 Hz, 1H), 4.40 (q, *J* = 7.7 Hz, 1H), 3.48 (dd, *J* = 10.5, 4.4 Hz, 2H), 3.37 (t, *J* = 10.9 Hz, 1H), 3.26 (s, 3H), 2.70 (dd, *J* = 14.4, 10.5 Hz, 1H), 2.15 (ddt, *J* = 12.2, 7.5, 3.6 Hz, 1H), 1.98 – 1.06 (m, 29H), 1.04 (s, 3H), 0.98 (d, *J* = 6.6 Hz, 3H), 0.80 (d, *J* = 6.4 Hz, 3H), 0.78 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 177.0, 155.4, 109.2, 79.6, 72.7, 66.9, 61.9, 54.2, 53.5, 51.1, 41.7, 41.5, 40.1, 39.4, 39.3,

38.8, 37.2, 37.1, 32.5, 31.3, 30.2, 28.7, 27.6, 22.1, 17.1, 16.0, 14.4, 12.7. **HRMS** (ESI) m/z: anal. calculated for $[C_{32}H_{52}N_2O_5 + H]^+$: 545.3949, found: 545.3946.

41ce, yield: (37.8 mg, 68%). ¹**H NMR** (400 MHz, CDCl₃) δ 5.50 (d, J = 2.1 Hz, 1H), 4.53 (tt, J = 11.5, 4.6 Hz, 1H), 4.38 (q, J = 7.6 Hz, 1H), 3.64 – 3.20 (m, 7H), 2.68 (dd, J = 14.4, 10.5 Hz, 1H), 2.19 – 2.09 (m, 1H), 1.95 – 1.26 (m, 25H), 1.15 (dtd, J = 13.4, 8.2, 5.0 Hz, 3H), 1.02 (s, 3H), 0.96 (d, J = 6.6 Hz, 3H), 0.78 (d, J = 6.2 Hz, 3H), 0.76 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 177.1, 155.0, 109.2, 79.6, 72.9, 66.9, 61.9, 54.1, 53.4, 51.1, 44.7, 41.7, 41.5, 40.1, 39.4, 39.3, 38.8, 37.2, 37.0, 32.5, 31.3, 30.2, 28.7, 27.5, 25.7, 24.4, 22.1, 17.1, 16.0, 14.4, 12.7. HRMS (ESI) m/z: anal. calculated for [C₃₃H₅₂N₂O₅ + Na]⁺ : 579.3768, found: 579.3774. LC-MS (t_R = 3.42 min, λ = 210 nm, purity 92%).

41cf, yield: (45.9 mg, 87%). ¹**H NMR** (400 MHz, CDCl₃) δ 5.83 (ddt, J = 16.0, 10.8, 5.6 Hz, 1H), 5.56 (d, J = 12.3 Hz, 1H), 5.26 – 5.02 (m, 2H), 4.72 (s, 1H), 4.54 (dq, J = 11.5, 6.7, 5.8 Hz, 1H), 4.38 (q, J = 7.5 Hz, 1H), 3.78 (t, J = 6.2 Hz, 2H), 3.45 (tt, J = 8.6, 4.1 Hz, 2H), 3.35 (t, J = 10.9 Hz, 1H), 2.68 (dd, J = 14.4, 10.5 Hz, 1H), 2.14 (ddd, J = 11.2, 7.4, 4.3 Hz, 1H), 1.96 – 1.54 (m, 13H), 1.54 – 1.27 (m, 5H), 1.27 – 1.04 (m, 4H), 1.01 (s, 3H), 0.96 (d, J = 6.6 Hz, 3H), 0.78 (d, J = 6.2 Hz, 3H), 0.76 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 177.1, 155.8, 134.6, 115.9, 109.2, 79.5, 72.8, 66.8, 61.8, 54.0, 53.3, 51.0, 43.3, 41.7, 41.4, 40.0, 39.3, 39.2, 38.7, 37.1, 36.8, 32.4, 31.2, 30.2, 28.7, 27.3, 22.0, 17.0, 15.9, 14.4, 12.6. **HRMS** (ESI) m/z: anal. calculated for [C₃₁H₄₈N₂O₅ + Na]⁺ : 551.3455, found: 551.3450. LC-MS ($t_R = 3.42$ min, $\lambda = 210$ nm, purity 94%).

41cg, yield: (44.7 mg, 82%). ¹**H NMR** (400 MHz, CDCl₃) δ 5.64 (s, 1H), 4.99 (t, J = 5.7 Hz, 1H),

4.51 (tt, J = 11.4, 5.1 Hz, 1H), 4.37 (q, J = 7.6 Hz, 1H), 3.43 (q, J = 6.5, 5.1 Hz, 4H), 3.34 (d, J = 5.4 Hz, 6H), 2.67 (dd, J = 14.3, 10.5 Hz, 1H), 2.27 – 2.06 (m, 1H), 1.95 – 1.51 (m, 13H), 1.53 – 1.24 (m, 6H), 1.25 – 1.02 (m, 3H), 1.00 (s, 3H), 0.95 (d, J = 6.6 Hz, 3H), 0.77 (d, J = 6.4 Hz, 3H), 0.75 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 177.1, 155.9, 109.2, 79.5, 72.6, 71.4, 66.8, 61.8, 58.7, 54.0, 53.3, 51.0, 41.6, 41.4, 40.56, 40.0, 39.3, 39.2, 38.6, 37.1, 36.8, 32.4, 31.2, 30.2, 28.7, 27.3, 22.0, 17.0, 15.9, 14.4, 12.6. HRMS (ESI) m/z: anal. calculated for [C₃₁H₅₀N₂O₆ + Na]⁺ : 569.3561, found: 569.3545.

41ch, yield: (52.6 mg, 89%). ¹**H NMR** (400 MHz, CDCl₃) δ 7.62 – 6.97 (m, 5H), 5.68 (t, J = 5.4 Hz, 1H), 4.67 (t, J = 6.1 Hz, 1H), 4.52 (tt, J = 10.9, 4.6 Hz, 1H), 4.39 (q, J = 7.0 Hz, 1H), 3.41 (ddd, J = 30.6, 16.6, 8.5 Hz, 5H), 2.80 (t, J = 7.1 Hz, 2H), 2.68 (dd, J = 14.3, 10.3 Hz, 1H), 2.16 (ddd, J = 10.8, 7.1, 3.7 Hz, 1H), 2.06 – 1.54 (m, 14H), 1.48 – 1.25 (m, 7H), 1.24 – 1.05 (m, 3H), 1.00 (s, 3H), 0.97 (d, J = 6.1 Hz, 3H), 0.79 (d, J = 6.2 Hz, 3H), 0.77 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 177.1, 155.8, 138.8, 128.7, 128.5, 126.4, 109.2, 79.5, 72.6, 66.8, 61.8, 53.9, 53.3, 51.0, 41.9, 41.6, 41.4, 40.0, 39.3, 39.2, 38.6, 37.1, 36.8, 36.0, 32.4, 31.2, 30.2, 28.7, 27.3, 22.0, 17.0, 15.9, 14.4, 12.6. **HRMS** (ESI) m/z: anal. calculated for [C₃₆H₅₂N₂O₅ + H]⁺: 593.3949, found: 593.3936. LC-MS (t_R = 3.35 min, λ = 210 nm, purity >99%).

41ci, yield: (42.6 mg, 79%). ¹**H NMR** (500 MHz, CDCl₃) δ 5.50 (t, J = 6.6 Hz, 1H), 5.29 (d, J = 7.6 Hz, 1H), 4.52 (hept, J = 5.2 Hz, 1H), 4.39 (q, J = 7.6 Hz, 1H), 3.69 (t, J = 5.2 Hz, 2H), 3.53 – 3.40 (m, 2H), 3.40 – 3.17 (m, 3H), 2.81 (s, 1H), 2.69 (dd, J = 14.3, 10.6 Hz, 1H), 2.14 (ddd, J = 12.0, 7.3, 4.6 Hz, 1H), 1.97 – 1.24 (m, 16H), 1.23 – 1.04 (m, 3H), 1.01 (s, 3H), 0.96 (d, J = 6.5 Hz, 3H), 0.79 (d, J = 6.3 Hz, 3H), 0.77 (s, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 177.2, 156.7, 109.2, 79.5, 72.9, 66.9, 62.2, 61.8, 54.0, 53.3, 51.1, 43.4, 41.7, 41.4, 40.1, 39.3, 39.1, 38.7, 37.1, 36.9, 32.4, 31.2, 30.2, 28.7, 27.3, 22.1, 17.1, 15.9, 14.4, 12.6. **HRMS** (ESI) m/z: anal. calculated for [C₃₀H₄₈N₂O₆ + H]⁺ : 533.3585, found: 533.3590. LC-MS (t_R = 2.98 min, λ = 210 nm, purity >99%).

41cj, yield: (43.7 mg, 80%). ¹**H NMR** (500 MHz, CDCl₃) δ 5.50 (s, 1H), 5.08 (q, J = 8.4, 6.3 Hz, 1H), 4.52 (hept, J = 4.7 Hz, 1H), 4.39 (q, J = 7.3 Hz, 1H), 3.66 (t, J = 5.9 Hz, 2H), 3.55 – 3.12 (m, 4H), 2.92 (s, 1H), 2.69 (dd, J = 14.5, 10.4 Hz, 1H), 2.14 (ddd, J = 11.8, 7.4, 4.7 Hz, 1H), 2.03 – 1.54 (m, 10H), 1.54 – 1.26 (m, 4H), 1.26 – 1.05 (m, 3H), 1.01 (s, 3H), 0.96 (d, J = 6.5 Hz, 3H), 0.78 (d, J = 6.3 Hz, 3H), 0.76 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 177.1, 156.9, 109.2, 79.5, 72.9, 66.9, 61.8, 59.5, 54.0, 53.3, 51.1, 41.7, 41.4, 40.1, 39.3, 39.2, 38.7, 37.5, 37.1, 36.8, 32.6, 32.4, 31.2, 30.2, 28.7, 27.3, 22.0, 17.1, 15.9, 14.4, 12.6. HRMS (ESI) m/z: anal. calculated for [C₃₁H₅₀N₂O₆ + H]⁺: 547.3742, found: 547.3740. LC-MS (t_R = 3.01 min, λ = 210 nm, purity >99%).

41ck, yield: (48.0 mg, 84%). **¹H NMR** (400 MHz, CDCl₃) δ 5.44 (s, 1H), 4.54 (tt, J = 11.5, 4.7 Hz, 1H), 4.39 (q, J = 7.7 Hz, 1H), 3.91 – 3.41 (m, 5H), 3.36 (t, J = 10.9 Hz, 1H), 3.25 – 2.94 (m, 2H), 2.69 (dd, J = 14.4, 10.5 Hz, 1H), 2.14 (td, J = 7.3, 3.9 Hz, 2H), 1.99 – 1.07 (m, 28H), 1.02 (s, 3H), 0.96 (d, J = 6.6 Hz, 3H), 0.79 (d, J = 6.4 Hz, 3H), 0.77 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 177.1, 155.3, 109.2, 79.5, 73.3, 66.9, 66.0, 61.8, 54.1, 53.3, 51.1, 50.6, 43.9, 41.7, 41.4, 40.1, 39.4, 39.2, 38.7, 37.1, 36.9, 32.4, 31.2, 30.2, 28.7, 27.4, 22.3, 22.1, 17.1, 15.9, 14.4, 12.6. HRMS (ESI) m/z: anal. calculated for [C₃₃H₅₂N₂O₆ + Na]⁺ : 595.3718, found: 595.3718. LC-MS ($t_R = 3.03$ min, $\lambda = 210$ nm, purity 87%).

41cl, yield: (47.7 mg, 82%). ¹**H NMR** (500 MHz, CDCl₃) δ 5.44 (dt, J = 6.3, 3.2 Hz, 1H), 4.87 – 4.65 (m, 1H), 4.52 (p, J = 6.2 Hz, 1H), 4.39 (q, J = 7.8 Hz, 1H), 3.83 – 3.54 (m, 2H), 3.57 – 3.40 (m, 2H), 3.36 (t, J = 11.0 Hz, 1H), 2.69 (dd, J = 14.3, 10.6 Hz, 1H), 2.40 (s, 1H), 2.15 (ddd, J = 12.1, 7.6, 4.9 Hz, 1H), 1.97 – 1.54 (m, 10H), 1.54 – 1.28 (m, 5H), 1.23 – 1.05 (m, 3H), 1.02 (s, 3H), 0.97 – 0.92 (m, 9H), 0.79 (d, J = 6.5 Hz, 3H), 0.77 (s, 3H). ¹³C **NMR** (126 MHz, CDCl₃) δ 177.1, 156.7,

109.2, 79.6, 72.9, 66.9, 64.0, 61.9, 58.4, 54.1, 53.4, 51.1, 41.7, 41.4, 40.1, 39.3, 39.2, 38.7, 37.1, 36.8, 32.4, 31.3, 30.2, 29.3, 28.7, 27.3, 22.1, 19.5, 18.5, 17.1, 15.9, 14.4, 12.6. **HRMS** (ESI) m/z: anal. calculated for $[C_{33}H_{54}N_2O_6 + Na]^+$: 597.3874, found: 597.3865. LC-MS (t_R = 3.04 min, λ = 210 nm, purity 87%).

41cm, yield: (38.9 mg, 64%). ¹**H** NMR (400 MHz, CDCl₃) δ 7.65 – 7.07 (m, 5H), 6.61 (s, 1H), 5.53 (s, 1H), 4.81 (s, 1H), 4.52 (s, 1H), 4.38 (q, *J* = 7.1 Hz, 1H), 4.01 – 3.64 (m, 2H), 3.54 – 3.20 (m, 3H), 2.71 (dd, *J* = 30.8, 17.2 Hz, 2H), 2.14 (ddd, *J* = 11.6, 7.5, 4.6 Hz, 1H), 2.01 – 1.53 (m, 14H), 1.54 – 1.22 (m, 7H), 1.20 – 1.06 (m, 4H), 1.00 (s, 3H), 0.96 (d, *J* = 6.1 Hz, 3H), 0.79 (d, *J* = 6.2 Hz, 3H), 0.76 (s, 3H). ¹³**C** NMR (101 MHz, CDCl₃) δ 177.2, 156.0, 139.5, 128.6, 127.6, 126.6, 109.2, 79.5, 73.0, 66.9, 66.4, 61.8, 57.0, 54.0, 53.2, 51.1, 41.7, 41.4, 40.0, 39.3, 39.1, 38.7, 37.0, 32.4, 31.2, 30.2, 28.7, 27.3, 22.0, 17.1, 15.9, 14.4, 12.6. HRMS (ESI) m/z: anal. calculated for [C₃₆H₅₂N₂O₆ + Na]⁺: 631.3718, found: 631.3717. LC-MS (*t*_R = 3.37 min, λ = 254 nm, purity >99%).

41cn, yield: (35.5 mg, 64%). ¹**H NMR** (400 MHz, CDCl₃) δ 5.50 (d, J = 14.5 Hz, 1H), 4.76 – 4.45 (m, 2H), 4.39 (q, J = 7.6 Hz, 1H), 3.95 (dt, J = 7.9, 4.8 Hz, 1H), 3.56 – 3.41 (m, 2H), 3.37 (q, J = 11.4, 10.9 Hz, 1H), 2.68 (dd, J = 14.4, 10.5 Hz, 1H), 2.14 (ddd, J = 11.5, 7.5, 4.3 Hz, 1H), 2.01 – 1.27 (m, 29H), 1.27 – 1.05 (m, 3H), 1.01 (s, 3H), 0.96 (d, J = 6.5 Hz, 3H), 0.79 (d, J = 6.2 Hz, 3H), 0.76 (s, 3H). ¹³C **NMR** (101 MHz, CDCl₃) δ 177.0, 155.4, 109.2, 79.5, 72.4, 66.9, 61.8, 54.1, 53.4, 52.6, 51.0, 41.7, 41.4, 40.1, 39.3, 39.2, 38.7, 37.1, 36.9, 33.2, 32.4, 31.2, 30.2, 28.7, 27.4, 23.5, 22.1, 17.1, 15.9, 14.4, 12.6. **HRMS** (ESI) m/z: anal. calculated for [C₃₃H₅₂N₂O₅ + Na]⁺: 579.3768, found: 579.3771. LC-MS (t_{R} = 3.62 min, λ = 210 nm, purity 88%).

41co, yield: (46.0 mg, 74%). ¹**H NMR** (400 MHz, CDCl₃) δ 7.48 – 7.01 (m, 5H), 5.76 – 5.39 (m, 1H), 5.26 – 4.96 (m, 1H), 4.44 (dq, J = 39.0, 7.6, 6.3 Hz, 2H), 4.08 – 3.72 (m, 1H), 3.65 (dd, J = 11.2, 3.9 Hz, 1H), 3.55 (dd, J = 11.2, 5.0 Hz, 1H), 3.45 (hept, J = 4.6 Hz, 2H), 3.36 (t, J = 10.9 Hz, 1H), 2.86 (d, J = 7.3 Hz, 3H), 2.68 (dd, J = 14.4, 10.5 Hz, 1H), 2.15 (td, J = 7.2, 3.7 Hz, 1H), 1.97 – 1.52 (m, 13H), 1.53 – 1.24 (m, 7H), 1.24 – 1.01 (m, 4H), 1.00 (s, 3H), 0.97 (d, J = 6.5 Hz, 3H), 0.79 (d, J = 6.2 Hz, 3H), 0.77 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 177.3, 156.0, 137.9, 129.3, 128.5, 126.4, 109.2, 79.5, 77.3, 72.8, 66.9, 63.7, 61.8, 54.0, 53.2, 51.1, 41.7, 41.4, 40.1, 39.3, 39.1, 38.7, 37.3, 37.1, 36.8, 32.4, 31.2, 30.2, 28.7, 27.3, 22.0, 17.1, 15.9, 14.4, 12.6. HRMS (ESI) m/z: anal. calculated for [C_{37H54}N₂O₆ + H]⁺: 623.4055, found: 623.4059. LC-MS (t_R = 3.37 min, λ = 210 nm, purity >99%).

41cp, yield: (47.9 mg, 77%). ¹**H NMR** (400 MHz, CDCl₃) δ 7.22 (t, J = 7.8 Hz, 1H), 6.83 – 6.61 (m, 3H), 5.75 – 5.52 (m, 1H), 4.65 (t, J = 5.8 Hz, 1H), 4.52 (dq, J = 11.2, 5.6, 4.5 Hz, 1H), 4.46 – 4.31 (m, 1H), 3.80 (s, 3H), 3.59 – 3.20 (m, 5H), 2.78 (t, J = 7.0 Hz, 2H), 2.69 (dd, J = 14.4, 10.3 Hz, 1H), 2.16 (ddd, J = 11.1, 7.5, 4.2 Hz, 1H), 1.97 – 1.53 (m, 13H), 1.53 – 1.24 (m, 6H), 1.24 – 1.04 (m, 3H), 1.01 (s, 3H), 0.97 (d, J = 6.6 Hz, 3H), 0.79 (d, J = 6.4 Hz, 3H), 0.77 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 177.2, 159.7, 155.8, 140.4, 129.5, 121.1, 114.4, 111.8, 109.2, 79.6, 72.6, 66.8, 61.8, 55.1, 54.0, 53.3, 51.1, 41.9, 41.7, 41.4, 40.0, 39.3, 39.2, 38.7, 37.1, 36.8, 36.1, 32.4, 31.2, 30.2, 28.7, 27.3, 22.1, 17.1, 15.9, 14.4, 12.6. **HRMS** (ESI) m/z: anal. calculated for [C₃₇H₅₄N₂O₆ + Na]⁺ : 645.3874, found: 645.3881. LC-MS ($t_R = 3.07$ min, $\lambda = 210$ nm, purity >99%).

41cq, yield: (56.7 mg, 87%). ¹**H NMR** (400 MHz, CDCl₃) δ 6.80 (d, J = 8.1 Hz, 1H), 6.76 – 6.62 (m, 2H), 5.58 (d, J = 11.6 Hz, 1H), 4.64 (t, J = 6.2 Hz, 1H), 4.58 – 4.44 (m, 1H), 4.39 (q, J = 7.6 Hz, 1H), 3.86 (d, J = 3.9 Hz, 7H), 3.56 – 3.18 (m, 5H), 2.88 – 2.56 (m, 3H), 2.15 (ddd, J = 11.1, 6.8, 4.2 Hz, 1H), 1.97 – 1.52 (m, 14H), 1.52 – 1.23 (m, 7H), 1.23 – 1.04 (m, 3H), 1.00 (s, 3H), 0.96 (d, J = 6.6 Hz, 3H), 0.78 (d, J = 6.4 Hz, 3H), 0.76 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 177.1, 155.8, 148.9, 147.6, 131.3, 120.6, 111.9, 111.3, 109.2, 79.5, 72.6, 66.8, 61.8, 55.9, 55.8, 54.0, 53.3, 51.0, 42.1, 41.7, 41.4, 40.0, 39.3, 39.2, 38.7, 37.1, 36.8, 35.6, 32.4, 31.2, 30.2, 28.7, 27.3, 22.0, 17.0, 15.9, 14.4, 12.6. **HRMS** (ESI) m/z: anal. calculated for [C₃₈H₅₆N₂O₇+ Na]⁺: 675.3980, found: 675.3978. LC-MS (t_{R} = 3.01 min, λ = 254 nm, purity 98%).

To a solution of **14** (199 mg, 0.36 mol,) in THF (10 mL) was added 2 N HCl (2.0 ml). The reaction mixture was heated at reflux for 2 h. The mixture was cooled to room temperature, diluted with ethyl acetate (50 mL), and washed with NaHCO₃ (20 mL × 2) and brine (20 mL × 2). The organic phase was dried over sodium sulfate and concentrated in vacuum. Flash column chromatography over silica column afforded **40a**; Yield: (142 mg, 90%). ¹H **NMR** (500 MHz, CDCl₃) δ 7.40 (td, J = 7.4, 1.7 Hz, 1H), 7.37 – 7.28 (m, 2H), 7.13 (dd, J = 7.6, 1.2 Hz, 1H), 4.06 (qq, J = 10.8, 7.2 Hz, 2H), 3.86 (dd, J = 9.3, 4.5 Hz, 1H), 3.54 (tt, J = 11.1, 4.8 Hz, 1H), 2.36 (ddd, J = 14.7, 9.4, 3.4 Hz, 1H), 2.17 – 1.95 (m, 2H), 1.78 (ddd, J = 11.2, 5.2, 2.6 Hz, 1H), 1.73 – 1.49 (m, 5H), 1.48 – 1.21 (m, 7H), 1.19 (s, 3H), 1.15 (t, J = 7.1 Hz, 3H), 1.00 (tt, J = 12.5, 3.4 Hz, 1H), 0.92 – 0.83 (m, 2H), 0.78 (s, 3H), 0.68 – 0.55 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 213.7, 173.5, 140.2, 134.3, 130.5, 129.1, 128.0, 127.6, 71.1, 61.3, 53.3, 50.6, 49.5, 45.9, 44.1, 37.8, 37.7, 36.7, 35.6, 35.5, 31.3, 30.8, 28.5, 28.0, 20.4, 14.9, 13.9, 12.2. HRMS (ESI) m/z: anal. calculated for [C₂₈H₃₈O₄ + NH₄]⁺ : 456.3108, found: 456.3116. LC-MS ($t_R = 3.23$ min, $\lambda = 254$ nm, purity 95%).

42b, Yield: (147 mg, 84%). ¹**H** NMR (500 MHz, CDCl₃) δ 7.40 (td, J = 7.6, 1.5 Hz, 1H), 7.31 (t, J = 7.4 Hz, 1H), 7.28 – 7.20 (m, 1H), 7.10 (d, J = 7.7 Hz, 1H), 4.32 – 4.14 (m, 2H), 3.71 (dd, J = 12.6, 5.9 Hz, 1H), 3.54 (tt, J = 10.6, 4.8 Hz, 1H), 2.33 (td, J = 13.2, 5.4 Hz, 1H), 1.97 (dq, J = 13.0, 3.7 Hz, 1H), 1.85 – 1.67 (m, 3H), 1.67 – 1.45 (m, 4H), 1.43 – 1.14 (m, 14H), 0.99 (tt, J = 12.6, 3.3 Hz, 1H), 0.93 – 0.83 (m, 2H), 0.77 (s, 3H), 0.59 (td, J = 11.1, 3.6 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 215.6, 172.8, 139.8, 134.3, 131.0, 127.4, 126.0, 124.3, 71.1, 61.0, 52.9, 49.0, 45.7, 43.9, 43.9, 37.9, 37.8, 36.8, 36.6, 35.5, 31.3, 31.2, 30.7, 28.4, 20.6, 14.1, 14.0, 12.2. HRMS (ESI) m/z: anal. calculated for [C₂₈H₃₈O₄ + NH₄]⁺ : 456.3108, found: 456.3103. LC-MS (t_R = 2.36 min, λ = 254 nm, purity 98%).

42c, white solid, yield: (42.9 mg, 77%). ¹**H NMR** (CDCl₃, 500 MHz) δ 7.41 (td, *J* = 7.5, 1.0 Hz, 1H), 7.32 (t, *J* = 7.3 Hz, 1H), 7.25 (d, *J* = 7.4 Hz, 1H), 7.10 (d, *J* = 7.8 Hz, 1H), 4.58-4.52 (m, 1H), 4.26-4.17 (m, 2H), 3.70 (dd, *J* = 12.9, 5.8 Hz, 1H), 3.63 (br, 4H), 3.44-3.43 (m, 4H), 2.34 (td, *J* = 13.2, 5.2 Hz, 1H), 1.98-1.95 (m, 1H), 1.84-1.82 (m, 1H), 1.76-1.71 (m, 2H), 1.64-1.58 (m, 3H),

1.49-1.15 (m, 14H), 1.09-1.05 (m, 1H), 0.94 (td, J = 13.4, 3.6 Hz, 1H), 0.79 (s, 3H), 0.77-0.72 (m, 1H), 0.64-0.60 (m, 1H). ¹³C NMR (CDCl₃, 125 MHz) δ 215.7, 172.8, 155.2, 139.9, 134.4, 131.1, 127.5, 126.1, 124.4, 74.7, 61.1, 52.8, 49.0, 45.7, 43.9, 43.8, 37.9, 36.7, 36.6, 35.6, 34.3, 31.3, 30.7, 28.4, 27.8, 20.6, 14.2, 14.1, 12.2. HRMS (ESI): *m/z*: calculated for C₃₃H₄₆NO₆: [M + H]⁺ 552.3320, found: 552.3322.

42d, white solid, yield: (54.0 mg, 99%). ¹**H** NMR (CDCl₃, 500 MHz) δ 7.41 (td, J = 7.6, 1.0 Hz, 1H), 7.32 (t, J = 7.3 Hz, 1H), 7.25 (d, J = 7.3 Hz, 1H), 7.09 (d, J = 7.8 Hz, 1H), 4.56-4.49 (m, 1H), 4.26-4.17 (m, 2H), 3.75-3.68 (m, 3H), 3.53 (br, 1H), 3.16-3.11 (m, 2H), 2.33 (td, J = 13.1, 5.2 Hz, 1H), 1.98-1.95 (m, 1H), 1.87-1.81 (m, 2H), 1.75-1.70 (m, 3H), 1.64-1.57 (m, 3H), 1.53-1.43 (m, 3H), 1.36-1.16 (m, 13H), 1.08-1.03 (m, 1H), 0.93 (td, J = 13.5, 3.8 Hz, 1H), 0.79 (s, 3H), 0.76-0.71 (m, 1H), 0.64-0.59 (m, 1H). ¹³C NMR (CDCl₃, 125 MHz) δ 215.7, 172.8, 155.7, 139.9, 134.4, 131.1, 127.5, 126.1, 124.4, 74.6, 61.1, 52.9, 50.7, 49.0, 45.7, 43.9, 43.8, 37.9, 36.7, 36.6, 35.6, 34.3, 31.3, 30.7, 28.4, 27.8, 20.6, 14.2, 14.1, 12.3. HRMS (ESI): *m/z*: calculated for C₃₄H₄₈NO₆: [M + Na]⁺ 566.3476, found: 566.3480.

42e, white solid, yield: (15.8 mg, 28%). ¹**H** NMR (CDCl₃, 500 MHz) δ 7.41 (td, J = 7.6, 1.0 Hz, 1H), 7.32 (t, J = 7.3 Hz, 1H), 7.25 (d, J = 7.4 Hz, 1H), 7.09 (d, J = 7.6 Hz, 1H), 4.55-4.49 (m, 1H), 4.26-4.17 (m, 2H), 3.76-3.68 (m, 3H), 3.54 (br, 1H), 3.14-3.08 (m, 2H), 2.33 (td, J = 13.1, 5.1 Hz, 1H), 1.98-1.95 (m, 1H), 1.87-1.81 (m, 2H), 1.75-1.70 (m, 3H), 1.62-1.57 (m, 3H), 1.52-1.43 (m, 3H), 1.36-1.15 (m, 13H), 1.08-1.03 (m, 1H), 0.93 (td, J = 13.6, 3.6 Hz, 1H), 0.79 (s, 3H), 0.76-0.71 (m, 1H), 0.64-0.59 (m, 1H). ¹³C NMR (CDCl₃, 125 MHz) δ 215.7, 172.8, 155.6, 139.9, 134.4, 131.1, 127.5, 126.1, 124.4, 74.5, 61.1, 52.8, 50.7, 49.0, 45.7, 43.9, 43.8, 37.9, 36.7, 36.6, 35.6, 34.3, 31.3, 30.7, 28.4, 27.8, 20.6, 14.2, 14.1, 12.2. HRMS (ESI): *m/z*: calculated for C₃₄H₄₈NO₆: [M + H]⁺ 566.3476, found: 566.3476.

43a, white solid, yield: (11.1 mg, 26%). ¹**H NMR** (CDCl₃, 500 MHz) δ 7.93 (s, 1H), 7.19 (d, *J* = 8.8 Hz, 1H), 6.76 (dd, *J* = 8.5, 2.6 Hz, 1H), 6.54 (d, *J* = 2.5 Hz, 1H), 4.71 (dd, *J* = 9.1, 7.8 Hz, 1H), 3.80 (s, 3H), 3.67 (m, 4H), 3.48-3.46 (m, 4H), 2.49 (td, *J* = 12.1, 3.0 Hz, 1H), 2.44 (dd, *J* = 12.7, 8.6 Hz, 1H), 2.30-2.22 (m, 1H), 2.17 (dd, *J* = 12.8, 1.4 Hz, 1H), 2.04-1.98 (m, 2H), 1.96-1.89 (m, 2H), 1.78-1.68 (m, 2H), 1.62-1.54 (m, 1H), 1.45-1.32 (m, 2H), 0.88 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz) δ 174.6, 158.7, 155.5, 138.2, 129.7, 126.2, 111.3, 107.7, 83.4, 55.5, 49.1, 45.9, 44.2, 43.7, 36.9, 35.6, 27.8, 25.2, 23.7, 12.5. HRMS (ESI): *m/z*: calculated for C₂₄H₃₃N₂O₅: [M + H]⁺ 429.2384, found: 429.2396. LC-MS (*t*_R = 2.79 min, λ = 254 nm, purity >99%).

43b, white solid, yield: (11.1 mg, 13%). ¹**H** NMR (CDCl₃, 500 MHz) δ 7.54 (s, 1H), 7.19 (d, *J* = 8.6 Hz, 1H), 6.75 (dd, *J* = 8.6, 2.6 Hz, 1H), 6.53 (d, *J* = 2.5 Hz, 1H), 4.69 (dd, *J* = 9.2, 7.8 Hz, 1H), 3.80 (s, 3H), 3.42 (t, *J* = 4.8 Hz, 4H), 2.49 (td, *J* = 12.2, 2.3 Hz, 1H), 2.43 (dd, *J* = 12.8, 8.5 Hz, 1H), 2.29-2.21 (m, 1H), 2.17 (d, *J* = 12.7, 1.8 Hz, 1H), 2.05-1.97 (m, 2H), 1.96-1.89 (m, 2H), 1.77-1.68 (m, 2H), 1.60-1.53 (m, 7H), 1.44-1.34 (m, 2H), 0.88 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz) δ 174.2, 158.6, 155.5, 138.2, 129.8, 126.3, 111.2, 107.7, 82.9, 55.5, 49.1, 45.9, 44.9, 44.3, 43.7, 36.9, 35.6, 27.9, 25.2, 24.5, 23.8, 12.5. HRMS (ESI): *m/z*: calculated for C₂₅H₃₅N₂O₄: [M + H]⁺ 427.2591, found: 427.2597. LC-MS (*t*_R = 3.01 min, λ = 254 nm, purity 98%).

43c, white solid, yield: (10.0 mg, 12%). ¹**H** NMR (CDCl₃, 500 MHz) δ 7.75 (s, 1H), 7.19 (d, J = 8.6 Hz, 1H), 6.75 (dd, J = 8.6, 2.6 Hz, 1H), 6.53 (d, J = 2.5 Hz, 1H), 4.68 (dd, J = 9.0, 7.9 Hz, 1H), 3.80 (s, 3H), 3.40-3.33 (m, 4H), 2.49 (td, J = 12.1, 2.9 Hz, 1H), 2.43 (dd, J = 12.8, 8.5 Hz, 1H), 2.30-2.22 (m, 1H), 2.17 (d, J = 12.6, 1.4 Hz, 1H), 2.05-2.00 (m, 2H), 1.94-1.84 (m, 6H), 1.77-1.68 (m, 2H), 1.62-1.54 (m, 1H), 1.44-1.34 (m, 2H), 0.89 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz) δ 174.5, 158.6, 155.2, 138.2, 129.8, 126.3, 111.3, 107.7, 82.7, 55.5, 49.1, 46.0, 44.3, 43.7, 36.8, 35.6, 28.0, 25.2, 23.8, 12.4. HRMS (ESI): m/z: calculated for C₂₄H₃₃N₂O₄: [M + H]⁺ 413.2435, found: 413.2442. LC-MS ($t_R = 2.97$ min, $\lambda = 254$ nm, purity 97%).

43d, white solid, yield: (17.0 mg, 18%). ¹**H NMR** (CDCl₃, 500 MHz) δ 7.87 (s, 1H), 7.20-7.11 (m, 5H), 6.75 (dd, J = 8.7, 2.5 Hz, 1H), 6.54 (d, J = 2.4 Hz, 1H), 4.75 (dd, J = 8.9, 8.0 Hz, 1H), 4.63 (m, 2H), 3.80 (s, 3H), 3.71 (t, J = 5.7 Hz, 2H), 2.86 (t, J = 5.7 Hz, 2H), 2.49 (td, J = 12.1, 2.9 Hz, 1H), 2.43 (dd, J = 12.8, 8.6 Hz, 1H), 2.32-2.24 (m, 1H), 2.18 (d, J = 12.9, 1.7 Hz, 1H), 2.05-1.99 (m, 2H), 1.97-1.90 (m, 2H), 1.78-1.69 (m, 2H), 1.65-1.58 (m, 1H), 1.46-1.36 (m, 2H), 0.92 (s, 3H). ¹³C **NMR** (CDCl₃, 125 MHz) δ 174.6, 158.6, 138.1, 129.7, 126.6, 126.3, 111.3, 107.7, 83.2, 55.5, 49.1, 46.0, 45.8, 44.2, 43.8, 36.9, 35.6, 27.9, 25.2, 23.7, 12.6. **HRMS** (ESI): m/z: calculated for C₂₉H₃₅N₂O₄: [M + H]⁺ 475.2591, found: 475.2596. LC-MS (t_R = 3.15 min, λ = 254 nm, purity 98%).

43e, white solid, yield: (15.1 mg, 36%). **¹H NMR** (CDCl₃, 500 MHz) δ 8.03 (s, 1H), 7.18 (d, *J* = 8.6 Hz, 1H), 6.76 (dd, *J* = 8.5, 2.4 Hz, 1H), 6.55 (d, *J* = 2.8 Hz, 1H), 4.69 (dd, *J* = 8.9, 7.8 Hz, 1H), 3.80 (s, 3H), 3.67 (br, 4H), 2.79 (br, 4H), 2.50-2.41 (m, 2H), 2.29-2.21 (m, 1H), 2.16 (d, *J* = 13.5 Hz, 1H), 2.04-1.97 (m, 2H), 1.96-1.87 (m, 2H), 1.77-1.67 (m, 2H), 1.60-1.53 (m, 1H), 1.45-1.32 (m, 2H), 0.87 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz) δ 174.5, 158.7, 155.0, 138.2, 129.6, 126.2, 111.2, 107.8, 83.7, 55.5, 53.5, 49.0, 45.9, 44.4, 44.2, 43.7, 36.8, 35.6, 27.8, 25.2, 23.7, 12.5. HRMS (ESI): *m/z*: calculated for C₂₅H₃₆N₃O₄: [M + H]⁺ 442.2700, found: 442.2706. LC-MS (*t*_R= 2.07 min, λ = 254 nm, purity >99%).

S14a, white solid, yield: (125 mg, 88%). ¹**H NMR** (CDCl₃, 400 MHz) δ 6.18-6.17 (m, 1H), 5.61-5.50 (m, 1H), 5.06-4.99 (m, 2H), 4.31-4.23 (m, 1H), 4.17-4.07 (m, 2H), 3.62-3.57 (m, 1H), 3.20-3.16 (m, 1H), 3.08-3.02 (m, 1H), 2.68-2.63 (m, 1H), 2.45-2.40 (m, 1H), 1.86-1.81 (m, 2H), 1.73-1.57 (m, 8H), 1.43-1.10 (m, 13H), 1.07 (s, 3H), 1.02-0.93 (m, 1H), 0.86-0.82 (m, 1H), 0.79 (s, 3H). ¹³**C NMR** (CDCl₃, 100 MHz) δ 210.5, 180.3, 171.8, 132.9, 119.1, 71.1, 65.9, 61.1, 53.5, 48.0, 46.7, 44.8, 42.6, 38.8, 37.9, 37.6, 37.2, 37.1, 36.7, 36.1, 35.5, 31.4, 30.8, 28.9, 20.0, 14.7, 14.0, 12.3.

HRMS (ESI): m/z: calculated for C₂₈H₄₃NNaO₅: $[M + Na]^+$ 496.3033, found: 496.3019.

S14b, white solid, yield: (118 mg, 88%). ¹**H NMR** (CDCl₃, 400 MHz) δ 6.17-6.15 (m, 1H), 4.23-4.15 (m, 2H), 4.08-4.03 (m, 1H), 3.66-3.60 (m, 1H), 3.30-3.20 (m, 2H), 2.24-2.21 (m, 1H), 1.83-1.59 (m, 10H), 1.47-1.24 (m, 13H), 1.08 (s, 3H), 1.03-0.86 (m, 4H), 0.80 (s, 3H). ¹³**C NMR** (CDCl₃, 100 MHz) δ 211.6, 180.8, 172.3, 71.1, 62.2, 61.0, 53.3, 48.1, 46.7, 44.8, 39.5, 38.0, 37.9, 37.4, 36.8, 36.1, 35.8, 35.1, 31.4, 30.6, 28.9, 23.6, 20.1, 14.5, 14.0, 12.4. **HRMS** (ESI): *m/z*: calculated for C₂₆H₄₂NO₅: [M + H]⁺ 448.3058, found: 448.3058.

45a, white solid, yield: (516 mg, 90%). ¹**H** NMR (CDCl₃, 400 MHz) δ 6.07-6.05 (m, 1H), 4.61-4.56 (m, 1H), 4.20-4.17 (m, 2H), 4.10-4.14 (m, 1H), 3.59 (br, 4H), 3.22-3.20 (m, 2H), 2.63 (br, 4H), 2.44 (s, 3H), 2.31-2.28 (m, 1H), 1.86-1.59 (m, 10H), 1.49-1.40 (m, 2H), 1.34-1.26 (m, 10H), 1.19-1.17 (m, 2H), 1.08 (s, 3H), 0.90-0.85 (m, 2H), 0.81 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 211.6, 180.7, 172.5, 154.9, 74.8, 62.1, 61.1, 53.8, 53.5, 48.1, 46.8, 42.4, 39.5, 38.0, 37.4, 36.5, 36.1, 36.0, 35.2, 34.3, 30.6, 28.8, 27.7, 23.7, 20.0, 14.5, 14.0, 12.3. **HRMS** (ESI): *m/z*: calculated for C₃₂H₅₂N₃O₆: [M + H]⁺ 574.3851, found: 574.3849.

45b, white solid, yield: (51.0 mg, 89%). ¹**H NMR** (CDCl₃, 400 MHz) δ 6.09-6.07 (m, 1H), 4.58-4.55 (m, 1H), 4.19-4.17 (m, 2H), 4.09-4.03 (m, 1H), 3.74 (d, *J* = 10.5 Hz, 2H), 3.55-3.52 (m, 1H), 3.21-3.11 (m, 4H), 2.30-2.27 (m, 1H), 1.86-1.63 (m, 13H), 1.50-1.46 (m, 4H), 1.36-1.29 (m, 10H), 1.19-1.16 (m, 2H), 1.07 (s, 3H), 0.89-0.87 (m, 2H), 0.81 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 211.6, 180.7, 172.5, 155.6, 74.4, 66.1, 62.1, 61.1, 53.3, 50.6, 48.1, 46.7, 44.6, 39.5, 38.0, 37.4, 36.6, 36.1, 36.0, 35.2, 34.3, 30.6, 28.8, 27.8, 23.7, 20.3, 14.5, 14.0, 12.3. HRMS (ESI): *m/z*: calculated for C₃₂H₅₁N₂O₇: [M + H]⁺ 575.3691, found: 575.3697.

45c, white solid, yield: (52.8 mg, 92%). ¹**H** NMR (CDCl₃, 400 MHz) δ 6.10-6.09 (m, 1H), 4.60-4.55 (m, 1H), 4.21-4.16 (m, 2H), 4.09-4.03 (m, 1H), 3.74 (d, *J* = 10.8 Hz, 2H), 3.55 (br, 1H), 3.22-3.13 (m, 4H), 2.31-2.27 (m, 1H), 1.87-1.63 (M, 13H), 1.52-1.45 (m, 4H), 1.34-1.26 (m, 10H), 1.19-1.17 (m, 2H), 1.07 (s, 3H), 0.91-0.84 (m, 2H), 0.81 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz) δ 211.6, 180.7, 172.5, 155.6, 74.4, 66.2, 62.1, 61.1, 53.3, 50.6, 48.1, 46.7, 44.6, 39.5, 38.0, 37.4, 36.6, 36.1, 36.0, 35.2, 34.3, 30.6, 28.8, 27.8, 23.7, 22.3, 20.0, 14.5, 14.0, 12.3. HRMS (ESI): *m/z*: calculated for C₃₂H₅₁N₂O₇: [M + H]⁺ 575.3691, found: 575.3692.

45d, white solid, yield: (10.1 mg, 17%). ¹**H NMR** (CDCl₃, 400 MHz) δ 8.39 (d, J = 5.0 Hz, 1H), 7.21 (s, 1H), 7.10 (d, J = 4.4 Hz, 1H), 6.09 (d, J = 7.2 Hz, 1H), 5.91 (m, 1H), 4.60-4.55 (m, 1H), 4.45 (d, J = 5.5 Hz, 2H), 4.22-4.16 (m, 2H), 4.09-4.03 (m, 1H), 3.22-3.20 (m, 4H), 2.38 (s, 3H), 2.31-2.28 (m, 1H), 1.83-1.79 (m, 2H), 1.72-1.63 (m, 6H), 1.48-1.42 (m, 2H), 1.35-1.29 (m, 9H), 1.17-1.15 (m, 2H), 1.07 (s, 3H), 1.03-0.97 (m, 1H), 0.88-0.82 (m, 2H), 0.79 (s, 3H). ¹³**C NMR** (CDCl₃, 100 MHz) δ 211.6, 180.8, 172.5, 156.6, 156.5, 149.5, 147.7, 123.8, 123.6, 74.1, 62.1, 61.1, 53.3, 48.1, 46.8, 45.3, 44.7, 39.5, 38.0, 37.4, 36.6, 36.1, 36.0, 35.2, 34.2, 30.6, 28.7, 27.7, 23.7, 21.2, 20.0, 14.5, 14.0, 12.3. **HRMS** (ESI): *m/z*: calculated for C₃₄H₅₀N₃O₆: [M + H]⁺ 596.3694, found: 596.3692.

48e, white solid, yield: (34.2 mg, 57%). ¹**H NMR** (CDCl₃, 400 MHz) δ 6.19-6.17 (m, 1H), 5.61-5.50 (m, 1H), 5.01-4.97 (m, 2H), 4.61-4.54 (m, 1H), 4.31-4.23 (m, 1H), 4.16-4.10 (m, 2H), 3.75 (d, J = 10.6 Hz, 2H), 3.56-3.53 (m, 1H), 3.21-3.10 (m, 3H), 3.02-2.95 (m, 1H), 2.66-2.61 (m, 1H), 2.51-2.40 (m, 2H), 1.88-1.40 (m, 16H), 1.34-1.19 (m, 9H), 1.06 (s, 3H), 1.01-0.98 (m, 1H), 0.88-0.82 (m, 2H), 0.80 (s, 3H). ¹³**C NMR** (CDCl₃, 100 MHz) δ 210.5, 180.1, 172.0, 155.6, 132.9, 119.1, 74.4, 66.1, 65.9, 61.2, 53.4, 50.6, 47.9, 46.7, 44.6, 42.7, 38.7, 37.8, 37.2, 37.1, 36.6, 36.1, 35.6, 34.3, 30.8, 28.7, 27.8, 19.9, 14.7, 14.0, 12.3. **HRMS** (ESI): *m/z*: calculated for C₃₄H₅₂N₂NaO₇: [M + Na]⁺ 623.3667, found: 623.3647.

45f, white solid, yield: (40.8 mg, 68%). ¹**H NMR** (CDCl₃, 500 MHz) δ 6.17-6.15 (m, 1H), 5.60-5.51 (m, 1H), 5.01-4.98 (m, 2H), 4.60-4.55 (m, 1H), 4.30-4.24 (m, 1H), 4.18-4.10 (m, 2H), 3.75 (d, J = 10.4 Hz, 2H), 3.55 (br, 1H), 3.19-3.13 (m, 3H), 3.00-2.97 (m, 1H), 4.65-4.61 (m, 1H), 2.50-2.41 (m, 2H), 1.86-1.41 (m, 16H), 1.33-1.19 (m, 9H), 1.07 (s, 3H), 1.01-0.99 (m, 1H), 0.89-0.84 (m, 2H), 0.80 (s, 3H). ¹³**C NMR** (CDCl₃, 125 MHz) δ 210.6, 180.2, 172.1, 155.5, 133.0, 119.2, 74.5, 66.3, 66.0, 61.3, 53.5, 50.7, 48.0, 46.8, 44.7, 42.8, 38.8, 37.9, 37.3, 37.2, 36.6, 36.1, 35.7, 34.4, 30.9, 28.8, 27.8, 20.0, 14.8, 14.1, 12.4. **HRMS** (ESI): *m/z*: calculated for C₃₄H₅₂N₂NaO₇: [M + Na]⁺ 623.3667, found: 623.3639.

45g, white solid, yield: (17.3 mg, 28%). ¹**H** NMR (CDCl₃, 400 MHz) δ 8.38 (d, J = 4.0 Hz, 1H), 7.14 (s, 1H), 7.04 (d, J = 4.0 Hz 1H), 6.16 (d, J = 8.0 Hz, 1H), 5.77 (s, 1H), 5.01-5.60 (m, 1H), 4.98-5.01 (m, 2H), 4.56-4.61 (m, 1H), 4.43 (d, J = 4.0 Hz, 2H), 4.25-4.31 (m, 1H), 4.10-4.18 (m, 2H), 3.15-3.21 (m, 1H), 2.95-3.01 (m, 1H), 2.40-2.66 (m, 6H), 2.36 (s, 1H), 1.83 (dd, J = 16.0, 6.0 Hz, 1H), 1.54-1.71 (m, 6H), 1.18-1.48 (m, 3H), 1.06 (s, 2H), 0.72-0.86 (m, 4H). **HRMS** (ESI): *m/z*: calculated for C₃₂H₅₅NO₂: $[M + H]^+$ 622.3851, found: 622.3849.

General procedure for syntheses of azide

Supplementary Figure 14. Synthesis of azide. General procedure B was used for alkylation of 17.

To a vial containing azide **S5** (0.25 mmol) was added a solution of copper sulfate pentahydrate (187 mg, 0.125 mmol) and sodium ascorbate (75 mg, 0.375 mmol) in 2:1 water/*t*-butanol (6 ml) followed by alkyne (0.75 mmol). Dichloromethane (3.0 ml) was then added to vials help dissolve the azide. The reaction was stirred at room temperature for 24 hours then diluted with diethyl ether (50 mL), and washed with brine (10 mL \times 2). The organic phase was dried over sodium sulfate and concentrated in vacuum to afford crude product which was directly used in the next step without further purification. To a solution of the above product in THF/H₂O (5:1, 10 mL) was added TsOH

(19.0 mg, 0.1 mmol). The reaction mixture was stirred overnight. The mixture was diluted with EtOAc (50 mL), and washed with brine (10 mL \times 2). The organic phase was dried over sodium sulfate and concentrated in vacuum. Flash column chromatography over silica column afforded **46**.

46a, yield: (51.9 mg, 84%). ¹**H** NMR (500 MHz, CDCl₃) δ 7.82 (d, *J* = 7.6 Hz, 2H), 7.71 (s, 1H), 7.43 (t, *J* = 7.6 Hz, 2H), 7.34 (t, *J* = 7.4 Hz, 1H), 6.23 (d, *J* = 8.9 Hz, 1H), 4.44 – 4.01 (m, 5H), 3.58 (tt, *J* = 10.7, 4.9 Hz, 1H), 3.17 (ddt, *J* = 12.9, 5.8, 3.0 Hz, 1H), 2.93 (dt, *J* = 12.6, 6.4 Hz, 1H), 2.60 (dt, *J* = 11.6, 5.6 Hz, 1H), 1.99 – 1.46 (m, 12H), 1.48 – 1.12 (m, 9H), 1.12 – 0.90 (m, 5H), 0.86 – 0.73 (m, 4H), 0.68 (qd, *J* = 12.2, 3.9 Hz, 1H). ¹³**C** NMR (126 MHz, CDCl₃) δ 210.7, 179.9, 171.7, 147.8, 130.4, 128.8, 128.1, 125.6, 119.4, 70.9, 65.4, 61.3, 53.4, 50.1, 47.8, 46.6, 44.7, 38.6, 38.1, 37.8, 37.6, 37.1, 36.6, 36.0, 35.5, 35.0, 31.3, 30.8, 28.7, 26.6, 19.8, 14.6, 13.9, 12.2. HRMS (ESI) m/z: anal. calculated for [C₃₆H₅₀N₄O₅ + H]⁺: 619.3854, found: 619.3839. LC-MS (*t*_R= 1.81 min, λ = 254 nm, purity 98%).

46b, yield: (46.9 mg, 72%). ¹**H NMR** (500 MHz, CDCl₃) δ 7.82 (s, 1H), 7.78 – 7.61 (m, 2H), 7.49 – 7.20 (m, 2H), 6.24 (dd, J = 9.5, 3.5 Hz, 1H), 4.48 – 3.93 (m, 5H), 3.58 (dt, J = 11.1, 5.8 Hz, 1H), 3.30 – 3.12 (m, 1H), 2.93 (dt, J = 12.5, 6.3 Hz, 1H), 2.61 (dd, J = 11.8, 5.9 Hz, 1H), 2.00 – 1.47 (m, 12H), 1.49 – 1.12 (m, 9H), 1.12 – 0.85 (m, 6H), 0.86 – 0.74 (m, 4H), 0.68 (qd, J = 12.4, 4.0 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 210.7, 179.9, 171.7, 146.5, 134.7, 132.2, 130.11, 128.1, 125.7, 123.7, 119.9, 70.9, 65.4, 61.3, 53.4, 50.2, 47.8, 46.6, 44.7, 38.6, 38.1, 37.8, 37.56, 37.1, 36.6, 36.0, 35.5, 35.0, 31.3, 30.8, 28.7, 26.6, 19.8, 14.6, 13.9, 12.2. HRMS (ESI) m/z: anal. calculated for [C₃₆H₄₉Cl N₄O₅ + Na]⁺: 675.3284, found: 675.3273. LC-MS (t_R = 2.65 min, λ = 254 nm, purity 99%).

46c, yield: (49.2 mg, 76%). ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.74 (d, *J* = 8.7 Hz, 2H), 7.63 (s, 1H), 7.03 – 6.85 (m, 2H), 6.29 (dd, *J* = 9.7, 3.4 Hz, 1H), 4.48 – 3.99 (m, 5H), 3.84 (s, 3H), 3.58 (tt, *J* = 10.7, 4.8 Hz, 1H), 3.24 – 3.10 (m, 1H), 2.94 (dt, *J* = 12.6, 6.3 Hz, 1H), 2.58 (dt, *J* = 11.9, 5.8 Hz, 1H), 2.04 (s, 2H), 1.97 – 1.47 (m, 13H), 1.49 – 1.12 (m, 10H), 1.12 – 1.00 (m, 4H), 0.94 (td, *J*

= 13.5, 3.9 Hz, 1H), 0.85 – 0.73 (m, 4H), 0.68 (qd, J = 12.4, 4.2 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 210.7, 179.9, 171.6, 159.5, 147.6, 126.9, 123.1, 118.6, 114.2, 70.9, 65.4, 61.2, 55.2, 53.4, 50.0, 47.7, 46.6, 44.7, 38.6, 38.0, 37.7, 37.4, 37.0, 36.6, 36.0, 35.4, 34.9, 31.2, 30.7, 28.7, 26.6, 19.8, 14.6, 13.8, 12.2. **HRMS** (ESI) m/z: anal. calculated for [C₃₇H₅₂N₄O₆ + H]⁺: 649.3960, found: 649.3955. LC-MS (t_{R} = 1.96 min, λ = 254 nm, purity 98%).

General procedure for syntheses of imide.

Supplementary Figure 15. Synthesis of imides. General procedure H was used for preparation of **47**, DMF was used as solvent for amino acid. General procedure I was used for preparation of **48**.

48a, yield: 23.7 mg, 54%. ¹**H NMR** (500 MHz, CDCl₃) δ 3.62 (d, J = 17.8 Hz, 1H), 3.50 (t, J = 7.2 Hz, 2H), 3.36 (d, J = 18.1 Hz, 1H), 2.85 – 2.63 (m, 2H), 2.44 (dd, J = 19.3, 8.4 Hz, 1H), 2.33 (dq, J = 13.3, 3.5 Hz, 1H), 2.21 (dd, J = 15.7, 2.2 Hz, 1H), 2.17 – 1.99 (m, 2H), 1.99 – 1.75 (m, 4H), 1.64 – 1.43 (m, 5H), 1.37 – 1.12 (m, 6H), 1.10 – 0.97 (m, 1H), 0.96 (s, 3H), 0.92 (t, J = 7.3 Hz, 3H), 0.87 (s, 3H), 0.63 (td, J = 9.4, 8.5, 5.1 Hz, 1H). ¹³**C NMR** (126 MHz, CDCl₃) δ 220.4, 208.7, 171.2, 170.3, 137.7, 137.2, 51.6, 50.4, 49.2, 47.6, 42.2, 40.1, 38.1, 35.8, 35.1, 31.5, 30.5, 30.5, 30.4, 29.7, 29.5, 21.6, 20.9, 19.9, 15.0, 13.9, 13.6. **HRMS** (ESI) m/z: anal. calculated for [C₂₇H₃₇NO₄ + Na]⁺: 462.2615, found: 462.2604.

48b, yield: 79.2 mg, 60%. ¹H NMR (500 MHz, CDCl₃) δ 3.66 (td, J = 5.6, 1.6 Hz, 2H), 3.61 (d, J = 17.9 Hz, 1H), 3.53 – 3.42 (m, 2H), 3.32 (d, J = 18.1 Hz, 1H), 3.27 (d, J = 1.8 Hz, 3H), 2.79 – 2.62

(m, 2H), 2.40 (dd, J = 19.2, 9.1 Hz, 1H), 2.29 (dd, J = 13.5, 3.8 Hz, 1H), 2.19 (dt, J = 15.7, 2.0 Hz, 1H), 2.14 – 1.71 (m, 6H), 1.56 – 1.39 (m, 3H), 1.39 – 1.09 (m, 3H), 0.99 (td, J = 12.3, 11.7, 6.4 Hz, 1H), 0.92 (s, 3H), 0.83 (s, 3H), 0.68 – 0.51 (m, 1H). ¹³**C NMR** (126 MHz, CDCl₃) δ 220.3, 208.5, 170.9, 170.0, 137.7, 137.3, 69.1, 58.4, 51.4, 50.1, 49.1, 47.5, 42.5, 42.1, 40.0, 37.5, 35.7, 35.7, 35.0, 31.4, 30.3, 30.3, 29.3, 21.5, 20.8, 14.9, 13.8. **HRMS** (ESI) m/z: anal. calculated for [C₂₆H₃₅NO₅ + Na]⁺ : 464.2407, found: 464.2393. LC-MS ($t_R = 2.48 \text{ min}, \lambda = 254 \text{ nm}, \text{purity 97\%}$).

48c, yield: 71.0 mg, 56%. ¹**H NMR** (500 MHz, CDCl₃) δ 5.78 (ddt, J = 17.3, 9.9, 5.7 Hz, 1H), 5.22 – 5.08 (m, 2H), 4.10 (dt, J = 5.7, 1.5 Hz, 2H), 3.64 (dd, J = 18.1, 1.3 Hz, 1H), 3.36 (d, J = 18.1 Hz, 1H), 2.73 (dd, J = 15.6, 12.3 Hz, 2H), 2.44 (ddd, J = 19.2, 8.9, 1.0 Hz, 1H), 2.32 (dq, J = 13.3, 3.6 Hz, 1H), 2.22 (dd, J = 15.7, 2.3 Hz, 1H), 2.18 – 1.99 (m, 2H), 1.99 – 1.77 (m, 3H), 1.59 – 1.45 (m, 4H), 1.40 – 1.14 (m, 4H), 1.02 (ddd, J = 18.3, 7.0, 5.3 Hz, 1H), 0.96 (s, 3H), 0.87 (s, 3H), 0.63 (ddd, J = 12.1, 10.3, 3.7 Hz, 1H). ¹³**C NMR** (126 MHz, CDCl₃) δ 220.3, 208.4, 170.5, 169.7, 137.8, 137.4, 131.5, 117.6, 51.4, 50.3, 49.1, 47.5, 42.7, 42.2, 40.3, 40.1, 35.7, 35.0, 31.4, 30.4, 30.3, 29.4, 21.6, 20.8, 15.0, 13.9. **HRMS** (ESI) m/z: anal. calculated for [C₂₆H₃₃NO₄ + Na]⁺ : 446.2302, found: 446.2286. LC-MS ($t_R = 2.27$ min, $\lambda = 254$ nm, purity 98%).

48d, yield: 73.4 mg, 52%. ¹**H NMR** (500 MHz, CDCl₃) δ 7.35 – 7.17 (m, 5H), 4.73 – 4.51 (m, 2H), 3.62 (d, *J* = 18.2 Hz, 1H), 3.33 (d, *J* = 18.2 Hz, 1H), 2.83 – 2.63 (m, 2H), 2.44 (dd, *J* = 19.2, 8.9 Hz, 1H), 2.31 (dq, *J* = 13.3, 3.6 Hz, 1H), 2.20 (dd, *J* = 15.7, 2.3 Hz, 1H), 2.15 – 1.98 (m, 2H), 1.96 – 1.74 (m, 4H), 1.48 (dtd, *J* = 15.0, 8.7, 8.1, 4.1 Hz, 4H), 1.39 – 1.24 (m, 1H), 1.23 – 1.12 (m, 2H), 1.03 – 0.95 (m, 1H), 0.94 (s, 3H), 0.86 (s, 3H), 0.58 (ddd, *J* = 12.0, 10.3, 3.7 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 220.3, 208.4, 170.7, 169.8, 137.9, 137.5, 136.1, 128.6, 128.3, 127.8, 51.4, 50.2, 49.1, 47.5, 42.5, 42.1, 41.9, 40.0, 35.7, 35.0, 31.4, 30.4, 30.3, 29.3, 21.5, 20.8, 14.9, 13.9. HRMS (ESI) m/z: anal. calculated for [C₃₀H₃₅NO₄ + K]⁺: 512.2200, found: 512.2188. LC-MS (t_R = 2.97 min, λ = 254 nm, purity 97%).

47aa, White solid, 26.0 mg, yield 59%. ¹**H** NMR (500 MHz, CDCl₃) δ 7.62 (s, 1H), 3.86 (d, J =

18.5 Hz, 1H), 3.67 (s, 3H), 3.16 (d, J = 18.5 Hz, 1H), 2.83 (d, J = 14.0 Hz, 1H), 2.49 (dd, J = 13.5, 3.5 Hz, 1H), 2,17-2.07 (m, 3H), 1.93 (dd, J = 15.0, 3.0 Hz, 1H), 1.89-1.73 (m, 3H), 1.60 (d, J = 14.0 Hz, 1H), 1.48-1.39 (m, 2H), 1.35 (d, J = 13.5 Hz, 1H), 1.16 (s, 3H), 1.11 (s, 3H), 1.10-1.04 (m, 2H), 1.03-0.96 (m, 3H), 0.92-0.81 (m, 2H), 0.66 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 212.0, 177.9, 171.1, 170.3, 140.7, 138.7, 59.0, 57.5, 51.4, 50.0, 48.5, 44.0, 40.4, 40.1, 39.9, 38.4, 37.6, 37.1, 34.7, 29.5, 28.7, 22.7, 19.7, 19.2, 18.4, 14.2. HRMS (ESI): *m/z*: calculated for C₂₆H₃₅NO₅Na: [M + Na]⁺ 464.2407, found: 464.2395. LC-MS ($t_R = 0.56 \text{ min}, \lambda = 254 \text{ nm}, \text{purity >99\%}$).

47ab, White solid, 20.9 mg, 46%. ¹**H NMR** (500 MHz, CDCl₃) δ 3.87 (dd, J = 18.5, 2.0 Hz, 1H), 3.68 (s, 3H), 3.18 (dd, J = 18.5, 1.5 Hz, 1H), 3.01 (s, 3H), 2.86 (d, J = 14.0 Hz, 1H), 2.51 (dq, J = 13.5, 3.0 Hz, 1H), 2.18-2.08 (m, 3H), 1.93 (dd, J = 14.5, 3.0 Hz, 1H), 1.87 (dt, J = 14.0, 4.0 Hz, 1H), 1.81 (dq, J = 15.0, 3.0 Hz, 1H), 1.75 (d, J = 12.5 Hz, 1H), 1.62-1.59 (m, 1H), 1.50-1.41 (m, 2H), 1.35 (dt, J = 13.0, 3.0 Hz, 1H), 1.17 (s, 3H), 1.12 (s, 3H), 1.09-1.06 (m, 2H), 1.03-0.96 (m, 3H), 0.92-0.82 (m, 2H), 0.67 (s, 3H). ¹³**C NMR** (125 MHz, CDCl₃) δ 211.9, 177.7, 171.5, 170.5, 139.4, 137.6, 58.7, 57.2, 51.1, 49.8, 48.2, 43.8, 40.2, 39.8, 39.6, 38.2, 37.4, 37.0, 34.4, 29.3, 28.5, 24.1, 22.5, 19.5, 19.0, 18.2, 14.0. **HRMS** (ESI): *m/z*: calculated for C₂₇H₄₁N₂O₅: [M + NH₄]⁺ 473.3010, found: 473.2998. LC-MS (t_R = 0.72 min, λ = 254 nm, purity >99%).

47ac, White solid, 41.8 mg, yield 87%. ¹**H NMR** (500 MHz, CDCl₃) δ 5.80 (ddt, J = 17.5, 10,0, 5.5 Hz, 1H), 5.19-5.15 (m, 2H), 4.12-4.10 (m, 2H), 3.88 (dd, J = 18.5, 1.5 Hz, 1H), 3.67 (s, 3H), 3.19 (dd, J = 18.5, 1.5 Hz, 1H), 2.87 (d, J = 14.0 Hz, 1H), 2.51 (dq, J = 13.5, 2.5 Hz, 1H), 2.18-2.09 (m, 3H), 1.93 (dd, J = 14.5, 2.5 Hz, 1H), 1.87 (dt, J = 14.0, 4.0 Hz, 1H), 1.81 (dq, J = 14.5, 3.0 Hz, 1H), 1.75 (d, J = 12.5 Hz, 1H), 1.63-1.59 (m, 1H), 1.50-1.41 (m, 2H), 1.34 (dt, J = 13.0, 3.5 Hz, 1H), 1.17 (s, 3H), 1.12 (s, 3H), 1.10-1.06 (m, 2H), 1.04-0.96 (m, 3H), 0.92-0.82 (m, 2H), .067 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 211.9, 177.7, 171.0, 169.9, 139.4, 137.6, 131.6, 117.5, 58.7, 57.2, 51.1, 49.8, 48.2, 43.8, 40.3, 40.2, 39.8, 39.7, 38.2, 37.4, 37.0, 34.4, 29.2, 28.5, 22.5, 19.5, 19.0, 18.2, 13.9. HRMS (ESI): m/z: calculated for C₂₉H₃₉NO₅Na: [M + Na]⁺ 504.2720, found: 504.2712.

47ad, White solid, 53.1 mg, yield 99%. ¹**H NMR** (500 MHz, CDCl₃) δ 7.32-7.25 (m, 5H), 4.69 (*A*B, *J* = 15.0 Hz, 1H), 4.62 (*AB*, *J* = 14.5 Hz, 1H), 3.86 (dd, *J* = 18.5, 2.0 Hz, 1H), 3.67 (s, 3H), 3.18 (dd, *J* = 18.5, 2.0 Hz, 1H), 2.86 (d, *J* = 14.0 Hz, 1H), 2.49 (dq, *J* = 14.0, 3.0 Hz, 1H), 2.18-2.08 (m, 3H), 1.92 (dd, *J* = 15.0, 3.0 Hz, 1H), 1.88-1.79 (m, 2H), 1.75 (d, *J* = 12.5 Hz, 1H), 1.62-1.58 (m, 1H), 1.48-1.40 (m, 2H), 1.34 (dt, *J* = 13.5, 3.5 Hz, 1H), 1.17 (s, 3H), 1.11 (s, 3H), 1.08-1.05 (m, 2H), 1.03-0.97 (m, 3H), .091-0.82 (m, 2H), 0.66 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 212.1, 177.9, 171.3, 170.3, 139.7, 137.9, 136.5, 128.9, 128.5, 138.0, 59.0, 57.5, 51.4, 50.0, 48.5, 44.1, 42.1, 40.4, 40.1, 39.9, 38.5, 37.6, 37.3, 34.7, 29.5, 28.7, 22.9, 19.8, 19.2, 18.4, 14.2. HRMS (ESI): *m/z*: calculated for C₃₃H₄₅N₂O₅: [M + NH₄]⁺ 549.3323, found: 549.3313.

47ae, White solid, 42.2 mg, yield 85%. ¹**H NMR** (500 MHz, CDCl₃) δ 3.87 (dd, J = 18.5, 2.0 Hz, 1H), 3..68 (s, 3H), 3.49 (t, J = 7.5 Hz, 2H), 3.18 (dd, J = 18.5, 2.0 Hz, 1H), 2.85 (d, J = 14.0 Hz, 1), 2.51 (dq, J = 13.0, 3.0 Hz, 1H), 2.18-2.08 (m, 3H), 1.93 (dd, J = 15.0, 3.0 Hz, 1H), 1.87 (dt, J = 14.0, 3.5 Hz, 1H), 1.81 (dq, J = 4.5, 2.5 Hz, 1H), 1.76 (d, J = 12.5 Hz, 1H), 1.59-1.53 (m, 3H), 1.50-1.41 (m, 2H), 1.36-1.25 (m, 3H), 1.17 (s, 3H), 1.13 (s, 3H), 1.09-1.06 (m, 2H), 1.03-0.96 (m, 3H), 0.92 (t, J = 7.5 Hz, 3H), 0.89-0.82 (m, 2H), 0.68 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 212.1, 177.8, 171.7, 170.6, 139.2, 137.5, 58.8, 57.3, 51.3, 49.9, 48.3, 43.9, 40.3, 39.9, 39.8, 38.3, 38.2, 37.5, 37.1, 34.5, 30.7, 29.3, 28.6, 22.6, 20.1, 19.6, 19.1, 18.3, 14.0, 13.7. HRMS (ESI): m/z: calculated for C₃₀H₄₇N₂O₅: [M + NH₄]⁺515.3479, found: 515.3475.

47af, White solid, 50.7 mg, yield 89%. ¹**H NMR** (500 MHz, CDCl₃) δ 3.87 (dd, *J* = 18.5, 2.0 Hz, 1H), 3.67 (s, 3H), 3.32 (d, *J* = 7.0 Hz, 2H), 3.18 (dd, *J* = 18.5, 2.0 Hz, 1H), 2.85 (d, *J* = 14.0 Hz, 1H), 2.50 (dq, *J* = 13.0, 3.0 Hz, 1H), 2.18-2.09 (m, 3H), 1.93 (dd, *J* = 14.5, 2.5 Hz, 1H), 1.86 (dt, *J* = 13.5, 3.5 Hz, 1H), 1.81 (dq, *J* = 14.5, 3.0 Hz, 1H), 1.76-1.59 (m, 9H), 1.50-1.41 (m, 2H), 1.33 (dt, *J* = 13.5, 3.5 Hz, 1H), 1.22-1.15 (m, 5H), 1.12 (s, 3H), 1.09-1.05 (m, 2H), 1.03-0.82 (m, 7H), 0.67 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 212.3, 177.9, 172.0, 171.0, 139.2, 137.5, 59.0, 57.5, 51.4,

50.1, 48.5, 44.7, 44.1, 40.5, 40.0, 39.9, 38.5, 37.7, 37.3, 37.1, 34.7, 30.9 (2 carbons), 29.5, 28.7, 26.4, 25.9, 25.8, 22.8, 19.8, 19.2, 18.5, 14.2. **HRMS** (ESI): *m/z*: calculated for C₃₃H₅₁N₂O₅: [M + NH₄]⁺ 555.3792, found: 555.3776.

47ag, White solid, 42.7 mg, yield 84%. ¹**H NMR** (500 MHz, CDCl₃) δ 4.41-4.35 (m, 1H), 3.84 (dd, J = 18.5, 2.0 Hz, 1H), 3.67 (s, 3H), 3.15 (dd, J = 18.5, 2.0 Hz, 1H), 2.83 (d, J = 14.0 Hz, 1H), 2.49 (dq, J = 13.5, 3.0 Hz, 1H), 2.19-2.08 (m, 3H), 1.97-1.79 (m, 9H), 1.75 (d, J = 12.5 Hz, 1H), 1.61-1.56 (m, 3H), 1.49-1.40 (m, 2H), 1.34 (dt, J = 13.0, 3.5 Hz, 1H), 1.17 (s, 3H), 1.11 (s, 3H), 1.08-1.05 (m, 2H), 1.02-0.96 (m, 3H), 0.91-0.82 (m, 2H), 0.67 (s, 3H). ¹³C **NMR** (125 MHz, CDCl₃) δ 212.4, 177.9, 171.7, 170.7, 139.2, 137.5, 59.0, 57.5, 51.5, 51.4, 50.1, 48.4, 44.1, 40.4, 40.4, 39.9, 38.5, 37.6, 37.2, 34.7, 29.8, 29.7, 29.5, 28.7, 24.9 (2 carbons), 22.7, 19.8, 19.2, 18.5, 14.2. **HRMS** (ESI): m/z: calculated for C₃₁H₄₇N₂O₅: [M + NH₄]⁺ 527.2379, found: 527.3470.

47ah, White solid, 49.9 mg, yield 99%. ¹**H NMR** (500 MHz, CDCl₃) δ 3.87 (dd, J = 18.0, 1.5 Hz, 1H), 3.71-3.69 (m, 2H), 3.67 (s, 3H), 3.52 (td, J = 5.5, 1.5 Hz, 1H), 3.33 (s, 3H), 3.18 (dd, J = 18.0, 1.5 Hz, 1H), 2.86 (d, J = 14.0 Hz, 1H), 2.50 (dq, J = 13.0, 2.5 Hz, 1H), 2.18-2.08 (m, 3H), 1.93 (dd, J = 14.5, 2.5 Hz, 1H), 1.86 (dt, J = 14.0, 4.0 Hz, 1H), 1.80 (dq, J = 15.0, 3.0 Hz, 1H), 1.75 (d, J = 13.0 Hz, 1H), 1.63-1.58 (m, 1H), 1.49-1.40 (m, 2H), 1.34 (dt, J = 13.5, 3.0 Hz, 1H), 1.16 (s, 3H), 1.11 (s, 3H), 1.08-1.05 (m, 2H), 1.03-0.96 (m, 3H), 0.91-0.82 (m, 2H), 0.67 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 212.2, 177.9, 171.6, 170.5, 139.6, 137.8, 69.6, 59.0, 58.9, 57.5, 51.4, 50.0, 48.5, 44.1, 40.4, 40.0, 39.9, 38.5, 37.9, 37.6, 37.3, 34.7, 29.5, 28.7, 22.8, 19.7, 19.2, 18.4, 14.2. HRMS (ESI): m/z: calculated for C₂₉H₄₂NO₆: [M + H]⁺ 500.3007, found: 500.3000. LC-MS (t_R = 0.71 min, λ = 254 nm, purity >99%).

47ai, Pale yellow oil, 23.1 mg, yield 42%. ¹**H NMR** (500 MHz, CDCl₃) δ 4.14 (tt, *J* = 10.5, 3.5 Hz, 1H), 3.83 (dd, *J* = 18.0, 1.5 Hz, 1H), 3.67 (s, 3H), 3.15 (dd, *J* = 18.5, 1.0 Hz, 1H), 2.82 (d, *J* = 14.0
Hz, 1H), 2.49 (dq, J = 13.0, 3.0 Hz, 1H), 2.20-2.12 (m, 4H), 2.07 (d, J = 14.5 Hz, 1H), 1.93 (dd, J = 14.5, 2.5 Hz, 1H), 1.88-1.43 (m, 18H), 1.33 (dt, J = 13.5, 3.0 Hz, 1H), 1.16 (s, 3H), 1.11 (s, 3H), 1.08-1.05 (m, 2H), 1.02-0.96 (m, 3H), 0.91-0.82 (m, 2H), 0.66 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 212.4, 177.9, 171.5, 170.5, 139.0, 137.4, 59.0, 57.5, 52.0, 51.4, 50.1, 48.4, 44.1, 40.5, 40.0, 39.9, 38.5, 37.6, 37.3, 34.7, 32.0, 29.5, 28.7, 26.5 (2 carbons), 26.1, 25.3, 25.2, 22.7, 19.8, 19.2, 18.5, 14.2. **HRMS** (ESI): *m/z*: calculated for C₃₄H₅₀NO₅: [M + H]⁺ 552.3684, found: 552.3673.

47aj, White solid, 39.6 mg, yield 81% with 2-methyl allylamine HCl salt and Et₃N. ¹H NMR (500 MHz, CDCl₃) δ 4.87-4.86 (m, 1H), 4.73 (s, 1H), 4.03 (s, 2H), 3.89 (dd, *J* = 18.0, 1.5 Hz, 1H), 3.66 (s, 3H), 3.20 (dd, *J* = 18.0, 1.5 Hz, 1H), 2.87 (d, *J* = 14.5 Hz, 1H), 2.51 (dq, *J* = 13.0, 2.5 Hz, 1H), 2.18-2.08 (m, 3H), 1.92 (dd, *J* = 14.5, 2.5 Hz, 1H), 1.86 (dt, *J* = 14.0, 4.0 Hz, 1H), 1.82-1.74 (m, 2H), 1.72 (s, 3H), 1.62-1.58 (m, 1H), 1.50-1.41 (m, 2H), 1.33 (dt, *J* = 13.0, 3.0 Hz, 1H), 1.16 (s, 3H), 1.12 (s, 3H), 1.10-1.05 (m, 2H), 1.04-0.96 (m, 3H), 0.92-0.82 (m, 2H), 0.67 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 212.2, 177.9, 171.4,170.3, 139.7, 139.6, 137.7,112.0, 59.0, 57.5, 51.4, 50.1, 48.5, 44.1,43.8, 40.4, 40.1, 39.9, 38.5, 37.6, 37.3, 34.7, 29.5, 28.7, 22.8, 20.4, 19.8, 19.2, 18.4, 14.2; HRMS (ESI): *m/z*: calculated for C₃₀H₄₁NO₅Na: [M + Na]⁺ 518.2877, found 518.2876.

47ak, White solid, 53.2 mg, yield 99%. ¹**H** NMR (500 MHz, CDCl₃) δ 8.56 (dd, J = 4.5, 1.5 Hz, 2H), 7.19 (dd, J = 4.5, 2.0 Hz, 2H), 4.68 (*A*B, J = 15.5 Hz, 1H), 4.62 (*A*B, J = 15.0 Hz, 1H), 3.88 (dd, J = 18.5, 1.5 Hz, 1H), 3.67 (s, 3H), 3.20 (dd, J = 18.5, 1.5 Hz, 1H), 2.87 (d, J = 14.0 Hz, 1H), 2.50 (dq, J = 13.0, 2.5 Hz, 1H), 2.18-2.08 (m, 3H), 1.92 (dd, J = 14.5, 2.5 Hz, 1H), 1.88-1.79 (m, 2H), 1.75 (d, J = 13.0 Hz, 1H), 1.63-1.59 (m, 1H), 1.49-1.40 (m, 2H), 1.32 (dt, J = 13.5, 3.0 Hz, 1H), 1.17 (s, 3H), 1.12 (s, 3H), 1.11-1.05 (s, 2H), 1.04-0.96 (m, 3H), 0.94-0.82 (m, 2H), 0.66 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 211.8, 177.8, 171.0, 170.0, 150.5, 145.0, 140.0, 138.2, 122.9, 58.9, 57.5, 51.4, 50.0, 48.5, 44.1, 40.9, 40.4, 40.1, 40.0, 38.4, 37.6, 37.3, 34.6, 29.4, 28.7, 22.9, 19.7, 19.2, 18.4, 14.2. HRMS (ESI): *m/z*: calculated for C₃₂H₄₁N₂O₅: [M + H]⁺ 533.3010, found: 533.3010. LC-MS ($t_R = 0.46$ min, $\lambda = 254$ nm, purity 99%).

47al, Light yellow solid, 51.0 mg, yield 96%. ¹**H** NMR (500 MHz, CDCl₃) δ 8.62 (s, 1H), 8.54 (d, J = 4.0 Hz, 1H), 7.66 (dt, J = 8.0, 2.0 Hz, 1H), 7.26 (dd, J = 8.0, 4.5 Hz, 1H), 4.69 (d, J = 15.0 Hz, 1H), 4.63 (d, J = 15.0 Hz, 1H), 3.86 (dd, J = 18.5, 1.5 Hz, 1H), 3.67 (s, 3H), 3.17 (dd, J = 18.5, 1.5 Hz, 1H), 2.85 (d, J = 14.5 Hz, 1H), 2.49 (dq, J = 13.5, 3.0 Hz, 1H), 2.18-2.09 (m, 3H), 1.90 (dd, J = 14.5, 3.0 Hz, 1H), 1.87-1.69 (m, 4H), 1.61-1.58 (m, 1H), 1.48-1.39 (m, 2H), 1.31 (dt, J = 13.5, 3.0 Hz, 1H), 1.17 (s, 3H), 1.11 (s, 3H), 1.09-1.05 (m, 2H), 1.03-0.96 (m, 3H), 0.91-0.81 (m, 2H), 0.66 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 211.9, 177.9, 171.1, 170.0, 150.0, 19.6, 139.9, 18.1, 136.3, 132.1, 123.8, 58.9, 57.4, 51.4, 50.0, 8.5, 44.1, 40.4, 40.1, 39.9, 39.6, 38.4, 37.6, 37.2, 34.6, 29.4, 28.7, 22.9, 19.7, 19.2, 18.4, 14.2; **HRMS** (ESI): *m/z*: calculated for C₃₂H₄₀N₂O₅Na: [M + Na]⁺ 555.2829, found 555.2827. LC-MS ($t_R = 0.56$ min, $\lambda = 254$ nm, purity 98%).

47am, Light yellow solid, 53.2 mg, yield 99%. ¹**H NMR** (500 MHz, CDCl₃) δ 8.52 (ddd, J = 5.0, 2.0, 1.0 Hz, 1H), 7.63 (ddd, J = 8.0, 8.0, 2.0 Hz, 1H), 7.19 (d, J = 8.0 Hz, 1H), 7.16 (ddd, J = 7.5, 5.0, 0.5 Hz, 1H), 4.82 (s, 2H), 3.91 (dd, J = 18.0, 1.5 Hz, 1H), 3.64 (s, 3H), 3.22 (dd, J = 18.0, 1.5 Hz, 1H), 2.89 (d, J = 14.0 Hz, 1H), 2.51 (dq, J = 13.0, 3.0 Hz, 1H), 2.17-2.06 (m, 3H), 1.98 (dd, J = 15.0, 3.0 Hz, 1H), 1.86 (dt, J = 14.0, 3.5 Hz, 1H), 1.81-1.74 (m, 2H), 1.62-1.60 (m, 1H), 1.50-1.37 (m, 3H), 1.15 (s, 3H), 1.13 (s, 3H), 1.11-1.03 (m, 2H), 1.01-0.95 (m, 3H), 0.92-0.82 (m, 2H), 0.66 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 212.2, 177.9, 171.6, 170.5, 155.5, 149.9, 139.9, 138.1, 136.9, 122.7, 121.5, 59.0, 57.5, 51.4, 50.0, 48.5, 44.0, 43.4, 40.4, 40.1, 39.8, 38.5, 37.6, 37.4, 34.7, 29.5, 28.7, 22.9, 19.8, 19.2, 18.5, 14.1; **HRMS** (ESI): *m/z*: calculated for C₃₂H₄₀N₂O₅Na: [M + Na]⁺ 555.2829, found 555.2825. LC-MS ($t_R = 0.64$ min, $\lambda = 254$ nm, purity 99%).

47an, White solid, 51.8 mg, yield 95%. ¹**H** NMR (500 MHz, CDCl₃) δ 7.31-7.27 (m, 2H), 7.23-7.19 (m, 3H), 3.82 (dd, J = 18.5, 1.5 Hz, 1H), 3.74 (ddd, J = 8.5, 7.0, 4.0 Hz, 1H), 3.68 (s, 3H), 3.14 (dd, J = 18.5, 1.5 Hz, 1H), 2.89 (t, J = 8.0 Hz, 2H), 2.82 (d, J = 14.0 Hz, 1H), 2.50 (dq, J = 13.5, 3.0 Hz, 1H), 2.19-2.06 (m, 3H), 1.90-1.74 (m, 4H), 1.61-1.58 (m, 1H), 1.48-1.40 (m, 2H), 1.77 (dt, J = 13.5, 3.0 Hz, 1H), 1.17 (s, 3H), 1.11 (s, 3H), 1.08-0.96 (m, 5H), 0.89-0.82 (m, 2H), 0.67 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 212.2, 177.9, 171.5, 170.4, 139.4, 138.1, 137.6, 129.1, 128.8, 126.9, 59.0, 57.5, 51.4, 50.0, 48.5, 44.1, 40.4, 40.0, 39.9, 39.7, 38.5, 37.6, 37.2, 34.8, 34.7, 29.5, 28.7, 22.7, 19.7, 19.2, 18.4, 14.2; **HRMS** (ESI): *m/z*: calculated for C₃₄H₄₃NO₅Na: [M + Na]⁺ 568.3033, found 568.3045.

47ao, Light brown oil, 22.2 mg, yield 40%. ¹**H NMR** (500 MHz, CDCl₃) δ 4.24-4.18 (m, 1H), 3.84 (dd, *J* = 18.0, 1.5 Hz, 1H), 3.68 (s, 3H), 3.16 (dd, *J* = 18.5, 1.0 Hz, 1H), 2.83 (d, *J* = 14.0 Hz, 1H), 2.50 (dq, *J* = 13.0, 2.5 Hz, 1H), 2.18-2.06 (m, 3H), 2.02-1.97 (m, 2H), 1.93 (dd, *J* = 14.5, 2.5 Hz, 1H), 1.88-1.74 (m, 3H), 1.62-1.59 (m, 3H), 1.50-1.25 (m, 21H), 1.17 (s, 3H), 1.12 (s, 3H), 1.06 (d, *J* = 14.5 Hz, 2H), 1.02-0.97 (m, 3H), 0.90-0.82 (m, 2H), 0.67 (s, 3H);); ¹³C NMR (125 MHz, CDCl₃) δ 212.5, 177.9, 171.9, 171.0, 139.0, 137.3, 59.1, 57.5, 51.5, 50.2, 48.5, 47.4, 44.1, 40.5, 40.0, 38.5, 37.6, 37.3, 34.7, 29.5, 28.7, 28.4, 24.4, 24.3, 24.2 (2 carbons), 22.9, 22.8 (2 carbons), 22.7, 19.8, 19.3, 18.5, 14.2; **HRMS** (ESI): *m/z*: calculated for C₃₈H₅₇NO₅Na: [M + Na]⁺ 580.3972, found 580.3970.

47ap, Pale yellow solid, 49.2 mg, yield 96%. ¹**H NMR** (500 MHz, CDCl₃) δ 3.86 (dd, J = 18.5, 1.5 Hz, 1H), 3.67 (s, 3H), 3.63-3.56 (m, 2H), 3.17 (dd, J = 18.5, 1.5 Hz, 1H), 2.85 (d, J = 14.0 Hz, 1H), 2.51-2.41 (m, 3H), 2.24 (s, 6H), 2.18-2.07 (m, 3H), 1.93 (dd, J = 14.5, 2.5 Hz, 1H), 1.88-1.79 (m, 2H), 1.75 (d, J = 13.0 Hz, 1H), 1.61-1.58 (m, 1H), 1.49-1.40 (m, 2H), 1.34 (dt, J = 13.5, 3.0 Hz, 1H), 1.16 (s, 3H), 1.11 (s, 3H), 1.08-1.05 (m, 2H), 1.02-0.97 (m, 3H), 0.90-0.82 (m, 2H), 0.67 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 212.2, 177.9, 171.7, 170.6, 139.5, 137.7, 59.0, 57.5, 57.4, 51.4, 50.0, 48.5, 46.7, 44.1, 40.4, 40.0, 39.9, 38.5, 37.6, 37.3, 36.5, 34.7, 29.5, 28.7, 22.8, 19.7, 19.2, 18.4, 14.2; **HRMS** (ESI): m/z: calculated for C₃₀H₄₅N₂O₅: $[M + H]^+$ 513.3323, found 513.3340.

47aq, White solid, 56.1 mg, yield 99%. ¹**H NMR** (500 MHz, CDCl₃) δ 7.05 (d, *J* = 8.5 Hz, 2H), 6.75 (d, *J* = 8.5 Hz, 2H), 5.09 (s, 1H), 3.82 (dd, *J* = 18.0, 1.5 Hz, 1H), 3.71-3.68 (m, 5H), 3.14 (dd, *J* = 18.0, 1.5 Hz, 1H), 2.83-2.80 (m, 3H), 2.49 (dq, *J* = 13.5, 2.5 Hz, 1H), 2.18-2.06 (m, 3H), 1.89-1.74 (m, 4H), 1.62-1.58 (m, 1H), 1.46-1.43 (m, 2H), 1.27 (dt, *J* = 13.5, 3.0 Hz, 1H), 1.17 (s, 3H), 1.11 (s, 3H), 1.08-0.97 (m, 5H), 0.90-0.82 (m, 2H), 0.66 (s, 3H); ¹³C **NMR** (125 MHz, CDCl₃) δ

212.1, 177.9, 171.4, 170.3, 154.5, 139.3, 137.5, 130.1, 130.0, 115.5, 58.8, 57.3, 51.3, 49.9, 48.3, 43.9, 40.3, 39.9, 39.8, 39.7, 38.3, 37.5, 37.1, 34.6, 33.7, 29.4, 28.6, 22.6, 19.6, 19.1, 18.3, 14.1; **HRMS** (ESI): *m/z*: calculated for $C_{34}H_{43}NO_6Na$: $[M + Na]^+$ 584.2983, found 584.2980. LC-MS (t_R = 0.73 min, $\lambda = 254$ nm, purity 99%).

47ar, White solid, 51.8 mg, yield 95%. ¹**H** NMR (500 MHz, CDCl₃) δ 8.52 (d, *J* = 5.0 Hz, 2H), 7.13 (dd, *J* = 4.5, 2.0 Hz, 2H), 3.82 (dd, *J* = 18.5, 1.5 Hz, 1H), 3.77 (td, *J* = 7.5, 2.0 Hz, 2H), 3.68 (s, 3H), 3.14 (dd, *J* = 18.0, 1.0 Hz, 1H), 2.92 (t, *J* = 7.5 Hz, 2H), 2.80 (d, *J* = 14.0 Hz, 1H), 2.49 (dq, *J* = 13.5, 2.5 Hz, 1H), 2.16 (d, *J* = 13.5 Hz, 1H), 2.11-2.06 (m, 2H), 1.89-1.75 (m, 4H), 1.61-1.58 (m, 1H), 1.46-1.38 (m, 2H), 1.21 (dt, *J* = 13.5, 3.0 Hz, 1H), 1.17 (s, 3H), 1.11 (s, 3H), 1.07-0.96 (m, 5H), 0.86 (qd, *J* = 13.0, 3.5 Hz, 2H), 0.66 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 212.0, 177.9, 171.3, 170.2, 150.2, 147.0, 139.6, 137.7, 124.4, 58.9, 57.4, 51.4, 50.0, 48.5, 44.1, 40.4, 40.0, 39.9, 38.5, 38.4, 37.6, 37.2, 34.6, 33.9, 29.5, 28.7, 22.8, 19.7, 19.2, 18.4, 14.2; HRMS (ESI): *m/z*: calculated for C₃₃H₄₃N₂O₅: [M + H]⁺ 547.3166, found 547.3172. LC-MS (*t*_R= 0.37 min, λ = 254 nm, purity >99%).

47as, White solid, 40.9 mg, yield 95%. ¹**H NMR** (500 MHz, CDCl₃) δ 8.51 (ddd, J = 5.0, 1.0, 1.0 Hz, 1H), 5.89 (ddd, J = 7.5, 7.5, 2.0 Hz, 1H), 7.14-7.11 (m, 2H), 3.95-3.86 (m, 1H), 3.83 (dd, J = 18.0, 1.5 Hz, 1H), 3.67 (s, 3H), 3.13 (dd, J = 18.5, 1.5 Hz, 1H), 3.07 (t, J = 7.0 Hz, 2H), 2.81 (d, J = 14.5 Hz, 1H), 2.49 (dq, J = 13.5, 3.0 Hz, 1H), 2.16 (d, J = 13.5 Hz, 1H), 2.11-2.05 (m, 2H), 1.92-1.73 (m, 4H), 1.61-1.58 (m, 1H), 1.48-1.39 (m, 2H), 1.29 (dt, J = 13.5, 3.0 Hz, 1H), 1.10 (s, 3H), 1.07 (s, 1H), 1.04 (s, 1H), 0.99 (td, J = 13.5, 4.5 Hz, 2H), 0.88-0.81 (m, 2H), 0.66 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 212.7, 177.9, 171.4, 170.3, 158.5, 149.7, 139.4, 137.6, 136.6, 123.4, 121.8, 59.0, 57.5, 51.4, 50.0, 48.5, 44.1, 40.4, 40.0, 39.8, 38.5, 38.3, 37.6, 37.2, 36.8, 34.7, 29.5, 28.7, 22.7, 19.7, 19.2, 18.4, 14.2; **HRMS** (ESI): *m/z*: calculated for C₃₃H₄₃N₂O₅: [M + H]⁺ 547.3166, found 547.3184. LC-MS ($t_R = 0.50$ min, $\lambda = 210$ nm, purity >99%).

47at, White solid, 59.8 mg, yield 99%. ¹**H** NMR (500 MHz, CDCl₃) δ 6.78 (d, J = 8.0 Hz, 1H), 6.74-6.71 (m, 2H), 3.87 (s, 3H), 3.85-3.81 (m, 4H), 3.77-3.70 (m, 2H), 3.68 (s, 3H), 3.14 (dd, J = 18.5, 1.5 Hz, 1H), 2.89-2.79 (m, 3H), 2.49 (dq, J = 13.0, 3.0 Hz, 1H), 2.17 (d, J = 14.0 Hz, 1H), 2.12-2.05 (m, 2H), 1.90-1.73 (m, 4H), 1.60-1.58 (m, 1H), 1.45-1.39 (m, 2H), 1.23 (dt, J = 13.5, 3.0 Hz, 1H), 1.17 (s, 3H), 1.11 (s, 3H), 1.07-0.96 (m, 5H), 0.87-0.81 (m, 2H), 0.66 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 212.1, 177.9, 171.5, 170.5, 149.1, 148.0, 139.4, 137.6, 130.6, 121.1, 112.1, 111.4, 58.9, 57.5, 56.1 (2 carbons), 51.4, 50.0, 48.4, 44.1, 40.4, 40.0, 39.8, 38.4, 37.6, 37.2, 34.7, 34.3, 29.5, 28.7, 22.7, 19.7, 19.2, 18.5, 14.2; **HRMS** (ESI): *m/z*: calculated for C₃₆H₄₇NO₇Na: [M + Na]⁺ 628.3245, found 628.3252.

47au, White solid, 56.9 mg, yield 99%. ¹**H** NMR (500 MHz, CDCl₃) δ 7.20 (t, *J* = 7.5 Hz, 1H), 6.79 (d, *J* = 5.0 Hz, 1H), 6.77-6.74 (m, 2H), 3.83 (dd, *J* = 18.0, 1.0 Hz, 1H), 3.80 (s, 3H), 3.77-3.70 (m, 2H), 3.68 (s, 3H), 3.14 (dd, *J* = 18.0, 1.0 Hz, 1H), 2.87 (t, *J* = 8.0 Hz, 1H), 2.82 (d, *J* = 14.0 Hz, 1H), 2.50 (dt, *J* = 13.5, 3.0 Hz, 1H), 2.18-2.06 (m, 3H), 1.90-1.84 (m, 2H), 1.82-1.74 (m, 2H), 1.61-1.59 (m, 1H), 1.26 (dt, *J* = 13.5, 3.0 Hz, 1H), 1.17 (s, 3H), 1.11 (s, 3H), 1.08-1.01 (m, 3H), 0.99-0.96 (m, 2H), 0.88-0.82 (m, 2H), 0.67 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 212.2, 177.9, 171.5, 170.4, 159.9, 139.7, 139.4, 137.7, 129.8, 121.4, 114.6, 112.4, 59.0, 57.5, 55.4, 51.4, 50.0, 48.5, 44.1, 40.4, 40.0, 39.9, 39.6, 38.5, 37.6, 37.2, 34.8, 34.7, 39.5, 28.7, 22.7, 19.7, 19.2, 18.4, 14.2; **HRMS** (ESI): *m/z*: calculated for C₃₅H₄₅NO₆Na: [M + Na]⁺ 598.3139, found 598.3133.

47av, White solid, 49.4 mg, yield 99%. ¹**H NMR** (500 MHz, CDCl₃) δ 3.87 (dd, *J* = 18.5, 1.5 Hz, 1H), 3.67-3.65 (m, 5H), 3.57 (dt, *J* = 5.5, 5.5 Hz, 2H), 3.18 (dd, *J* = 18.5, 1.5 Hz, 1H), 2.85 (d, *J* = 14.0 Hz, 1H), 2.50 (dq, *J* = 13.0, 3.0 Hz, 1H), 2.30 (t, *J* = 6.0 Hz, 1H), 2.18-2.08 (m, 3H), 1.92 (dd, *J* = 15.0, 3.0 Hz, 1H), 1.88-1.74 (m, 5H), 1.62-1.58 (m, 1H), 1.49-1.40 (m, 2H), 1.32 (dt, *J* = 13.5, 5.5 (dt, J = 13.5) (dt, J

3.0 Hz, 1H), 1.16 (s, 3H), 1.12 (s, 3H), 1.08 (d, J = 14.5 Hz, 1H), 1.06 (dd, J = 12.5, 2.5 Hz, 1H), 1.03-0.96 (m, 3H), 0.92-0.82 (m, 2H), 0.67 (s, 3H); ¹³**C** NMR (125 MHz, CDCl₃) δ 212.0, 177.9, 172.3, 171.0, 139.7, 137.9, 59.3, 58.9, 57.5, 51.4, 50.0, 48.5, 44.1, 40.4, 40.1, 39.9, 38.4, 37.6, 37.2, 34.7, 34.6, 31.5, 29.5, 28.7, 22.8, 19.7, 19.2, 18.4, 14.2; HRMS (ESI): *m/z*: calculated for C₂₉H₄₁NO₆Na: [M + Na]⁺ 522.2826, found 522.2829. LC-MS (t_R = 0.57 min, λ = 254 nm, purity >99%).

47aw, White solid, 55.6 mg, yield 99%. ¹**H NMR** (500 MHz, CDCl₃) δ 7.38-7.29 (m, 5H), 5.24 (dd, J = 9.0, 5.0 Hz, 1H), 4.50 (ddd, J = 11.2, 9.0, 8.0 Hz, 1H), 4.11 (dt, J = 11.5, 5.0 Hz, 1H), 3.86 (dd, J = 18.5, 1.5 Hz, 1H), 3.67 (s, 3H), 3.16 (dd, J = 18.5, 1.5 Hz, 1H), 2.87 (d, J = 14.5 Hz, 1H), 2.49 (dq, J = 13.5, 3.0 Hz, 1H), 2.31 (dd, J = 8.0, 5.0 Hz, 1H), 2.18-2.09 (m, 3H), 1.93 (dd, J = 14.5, 2.5 Hz, 1H), 1.90-1.74 (m, 3H), 1.61-1.59 (m, 1H), 1.49-1.40 (m, 2H), 1.32 (dt, J = 13.5, 3.0 Hz, 1H), 1.08 (d, J = 14.5 Hz, 1H), 1.06 (dd, J = 13.0, 2.5 Hz, 1H), 1.03-0.97 (m, 3H), 0.91-0.82 (m, 2H), 0.66 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 212.1, 177.9, 172.0, 170.9, 139.7, 137.8, 136.9, 129.0, 128.4, 127.9, 62.4, 59.0, 57.8, 57.5, 51.5, 50.0, 48.5, 44.1, 40.4, 40.1, 39.9, 38.4, 37.6, 37.3, 34.7, 29.4, 28.7, 22.9, 19.8, 19.2, 18.4, 14.2; **HRMS** (ESI): *m/z*: calculated for C₃₄H₄₃NO₆Na: [M + Na]⁺ 584.2983, found 584.2989. LC-MS ($t_{R} = 0.91$ min, $\lambda = 254$ nm, purity >99%).

47ax, White solid, 47.9 mg, yield 99%. ¹**H NMR** (500 MHz, CDCl₃) δ 3.87 (dd, J = 18.5, 1.5 Hz, 1H), 3.80-3.77 (m, 2H), 3.72-3.70 (m, 2H), 3.67 (s, 3H), 3.18 (dd, J = 18.5, 1.5 Hz, 1H), 2.87 (d, J = 14.0 Hz, 1H), 2.50 (dq, J = 13.5, 3.5 Hz, 1H), 2.18-2.08 (m, 4H), 1.94 (dd, J = 14.5, 2.5 Hz, 1H), 1.86 (qt, J = 14.0, 4.0 Hz, 1H), 1.80 (dq, J = 15.0, 3.5 Hz, 1H), 1.75 (d, J = 13.5 Hz, 1H), 1.62-1.159 (m, 1H), 1.49-1.40 (m, 2H), 1.34 (dt, J = 13.5, 3.5 Hz, 1H), 1.17 (s, 3H), 1.12 (s, 3H), 1.09 (dd, J = 14.5, 1.5 Hz, 1H), 1.07 (dd, J = 13.0, 2.5 Hz, 1H), 1.04-0.96 (m, 3H), 0.93-0.82 (m, 3H), 0.67 (m, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 212.0, 177.9, 172.1, 171.0, 139.8, 138.0, 61.3, 59.0, 57.5, 51.4, 50.0, 48.5, 44.1, 41.4, 40.4, 40.1, 39.9, 38.4, 37.6, 37.3, 34.6, 29.5, 28.7, 22.9, 19.7, 19.2, 18.4, 14.2; HRMS (ESI): m/z: calculated for C₂₈H₄₀NO₆: [M + H]⁺ 486.2850, found 486.2853. LC-MS (t_R = 0.51 min, λ = 254 nm, purity 97%).

47ay, White solid, 51.7 mg, yield 90%. ¹**H NMR** (500 MHz, CDCl₃) δ 7.27-7.24 (m, 2H), 7.20-7.16 (m, 3H), 4.42 (dtd, J = 9.0, 7.0, 3.5 Hz, 1H), 4.01-3.95 (m, 1H), 3.85 (dt, J = 12.0, 3.5 Hz, 1H), 3.89 (dd, J = 18.5, 1.5 Hz, 1H), 3.66 (s, 3H), 3.14-3.05 (m, 3H), 2.73 (d, J = 14.0 Hz, 1H), 2.59 (dd, J = 8.5, 1.5 Hz, 1H), 2.47 (dq, J = 13.5, 3.0 Hz, 1H), 2.16 (d, J = 13.5 Hz, 1H), 2.07-2.00 (m, 2H), 1.84 (qt, J = 13.5, 3.5 Hz, 1H), 1.74-1.70 (m, 3H), 1.59-1.56 (m, 1H), 1.45-1.36 (m, 2H), 1.17 (s, 3H), 1.10 (s, 3H), 1.05-0.92 (m, 6H), 0.83 (td, J = 13.5, 4.0 Hz, 1H), 0.74 (t, J = 13.5 Hz, 1H), 0.63 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 212.0, 177.9, 171.8, 171.2, 139.3, 137.6 (2 carbons), 129.3, 128.8, 127.0, 63.2, 58.9, 57.4, 55.5, 51.4, 49.9, 48.4, 44.1, 40.4, 39.9, 39.7, 38.5, 37.6, 37.1, 34.9, 34.7, 29.5, 28.8, 22.8, 19.7, 19.2, 18.4, 14.2; **HRMS** (ESI): *m/z*: calculated for C₃₅H₄₆NO₆: [M + H]⁺ 576.3320, found 576.3330. LC-MS ($t_R = 0.94$ min, $\lambda = 254$ nm, purity >99%).

47az, White solid, 37.9 mg, yield 72%. ¹**H NMR** (500 MHz, CDCl₃) δ 4.03 (ddd, J = 12.0, 9.0, 7.0 Hz, 1H), 3.87 (dd, J = 18.5, 1.5 Hz, 1H), 3.82-3.74 (m, 2H), 3.67 (s, 3H), 3.18 (dd, J = 18.5, 1.5 Hz, 1H), 2.85 (d, J = 14.0 Hz, 1H), 2.72 (dd, J = 9.5, 3.0 Hz, 1H), 2.50 (dq, J = 13.5, 3.0 Hz, 1H), 2.37-2.30 (m, 1H), 2.19-2.08 (m, 3H), 1.92 (dd, J = 14.5, 3.0 Hz, 1H), 1.88-1.7 (m, 3H), 1.62-1.59 (m, 1H), 1.49-1.41 (m, 2H), 1.31 (dt, J = 13.0, 3.5 Hz, 1H), 1.17 (s, 3H), 1.12 (s, 3H), 1.10-0.96 (m, 8H), 0.92-0.82 (m, 2H), 0.80 (d, J = 7.0 Hz, 3H), 0.67 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 212.1, 177.9, 172.6, 171.5, 139.4, 137.5, 62.4, 60.3, 58.9, 57.5, 51.4, 50.0, 48.5, 44.1, 40.4, 40.1, 39.9, 38.4, 37.6, 37.3, 34.7, 29.5, 28.7, 27.3, 22.8, 20.2, 20.0, 19.8, 19.2, 18.4, 14.2; **HRMS** (ESI): *m/z*: calculated for C₃₁H₄₅NO₆Na: [M + Na]⁺ 550.3139, found 550.3147. LC-MS (t_R = 0.90 min, λ = 254 nm, purity >99%).

47ba, White solid, 44.7 mg, yield 85%. ¹**H NMR** (500 MHz, CDCl₃) δ 4.02 (ddd, *J* = 12.0, 9.0, 7.0 Hz, 1H), 3.87 (dd, *J* = 18.5, 1.5 Hz, 1H), 3.81 (dt, *J* = 12.0, 3.0 Hz, 1H), 3.75 (ddd, *J* = 10.5, 7.5, 3.0 Hz, 1H), 3.67 (s, 3H), 3.17 (dd, *J* = 18.5, 1.0 Hz, 1H), 2.86 (d, *J* = 14.0 Hz, 1H), 2.65 (dd, *J* = 9.0, 3.0 Hz, 1H), 2.50 (dq, *J* = 13.0, 3.0 Hz, 1H), 2.36 (ddt, *J* = 13.0, 10.5, 6.5 Hz, 1H), 2.18-2.07

(m, 3H), 1.92 (dd, J = 15.0, 3.0 Hz, 1H), 1.8801.74 (m, 3H), 1.63-1.58 (m, 1H), 1.50-1.1 (m, 2H), 1.31 (dt, J = 13.5, 3.0 Hz, 1H), 1.16 (s, 3H), 1.13 (s, 3H), 1.10-0.97 (m, 8H), 0.92-0.83 (m, 3H), 0.80 (d, J = 7.0 Hz, 3H), 0.67 (s, 3H); ¹³**C** NMR (125 MHz, CDCl₃) δ 212.1, 177.9, 172.5, 171.5, 139.4, 137.5, 62.5, 60.4, 58.9, 57.5, 51.4, 50.1, 48.5, 44.1, 40.4, 40.1, 39.9, 38.4, 37.6, 37.3, 34.6, 29.6, 28.7, 27.1, 22.8, 20.2, 20.0, 19.7, 19.2, 18.4, 14.2; **HRMS** (ESI): *m/z*: calculated for C₃₁H₄₅NO₆Na: [M + Na]⁺ 550.3139, found 550.3150. LC-MS ($t_{R}= 0.86$ min, $\lambda = 254$ nm, purity 97%).

47bb White solid, 53.8 mg, yield 96%. ¹**H NMR** (500 MHz, CDCl₃) δ 7.36-7.28 (m, 5H), 5.21 (dd, J = 9.0, 5.0 Hz, 1H), 4.49 (dt, J = 12.0, 8.0 Hz, 1H), 4.10 (dt, J = 12.0, 5.0 Hz, 1H), 3.86 (dd, J = 18.5, 1.5 Hz, 1H), 3.67 (s, 3H), 3.18 (dd, J = 18.5, 1.5 Hz, 1H), 2.86 (d, J = 14.0 Hz, 1H), 2.50 (dq, J = 13.5, 3.0 Hz, 1H), 2.42 (dd, J = 8.0, 5.0 Hz, 1H), 2.18-2.09 (m, 3H), 1.93 (dd, J = 14.5, 2.5 Hz, 1H), 1.90-1.81 (m, 2H), 1.75 (d, J = 13.0 Hz, 1H), 1.62-1.59 (m, 1H), 1.49-1.40 (m, 2H), 1.35 (dt, J = 13.5, 3.0 Hz, 1H), 1.17 (s, 3H), 1.11 (s, 3H), 1.08 (d, J = 14.5 Hz, 1H), 1.07 (dd, J = 12.5, 2.5 Hz, 1H), 1.03-0.97 (m, 3H), 0.93-0.82 (m, 2H), 0.66 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 212.0, 177.9, 172.1, 171.0, 139.7, 138.0, 137.2, 129.0, 128.4, 127.7, 62.8, 59.0, 58.4, 57.5, 51.5, 50.0, 48.5, 44.1, 40.4, 40.1, 39.9, 38.4, 37.6, 37.3, 34.6, 29.4, 28.8, 22.9, 19.8, 19.2, 18.4, 14.2; **HRMS** (ESI): m/z: calculated for C₃₄H₄₃NO₆Na: [M + Na]⁺ 584.2983, found 584.2989. LC-MS ($t_{R} = 0.88$ min, $\lambda = 254$ nm, purity >99%).

47bc, White solid, 56.9 mg, yield 99%. ¹**H** NMR (500 MHz, CDCl₃) δ 7.28-7.25 (m, 2H), 7.22-7.19 (m, 1H), 7.17-7.16 (m, 2H), 4.43-4.38 (m, 1H), 3.99-3.93 (m 1H), 3.85 (d, *J* = 12.0 Hz, 1H), 3.73-3.69 (m, 4H), 3.14-3.06 (m, 3H), 2.79 (d, *J* = 14.5 Hz, 1H), 2.58 (d, *J* = 5.5 Hz, 1H), 2.48 (dq, *J* = 13.5, 3.0 Hz, 1H), 2.19-2.09 (m, 2H), 2.04 (d, *J* = 14.0 Hz, 1H), 1.90-1.73 (m, 4H), 1.60-1.57 (m, 1H), 1.46-1.37 (m, 2H), 1.34 (dt, *J* = 13.5, 3.0 Hz, 1H), 1.19 (s, 3H), 1.08 (s, 3H), 1.06-0.95 (m, 5H), 0.92-0.82 (m, 2H), 0.66 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 212.0, 177.9, 172.3, 170.7, 139.4, 137.6, 137.5, 129.4, 128.7, 126.9, 63.2, 59.0, 57.5, 55.6, 51.5, 49.9, 48.4, 44.1, 40.4, 40.0, 39.9, 38.4, 37.6, 37.2, 34.9, 34.7, 29.4, 28.8, 22.7, 19.8, 19.2, 18.4, 14.2; HRMS (ESI): *m/z*: calculated for C₃₅H₄₆NO₆: [M + H]⁺ 576.3320, found 576.3329. LC-MS (*t*_R= 0.94 min, λ = 254 nm, purity 98%).

47bd, Light brown solid, 45.1 mg, yield 86%. ¹**H** NMR (500 MHz, CDCl₃) δ 11.02 (brs, 1H), 4.77 (dd, J = 11.5, 4.5 Hz, 1H), 3.89 (dd, J = 13.5, 1.5 Hz, 1H), 3.68 (s, 3H), 3.18 (dd, J = 13.5, 1.5 Hz, 1H), 2.86 (d, J = 14.5 Hz, 1H), 2.50 (dq, J = 13.5, 3.0 Hz, 1H), 2.25 (ddd, J = 14.5, 11.5, 4.5 Hz, 1H), 2.18-2.07 (m, 3H), 1.94 (dd, J = 14.5, 2.5 Hz, 1H), 1.90-1.74 (m, 4H), 1.62-1.60 (m, 1H), 1.49-1.41 (m, 3H), 1.32 (dt, J = 13.5, 3.0 Hz, 1H), 1.16 (s, 3H), 1.13 (s, 3H), 1.11-0.82 (m, 13H), 0.67 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 212.1, 178.0, 175.6, 170.9, 169.9, 139.9, 138.1, 59.0, 57.5, 51.5, 50.9, 50.0, 48.5, 44.1, 40.4, 40.1, 39.9, 38.4, 37.6, 37.3, 37.1, 34.6, 29.4, 28.7, 25.3, 23.2, 22.9, 21.2, 19.7, 19.2, 18.4, 14.2; HRMS (ESI): m/z: calculated for C₃₂H₄₅NO₇Na: [M + Na]⁺ 578.3088, found 578.3098.

47be, White solid, 41.2 mg, yield 78%. ¹**H NMR** (500 MHz, CDCl₃) δ 6.62 (brs, 2H), 4.86 (dd, J = 5.5, 3.5 Hz, 1H), 4.25 (dd, J = 12.5, 5.5 Hz, 1H), 4.11 (dd, J = 12.5, 3.5 Hz, 1H), 3.90 (d, J = 18.5 Hz, 1H), 3.66 (s, 3H), 3.20 (d, J = 18.0 Hz, 1H), 2.87 (d, J = 14.0 Hz, 1H), 2.50 (dq, J = 13.5, 3.5 Hz, 1H), 2.17-2.04 (m, 3H), 1.96 (dd, J = 14.5, 2.5 Hz, 1H), 1.89-1.73 (m, 3H), 1.61 (d, J = 9.5 Hz, 1H), 1.48-1.40 (m, 2H), 1.33 (dt, J = 13.0, 3.0 Hz, 1H), 1.16 (s, 3H), 1.13 (s, 3H), 1.11-0.96 (m, 5H), 0.93-0.82 (m, 2H), 0.66 (s, 3H); ¹³**C NMR** (125 MHz, CDCl₃) δ 211.9, 178.1, 171.5, 171.1, 170.4, 140.4, 138.6, 61.1, 58.9, 57.5, 55.3, 51.6, 49.9, 48.5, 44.1, 40.4, 40.2, 39.9, 38.3, 37.6, 37.2, 34.6, 29.4, 28.8, 23.0, 19.7, 19.2, 18.4, 14.2; **HRMS** (ESI): *m/z*: calculated for C₂₉H₃₉NO₈Na: [M + Na]⁺ 552.2568, found 552.2576. LC-MS ($t_R = 3.1 \text{ min}, \lambda = 254 \text{ nm}, \text{ purity 99\%}$).

47bf, White solid, 47.1 mg, yield 80%. ¹**H NMR** (500 MHz, CDCl₃) δ 7.28-7.25 (m, 2H), 7.23-7.20 (m, 1H), 7.14-7.13 (m, 2H), 5.00 (t, J = 8.5 Hz, 1H), 3.72 (dd, J = 18.5, 1.5 Hz, 1H), 3.68 (s, 3H), 3.50 (d, J = 8.5 Hz, 2H), 3.08 (dd, J = 18.5, 1.5 Hz, 1H), 2.77 (d, J = 14.5 Hz, 1H), 2.47 (dq, J = 13.0, 3.0 Hz, 1H), 2.18-2.01 (m, 3H), 1.89-1.81 (m, 2H), 1.74 (dd, J = 14.5, 2.5 Hz, 1H), 1.58 (d, J = 14.5 Hz, 1H), 1.47-1.36 (m, 2H), 1.31 (dt, J = 13.5, 3.0 Hz, 1H), 1.18 (s, 3H), 1.07 (s, 3H), 1.10-0.94 (m, 6H), 0.91-0.81 (m, 2H), 0.64 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 212.0, 178.0, 174.3, 174.3

170.7, 169.5, 139.7, 137.8, 136.7, 129.1, 128.9, 127.3, 59.0, 57.5, 53.5, 51.5, 49.8, 48.4, 44.1, 40.4, 40.0, 39.8, 38.4, 37.6, 37.1, 34.7, 34.5, 29.4, 28.8, 22.8, 19.7, 19.2, 18.4, 14.2; **HRMS** (ESI): *m/z*: calculated for C₃₅H₄₃NO₇Na: $[M + Na]^+$ 612.2932, found 612.2939. LC-MS (*t*_R= 3.04 min, $\lambda = 254$ nm, purity 98%).

47bg, White solid, 47.0 mg, yield 85%. ¹**H NMR** (500 MHz, CDCl₃) δ 9.13 (brs, 1H), 4.76 (dd, *J* = 11.5, 4.5 Hz, 1H), 3.89 (dd, *J* = 18.5, 1.5 Hz, 1H), 3.67 (s, 3H), 3.19 (dd, *J* = 18.5, 1.5 Hz, 1H), 2.85 (d, *J* = 14.0 Hz, 1H), 2.50 (dq, *J* = 13.5, 3.0 Hz, 1H), 2.28 (ddd, *J* = 14.5, 12.0, 4.0 Hz, 1H), 2.19-2.07 (m, 3H), 1.94 (dd, *J* = 14.5, 2.5 Hz, 1H), 1.89-1.80 (m, 2H), 1.75 (d, *J* = 12.5 Hz, 1H), 1.62-1.59 (m, 1H), 1.49-1.41 (m, 3H), 1.34 (dt, *J* = 13.5, 3.0 Hz, 1H), 1.17 (s, 3H), 1.13 (s, 3H), 1.09 (d, *J* = 14.5 Hz, 1H), 1.07 (dd, *J* = 12.5, 2.5 Hz, 1H), 1.04-0.96 (m, 3H), 0.93 (d, *J* = 6.5 Hz, 3H), 0.91-0.82 (m, 2H), .067 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 212.2, 178.0, 175.6, 171.0, 169.9, 140.0, 137.9, 59.0, 57.5, 51.5, 50.9, 50.0, 48.5, 44.1, 40.5, 40.1, 39.8, 38.5, 37.6, 37.3, 37.1, 34.7, 29.5, 28.7, 25.3, 23.3, 22.9, 21.1, 19.8, 19.2, 18.4, 14.2; **HRMS** (ESI): *m/z*: calculated for C₃₂H₄₅NO₇Na: [M + Na]⁺ 578.3088, found 578.3098. LC-MS (*t*_R= 3.12 min, λ = 254 nm, purity >99%).

47bh, White solid, 37.0 mg, yield 70%. ¹**H** NMR (500 MHz, CDCl₃) δ 6.48 (brs, 2H), 4.87 (dd, J = 6.0, 3.5 Hz, 1H), 4.24 (dd, J = 12.5, 5.5 Hz, 1H), 4.12 (dd, J = 12.5, 3.5 Hz, 1H), 3.90 (d, J = 18.5 Hz, 1H), 3.67 (s, 3H), 3.20 (d, J = 18.5 Hz, 1H), 2.87 (d, J = 14.0 Hz, 1H), 2.50 (d, J = 11.5 Hz, 1H), 2.18-2.04 (m, 3H), 1.96 (d, J = 14.5 Hz, 1H), 1.87-1.74 (m, 3H), 1.61 (d, J = 14.0 Hz, 1H), 1.48-1.41 (m, 2H), 1.36 (dt, J = 13.5, 3.5 Hz, 1H), 1.17 (s, 3H), 1.13 (s, 3H), 1.11-0.97 (m, 5H), 0.93-0.83 (m, 2H), 0.66 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 212.0, 178.1, 171.5, 171.2, 170.3, 140.4, 138.4, 61.2, 58.9, 57.5, 55.1, 51.6, 49.9, 48.5, 44.1, 40.4, 40.2, 39.8, 38.3, 37.6, 37.2, 34.6, 29.4, 28.8, 23.0, 19.7, 19.2, 18.4, 14.2; HRMS (ESI): *m/z*: calculated for C₂₉H₃₉NO₈Na: [M + Na]⁺ 552.2568, found 552.2578. LC-MS (*t*_R = 3.26 min, $\lambda = 254$ nm, purity 99%).

47bi, White solid, 51.8 mg, yield 88%. ¹**H NMR** (500 MHz, CDCl₃) δ 10.49 (brs, 1H), 7.27-7.24 (m, 2H), 7.21-7.18 (m, 1H), 7.15-7.13 (m, 2H), 5.02 (dd, *J* = 11.0, 6.0 Hz, 1H), 3.80 (d, *J* = 18.5 Hz, 1H), 3.67 (s, 3H), 3.53-3.45 (m, 2H), 3.08 (d, *J* = 18.5 Hz, 1H), 2.72 (d, *J* = 14.5 Hz, 1H), 2.47 (dq, *J* = 13.5, 2.5 Hz, 1H), 2.16 (d, *J* = 13.0 Hz, 1H), 2.05-1.97 (m, 2H), 1.84 (qt, *J* = 13.5, 3.5 Hz, 1H), 1.72-1.69 (m, 3H), 1.57 (d, *J* = 15.0 Hz, 1H), 0.72 (t, *J* = 13.0 Hz, 1H), 0.63 (s, 3H); 1.04-0.92 (m, 6H), 0.83 (td, *J* = 13.5, 4.0 Hz, 1H), 0.72 (t, *J* = 13.0 Hz, 1H), 0.63 (s, 3H);); ¹³C **NMR** (125 MHz, CDCl₃) δ 212.0, 178.0, 174.1, 170.5, 169.6, 139.7, 137.7, 136.6, 129.0, 128.9, 127.3, 58.9, 57.5, 53.4, 51.5, 49.8, 48.5, 44.1, 40.4, 39.9, 39.5, 38.4, 37.6, 37.1, 34.7, 3.6, 29.5, 28.7, 22.8, 19.7, 19.2, 18.4, 14.2; **HRMS** (ESI): *m/z*: calculated for C₃₅H₄₄NO₇: [M + H]⁺ 590.3112, found 590.3124. LC-MS (*t*_R = 0.89 min, λ = 254 nm, purity 96%).

47bj, White solid, 41.9 mg, yield 84%. ¹**H NMR** (500 MHz, CDCl₃) δ 10.40 (brs, 1H), 4.31 (s, 2H), 3.90 (dd, J = 18.5, 1.5 Hz, 1H), 3.67 (s, 3H), 3.22 (dd, J = 18.5, 1.5 Hz, 1H), 2.88 (d, J = 14.0 Hz, 1H), 2.51 (dq, J = 13.5, 3.0 Hz, 1H), 2.18-2.06 (m, 3H), 1.94 (dd, J = 14.5, 2.5 Hz, 1H), 1.90-1.74 (m, 3H), 1.62-1.59 (m, 1H), 1.49-1.41 (m, 2H), 1.34 (dt, J = 13.5, 3.5 Hz, 1H), 1.16 (s, 3H), 1.13 (s, 3H), 1.11-1.05 (m, 2H), 1.04-0.96 (m, 3H), 0.93-0.82 (m, 2H), 0.67 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 212.0, 178.1, 172.5, 170.7, 169.6, 140.3, 138.4, 58.9, 57.5, 51.5, 49.9, 48.5, 44.1, 40.4, 40.1, 39.8, 39.0, 38.4, 37.6, 37.2, 34.6, 29.5, 28.7, 22.9, 19.7, 19.2, 18.4, 14.2; **HRMS** (ESI): *m/z*: calculated for C₂₈H₃₇NO₇Na: [M + Na]⁺ 522.2462, found 522.2474. LC-MS ($t_R = 0.48 \text{ min}, \lambda = 254 \text{ nm}, \text{purity >99\%}$).

47bk, Pale yellow solid, 38.5 mg, yield 64%. ¹**H NMR** (500 MHz, CDCl₃) δ 6.69 (d, J = 8.5 Hz, 2H), 6.71 (d, J = 9.0 Hz, 2H), 4.96 (dd, J = 11.5, 5.5 Hz, 1H), 3.80 (d, J = 18.5 Hz, 1H), 3.67 (s, 3H), 3.43 (dd, J = 14.5, 5.5 Hz, 1H), 3.38 (dd, J = 14.5, 11.5 Hz, 1H), 3.08 (d, J = 18.5 Hz, 1H), 2.72 (d, J = 14.5 Hz, 1H), 2.47 (d, J = 13.5 Hz, 1H), 2.15 (d, J = 13.5 Hz, 1H), 2.06-1.98 (m, 2H), 1.83 (q, J = 13.5 Hz, 1H), 1.74-1.71 (m, 3H), 1.57 (d, J = 13.5 Hz, 1H), 1.45-1.35 (m, 2H), 1.16 (s, 3H), 1.09 (s, 3H), 1.05-0.93 (m, 7H), 0.85-0.74 (m, 2H), 0.63 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 212.3, 178.3, 173.8, 170.6, 169.8, 154.9, 139.7, 137.7, 130.3, 128.6, 115.8, 58.9, 57.5, 53.7, 51.6, 49.7, 48.5, 44.1, 40.4, 39.9, 39.3, 38.4, 37.6, 37.1, 34.7, 33.8, 29.5, 28.8, 22.8, 19.7, 19.2, 18.4, 14.2; HRMS (ESI): *m/z*: calculated for C₃₅H₄₃NO₈Na: [M + Na]⁺ 628.2881, found 628.2893. LC-MS ($t_R = 2.42 \text{ min}$, $\lambda = 210 \text{ nm}$, purity 95%).

47bl, Yellow oil, yield: (53.6 mg, 89%) ¹**H** NMR (500 MHz, CDCl₃) δ 7.27 – 7.09 (m, 3H), 7.10 – 7.00 (m, 2H), 4.85 (dd, J = 10.5, 6.3 Hz, 1H), 3.71 (s, 3H), 3.68 – 3.57 (m, 4H), 3.45 – 3.35 (m, 2H), 3.00 (d, J = 18.4 Hz, 1H), 2.71 (d, J = 14.2 Hz, 1H), 2.40 (dq, J = 13.4, 3.1 Hz, 1H), 2.18 – 1.90 (m, 3H), 1.90 – 1.59 (m, 4H), 1.60 – 1.46 (m, 1H), 1.44 – 1.30 (m, 2H), 1.25 (dt, J = 13.4, 3.3 Hz, 1H), 1.11 (s, 3H), 1.06 – 0.86 (m, 8H), 0.79 (tdd, J = 17.8, 12.9, 3.7 Hz, 2H), 0.57 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 211.7, 177.6, 170.6, 169.4, 169.3, 139.4, 137.5, 136.7, 128.9, 128.6, 126.9, 58.8, 57.3, 53.6, 52.9, 51.2, 49.6, 48.2, 43.8, 40.2, 39.7, 39.6, 38.2, 37.4, 36.9, 34.4, 34.4, 29.2, 28.5, 22.5, 19.5, 19.0, 18.2, 14.0. HRMS (ESI) m/z: anal. calculated for [C₃₆H₄₅NO₇+NH₄]⁺: 621.3534, found: 621.3529. LC-MS ($t_R = 3.80$ min, $\lambda = 254$ nm, >99%).

Ring-cleavage of 5b and 5c.

Supplementary Figure 16. Ring-cleavage of 5b and 5c.

General procedure H was used for preparation of **50**. General procedure F was used for formation of carbamates **51**, **52** and **54**.

To a solution of **5b** or **5c** (1.44 g, 2.33 mol) in EtOH (20 mL) and H₂O (5 mL) was added NaOH (928 mg, 23.3 mmol). The reaction mixture was heated at 100 °C overnight. The mixture was cooled to room temperature, acidification of the mixture with 2N HCl, diluted with EtOAc (150 mL), and washed with brine (50 mL \times 2). The organic phase was dried over sodium sulfate and concentrated in vacuum to afford crude product which was directly used in the next step without further purification. To a solution of the above product in DMSO (10 mL) was added HCl (3 mL, 2.0 N). The reaction mixture was heated at 130 °C for 2 h. The mixture was cooled to room temperature then diluted with ethyl acetate (150 mL), and washed with brine (50 mL \times 3). The organic phase was dried over sodium sulfate and concentrated in vacuum. Flash column chromatography over silica column afforded **49**.

49a, yield: (189 mg, 47%). ¹**H** NMR (500 MHz, DMSO- d_6) δ 12.03 (s, 1H), 4.59 – 4.34 (m, 1H), 3.60 – 3.46 (m, 1H), 2.79 (dd, J = 16.7, 1.5 Hz, 1H), 2.61 (d, J = 14.4 Hz, 1H), 2.53 (d, J = 14.3 Hz, 1H), 2.08 (s, 3H), 2.00 – 1.82 (m, 3H), 1.79 (dt, J = 12.5, 3.4 Hz, 1H), 1.66 – 1.43 (m, 4H), 1.43 – 1.30 (m, 2H), 1.29 – 0.97 (m, 4H), 0.98 – 0.88 (m, 2H), 0.88 (s, 3H), 0.85 – 0.72 (m, 1H), 0.70 (s, 3H). ¹³C NMR (126 MHz, DMSO) δ 174.8, 167.0, 166.8, 144.5, 141.8, 80.5, 51.3, 48.8, 42.9, 42.6, 37.2, 36.7, 36.6, 31.7, 30.4, 30.1, 28.6, 23.50, 22.6, 16.4, 12.1, 10.8. HRMS (ESI) m/z: anal. calculated for [C₂₃H₃₂O₆ + H]⁺: 405.2272, found: 405.2260.

49b, yield: (398 mg, 44%). ¹**H NMR** (500 MHz, CDCl₃) δ 2.88 (dd, J = 16.5, 1.7 Hz, 1H), 2.63 (d, J = 14.1 Hz, 1H), 2.47 (d, J = 14.1 Hz, 1H), 2.13 (s, 3H), 2.09 – 1.97 (m, 2H), 1.89 – 1.75 (m, 2H), 1.71 (dq, J = 13.4, 3.6 Hz, 1H), 1.65 – 1.42 (m, 5H), 1.42 – 0.93 (m, 16H), 0.91 (t, J = 3.3 Hz, 5H), 0.88 (d, J = 2.4 Hz, 3H), 0.86 (d, J = 2.4 Hz, 3H), 0.85 – 0.76 (m, 2H), 0.69 (s, 3H). ¹³C **NMR** (126 MHz, CDCl₃) δ 179.1, 166.4, 166.1, 143.4, 142.3, 56.8, 56.1, 49.2, 42.76, 42.4, 40.0, 40.0, 39.5, 36.5, 36.4, 36.1, 35.8, 32.0, 30.4, 28.5, 28.2, 28.0, 24.0, 23.7, 23.0, 22.8, 22.5, 18.6, 16.1, 12.3, 10.8. **HRMS** (ESI) m/z: anal. calculated for [C₃₁H₄₈O₅ + Na]⁺: 523.3394, found: 523.3384.

50a, yield: (40.9 mg, 89%). ¹**H NMR** (500 MHz, CDCl₃) δ 3.65 (t, J = 8.5 Hz, 1H), 3.46 (t, J = 7.3 Hz, 2H), 3.03 (dd, J = 16.2, 1.8 Hz, 1H), 2.51 (d, J = 14.3 Hz, 1H), 2.44 (d, J = 14.3 Hz, 1H), 2.11 – 1.93 (m, 4H), 1.88 (ddt, J = 15.6, 12.3, 3.3 Hz, 2H), 1.67 (dq, J = 13.4, 3.5 Hz, 1H), 1.61 – 1.37 (m, 6H), 1.37 – 1.18 (m, 4H), 1.18 – 1.02 (m, 2H), 0.98 – 0.87 (m, 7H), 0.87 – 0.80 (m, 1H), 0.78 (s, 3H), 0.75 (dd, J = 12.8, 4.1 Hz, 1H). ¹³**C NMR** (126 MHz, CDCl₃) δ 178.5, 172.6, 172.0, 139.8, 138.4, 81.8, 51.4, 49.2, 42.9, 42.4, 40.1, 37.9, 36.9, 36.8, 36.4, 31.2, 30.6, 30.0, 28.4, 23.3, 22.6, 19.9, 16.1, 13.6, 11.4, 10.0 **HRMS** (ESI) m/z: anal. calculated for [C₂₇H₄₁NO₅ + Na]⁺: 482.2877,

found: 482.2882. LC-MS (t_R = 2.27 min, λ = 254 nm, purity 98%).

50b, yield: (34.1 mg, 74%). ¹**H NMR** (400 MHz, CDCl₃) δ 3.70 – 3.59 (m, 2H), 3.50 (t, J = 5.7 Hz, 2H), 3.32 (s, 3H), 3.03 (dd, J = 16.3, 1.3 Hz, 1H), 2.52 (d, J = 14.3 Hz, 1H), 2.45 (d, J = 14.2 Hz, 1H), 2.13 – 1.95 (m, 5H), 1.95 – 1.80 (m, 2H), 1.76 – 1.62 (m, 1H), 1.63 – 1.33 (m, 5H), 1.34 – 1.00 (m, 4H), 1.01 – 0.82 (m, 5H), 0.77 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 178.5, 172.5, 171.8, 140.1, 138.6, 81.8, 69.4, 58.5, 51.4, 49.1, 42.8, 42.4, 40.0, 37.4, 36.9, 36.7, 36.4, 31.2, 30.5, 30.0, 28.5, 23.3, 22.5, 16.1, 11.4, 10.1. **HRMS** (ESI) m/z: anal. calculated for [C₂₆H₃₉NO₆ + Na]⁺: 484.2670, found: 484.2668. LC-MS (t_R = 1.66 min, λ = 254 nm, purity 98%).

50c, White solid, 24.8 mg, yield 48%. ¹**H NMR** (500 MHz, CDCl₃) δ 10.85 (brs, 1H), 3.03 (dd, J = 16.0, 1.0 Hz, 1H), 2.97 (s, 3H), 2.50 (d, J = 14.5, 1H), 2.43 (d, J = 14.5, 1H), 2.04-1.96 (m, 2H), 2.02 (s, 3H), 1.85-1.76 (m, 2H), 1.65 (dq, J = 13.5, 3.5 Hz, 1H), 1.58-1.41 (m, 5H), 1.38-0.94 (m, 16H), 0.90 (d, J = 6.5 Hz, 1H), 0.86 (s, 3H), 0.86 (d, J = 6.5 Hz, 3H), 0.85 (d, J = 7.5 Hz, 3H), 0.83-0.73 (m, 2H), 0.68 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 179.2, 172.9, 172.4, 140.3, 139.0, 57.1, 56.4, 49.1, 42.6 (2 carbons), 40.4, 40.1, 39.7, 37.0, 36.6, 36.3, 36.0, 31.4, 30.7, 28.9, 28.5, 28.2, 24.3, 24.2, 24.0, 23.1, 23.0, 22.8, 18.8, 16.4, 12.5, 10.3; HRMS (ESI): *m/z*: calculated for C₃₂H₅₁NO₄Na: [M + Na]⁺ 536.3710, found 536.3705. LC-MS ($t_{R} = 3.86$ min, $\lambda = 254$ nm, purity 99%).

50d, Pale yellow solid, 36.1 mg, yield 67%. ¹**H NMR** (500 MHz, CDCl₃) δ 11.18 (brs, 1H), 5.77 (ddt, J = 17.0, 10.5, 4.5 Hz, 1H), 5.17-5.11 (m, 2H), 4.07 (dt, J = 5.5, 1.5 Hz, 2H), 3.04 (d, J = 15.5 Hz, 1H), 2.51 (d, J = 14.0 Hz, 1H), 2.44 (d, J = 14.0 Hz, 1H), 2.03 (s, 3H), 2.02-1.96 (m, 2H), 1.85-1.77 (m, 2H), 1.65 (dq, J = 13.0, 3.0 Hz, 1H), 1.56-0.94 (m, 19H), 0.90 (d, J = 6.5 Hz, 3H), 0.87 (s, 3H), 0.86 (d, J = 6.5 Hz, 3H), 0.85 (d, J = 7.0 Hz, 3H), 0.83-0.72 (m, 2H), 0.68 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 179.2, 172.4, 171.7, 140.2, 139.0, 132.0, 117.5, 57.1, 56.4, 49.2, 42.7, 42.6, 40.4, 40.2, 39.7, 36.9, 36.6, 36.3, 36.0, 31.3, 30.7, 28.9, 28.5, 28.2, 24.3, 24.0, 23.2, 23.0, 22.8, 18.8,

16.4, 12.6, 10.4; **HRMS** (ESI): m/z: calculated for C₃₄H₅₃NO₄Na: $[M + Na]^+$ 562.3867, found 562.3855. LC-MS (t_R = 3.89 min, λ = 254 nm, purity 99%).

50e, Pale yellow solid, 39.4 mg, yield 71%. ¹**H** NMR (500 MHz, CDCl₃) δ 3.46 (t, J = 7.5 Hz, 2H), 3.06 (dd, J = 16.0, 1.5 Hz, 1H), 2.49 (d, J = 14.0 Hz, 1H), 2.42 (d, J = 14.5 Hz, 1H), 2.03-1.97 (m, 2H), 2.02 (s, 3H), 1.85-1.77 (m, 2H), 1.65 (dq, J = 13.5, 3.0 Hz, 1H), 1.55-0.96 (m, 24H), 0.90 (d, J = 6.5 Hz, 3H), 0.90 (t, J = 7.0 Hz, 3H), 0.86 (s, 3H), 0.86 (d, J = 6.5 Hz, 3H), 0.85 (d, J = 6.0 Hz, 3H), 0.82-0.73 (m, 2H), 0.68 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 179.0, 173.0, 172.2, 140.0, 138.8, 57.1, 56.5, 49.1, 42.6 (2 carbons), 40.4, 40.2, 39.7, 38.2, 37.0, 36.7, 36.3, 36.0, 31.3, 30.8, 30.7, 28.8, 28.5, 28.2, 24.3, 24.0, 23.2, 23.0, 22.8, 20.2, 18.8, 16.3, 13.9, 12.6, 10.3; **HRMS** (ESI): m/z: calculated for C₃₅H₅₇NO₄Na: [M + Na]⁺ 578.4180, found 578.4167.

50f, Pale yellow solid, 42.9 mg, yield 77%. ¹**H** NMR (500 MHz, CDCl₃) δ 3.72-3.64 (m, 2H), 3.50 (t, *J* = 6.0 Hz, 2H), 3.31 (s, 3H), 3.05 (d, *J* = 11.0 Hz, 1H), 2.50 (d, *J* = 14.0 Hz, 1H), 2.43 (d, *J* = 14.0 Hz, 1H), 2.03 (s, 3H), 2.01-1.96 (m, 2H), 1.85-1.76 (m, 2H), 1.64 (dq, *J* = 13.5, 3.5 Hz, 1H), 1.55-0.94 (m, 19H), 0.90 (d, *J* = 6.5 Hz, 3H), 0.86 (s, 3H), 0.86 (d, *J* = 6.5 Hz, 3H), 0.85 (d, *J* = 6.5 Hz, 3H), 0.84-0.71 (m, 2H), 0.68 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 179.0, 172.8, 172.0, 140.3, 138.9, 69.7, 58.8, 57.1, 56.5, 49.1, 42.6 (2 carbons), 0.4, 40.2, 39.7, 37.6, 37.0, 36.6, 36.3, 36.0, 31.4, 30.7, 28.7, 28.5, 28.2, 24.3, 24.0, 23.2, 23.0, 22.8, 18.8, 16.3, 12.6, 10.4; HRMS (ESI): *m/z*: calculated for C₃₄H₅₅NO₅Na: [M + Na]⁺ 580.3972, found 580.3970. LC-MS (*t*_R= 3.83 min, λ = 254 nm, purity >99%).

50g, Pale yellow solid, 35.8 mg, yield 66%. ¹H NMR (500 MHz, CDCl₃) δ 6.65 (brs, 1H), 3.76-3.69 (m, 3H), 3.62-3.58 (m, 2H), 3.03 (d, *J* = 17.0 Hz, 1H), 2.51 (d, *J* = 14.5 Hz, 1H), 2.46 (d, *J* = 14.0 Hz, 1H), 2.06-2.03 (m, 1H), 2.04 (s, 3H), 1.93 (dd, *J* = 17.0, 10.5 Hz, 1H), 1.86-1.76 (m, 2H), 1.60-1.44 (m, 6H), 1.39-0.96 (m, 15H), 0.90 (d, *J* = 6.5 Hz, 3H), 0.87-0.85 (m, 9H), 0.83-0.75 (m,

2H), 0.69 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 178.9, 173.4, 172.3, 139.9, 139.3, 60.7, 57.2, 56.5, 48.8, 43.0, 42.6, 41.1, 40.5, 39.7, 36.8, 36.5, 36.3, 36.0, 30.8, 30.6, 29.4, 28.5, 28.2, 24.3, 24.0, 23.0 (2 carbons), 22.8, 18.8, 16.6, 12.5, 10.6; **HRMS** (ESI): *m/z*: calculated for C₃₃H₅₃NO₅Na: [M + Na]⁺ 566.3816, found 566.3827. LC-MS (*t*_R= 3.73 min, λ = 254 nm, purity 99%).

50h, Pale yellow solid, 18.2 mg, yield 32%. ¹H NMR (500 MHz, CDCl₃) δ 11.35 (brs, 1H), 3.76-3.71 (m, 2H), 3.15 (dt, *J* = 13.0, 6.5 Hz, 1H), 2.91 (dt, *J* = 13.5, 5.5 Hz, 1H), 2.78 (d, *J* = 16.5 Hz, 1H), 2.68 (s, 6H), 2.51 (s, 2H), 2.06-2.03 (m, 1H), 2.04 (s, 3H), 1.85-1.69 (m, 3H), 1.59-1.44 (m, 5H), 1.37-0.76 (m, 17H), 0.90 (d, *J* = 6.5 Hz, 3H), 0.88 (s, 3H), 0.86 (d, *J* = 6.5 Hz, 3H), 0.85 (d, *J* = 6.5 Hz, 3H), 0.68 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 177.9, 172.3, 171.9, 140.3, 139.4, 57.2, 56.5, 55.8, 49.9, 43.4, 43.3, 42.6, 40.4, 40.3, 39.7, 38.4, 36.3 (2 carbons), 36.0, 33.5, 31.3, 31.0, 30.1, 28.5, 28.2, 24.4, 24.0, 23.0, 22.8 (2 carbons), 18.8, 18.6, 12.4, 10.8; HRMS (ESI): *m/z*: calculated for C₃₅H₅₈N₂O₄Na: [M + Na]⁺ 593.4289, found 593.4298. LC-MS (*t*_R= 2.99 min, λ = 254 nm, purity 97%).

50i, Pale yellow solid, 43.6 mg, yield 70%. ¹**H NMR** (500 MHz, CDCl₃) δ 7.24-7.21 (m, 2H), 7.18-7.12 (m, 3H), 4.42 (qd, *J* = 8.5, 3.5 Hz, 1H), 4.06 (dd, *J* = 12.0, 8.5 Hz, 1H), 3.74 (dd, *J* = 12.0, 3.5 Hz, 1H), 3.05-2.94 (m, 3H), 2.45 (s, 2H), 2.02 (dt, *J* = 12.5, 3.5 Hz, 1H), 1.95-1.88 (m, 1H), 1.92 (s, 3H), 1.86-1.73 (m, 2H), 1.55-0.92 (m, 21H), 0.90 (d, *J* = 6.5 Hz, 3H), 0.86 (d, *J* = 7.0 Hz, 3H), 0.86 (s, 3H), 0.85 (d, *J* = 6.5 Hz, 3H), 0.82-0.63 (m, 2H), 0.68 (s, 3H); ¹³C **NMR** (125 MHz, CDCl₃) δ 178.4, 173.5, 172.2, 139.3, 138.8, 137.6, 129.2, 128.7, 126.8, 61.7, 57.1, 56.5, 55.2, 48.7, 43.0, 42.6, 40.4, 40.0, 39.7, 36.5, 36.3, 36.0, 35.2, 30.8, 30.3, 29.2, 28.5, 28.2, 24.3, 24.0, 23.0, 22.9, 22.8, 18.8, 16.6, 12.5, 10.7; **HRMS** (ESI): *m/z*: calculated for C₄₀H₅₉NO₅Na: [M + Na]⁺ 656.4285, found 656.4274. LC-MS (*t*_R= 3.84 min, λ = 254 nm, purity >99%).

50j, Pale yellow solid, 44.3 mg, yield 70%. ¹H NMR (500 MHz, CDCl₃) & 7.23-7.14 (m, 5H), 4.38

(dtd, J = 9.5, 7.5, 4.0 Hz, 1H), 3.93 (dd, J = 12.0, 7.0 Hz, 1H), 3.79 (dd, J = 12.0, 4.0 Hz, 1H), 3.11-3.01 (m, 2H), 2.95 (d, J = 16.5 Hz, 1H), 2.42 (d, J = 14.5 Hz, 1H), 2.35 (d, J = 14.0 Hz, 1H), 2.00 (dt, J = 13.0, 3.5 Hz, 1H), 1.95 (s, 3H), 1.92 (dd, J = 17.0, 11.0 Hz, 1H), 1.87-1.80 (m, 1H), 1.72 (dq, J = 14.0, 3.5 Hz, 1H), 1.62 (dq, J = 13.0, 3.5 Hz, 1H), 1.57-1.48 (m, 4H), 1.43 (dd, J = 13.0, 3.5 Hz, 1H), 1.39-0.94 (m, 14H), 0.90 (d, J = 6.5 Hz, 3H), 0.87 (d, J = 6.5 Hz, 3H), 0.86 (d, J = 6.5 Hz, 3H), 0.82 (s, 3H), 0.78-0.64 (m, 2H), 0.68 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 178.6, 173.2, 172.5, 139.9, 138.8, 138.0, 129.3, 128.6, 126.7, 63.1, 57.0, 56.4, 55.6, 49.1, 42.7, 42.6, 40.4, 40.0, 39.7, 36.9, 36.6, 36.3, 36.0, 34.9, 31.2, 30.8, 29.1, 28.5, 28.2, 24.3, 24.0, 23.0, 22.8, 18.8, 16.4, 12.5, 10.4; HRMS (ESI): *m/z*: calculated for C₄₀H₅₉NO₅Na: [M + Na]⁺ 656.4285, found 656.4304. LC-MS ($t_R = 3.79$ min, $\lambda = 210$ nm, purity >99%).

51a, Pale yellow solid, 39.2 mg, yield 57%. ¹**H NMR** (500 MHz, CDCl₃) δ 7.30-7.27 (m, 2H), 7.24-7.19 (m, 3H), 6.45 (d, *J* = 7.0 Hz, 1H), 4.15-4.09 (m, 1H), 3.76 (dt, *J* = 11.5, 4.0 Hz, 1H), 3.53 (dt, *J* = 11.5, 5.5 Hz, 1H), 3.49-3.38 (m, 2H), 3.23 (t, *J* = 5.5 Hz, 1H), 2.89-2.83 (m, 3H), 2.46 (d, *J* = 14.5 Hz, 1H), 2.41 (d, *J* = 14.0 Hz, 1H), 2.03 (s, 3H), 2.00 (dt, *J* = 13.0, 3.0 Hz, 1H), 1.85-1.76 (m, 2H), 1.72 (dq, *J* = 14.0, 3.5 Hz, 1H), 1.66 (dq, *J* = 13.5, 3.5 Hz, 1H), 1.56-0.95 (m, 22H), 0.93 (t, *J* = 7.5 Hz, 3H), 0.89 (d, *J* = 6.5 Hz, 3H), 0.86 (d, *J* = 7.0 Hz, 3H), 0.86 (d, *J* = 7.0 Hz, 3H), 0.86 (d, *J* = 7.0 Hz, 3H), 0.83 (s, 3H), 0.73-0.64 (m, 2H), 0.68 (s, 3H); ¹³**C NMR** (125 MHz, CDCl₃) δ 174.5, 174.0, 172.0, 140.7, 138.9, 138.3, 129.4, 128.7, 126.7, 65.0, 57.2, 56.4, 53.7, 49.2, 42.7 (2 carbons), 41.6, 40.5, 39.7, 39.2, 38.3, 37.4, 36.7, 36.3, 36.0, 31.6, 30.8, 30.7, 28.5, 28.4, 28.2, 24.2, 24.0, 23.4, 23.0, 22.8, 20.3, 18.8, 16.5, 13.9, 12.6, 10.4; **HRMS** (ESI): *m/z*: calculated for C₄₄H₆₈N₂O₄Na: [M + Na]⁺ 711.5071, found 711.5097.

51b, Pale yellow solid, 14.8 mg, yield 22%. ¹**H** NMR (500 MHz, CDCl₃) δ 7.36-7.28 (m, 6H), 5.04 (td, *J* = 6.5, 4.0 Hz, 1H), 3.92 (dd, *J* = 11.5, 7.0 Hz, 1H), 3.87 (dd, *J* = 11.5, 3.5 Hz, 1H), 3.34 (dt, *J* = 14.0, 7.0 Hz, 1H), 3.22 (dt, *J* = 14.0, 7.0 Hz, 1H), 3.04 (dd, *J* = 12.5, 2.5 Hz, 1H), 2.50 (d, *J* = 14.0 Hz, 1H), 2.41 (d, *J* = 14.5 Hz, 1H), 2.02 (s, 3H), 2.02-1.92 (m, 2H), 1.83-1.76 (m, 2H), 1.63-0.83 (m, 38H), 0.68 (s, 3H), 0.68-0.60 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 174.9, 174.2, 172.0, 141.0, 139.5, 138.9, 128.9, 128.0, 127.0, 68.0, 57.1 (2 carbons), 56.4, 49.4, 42.7, 42.5, 42.3, 40.4, 39.7 (2 carbons), 38.2, 36.7, 36.3, 36.0, 32.0, 30.7 (2 carbons), 28.4, 28.2, 27.8, 24.2, 24.0, 23.4,

23.0, 22.8, 20.2, 18.8, 16.4, 13.9, 12.6, 10.3; **HRMS** (ESI): m/z: calculated for C₄₃H₆₆N₂O₄Na: [M + Na]⁺ 697.4915, found 697.4935.

51c, Pale yellow solid, 25.7 mg, yield 43%. ¹**H NMR** (500 MHz, CDCl₃) δ 6.77 (t, J = 5.5 Hz, 1H), 3.71 (dqd, J = 11.0, 6.5, 3.5 Hz, 2H), 3.48 (t, J = 7.0 Hz, 2H), 3.44-3.34 (m, 2H), 3.21 (brs, 1H), 2.91 (dd, J = 13.0, 2.0 Hz, 1H), 2.49 (d, J = 14.0 Hz, 1H), 2.42 (d, J = 14.5 Hz, 1H), 2.03 (s, 3H), 1.99 (dt, J = 12.5, 3.5 Hz, 1H), 1.86 (dd, J = 13.0, 1.5 Hz, 1H), 1.83-1.76 (m, 1H), 1.73 (dq, J = 13.5, 3.5 Hz, 1H), 1.66 (dq, J = 13.5, 3.5 Hz, 1H), 1.57-0.94 (m, 23H), 0.92 (t, J = 7.5 Hz, 3H), 0.89 (d, J = 6.5 Hz, 3H), 0.86-0.85 (m, 9H), 0.74-0.64 (m, 2H), 0.68 (s, 3H); ¹³C **NMR** (125 MHz, CDCl₃) δ 175.3, 174.1, 172.0, 140.8, 139.0, 63.1, 57.1, 56.4, 49.4, 43.1, 42.6, 41.9, 40.4, 39.7, 39.3, 38.3, 36.7, 36.3, 36.0, 31.8, 30.8, 30.7, 28.4, 28.2, 24.2, 24.0, 23.4, 23.0, 22.8, 20.2, 18.8, 16.4, 13.9, 12.6, 10.4; **HRMS** (ESI): *m/z*: calculated for C₃₇H₆₂N₂O₄Na: [M + Na]⁺ 621.4602, found 621.4618. LC-MS ($t_{R} = 3.85$ min, $\lambda = 254$ nm, purity >99%).

51d, Pale yellow solid, 22.0 mg, yield 32%. ¹**H** NMR (500 MHz, CDCl₃) δ 7.27-7.24 (m, 2H), 7.20-7.17 (m, 3H), 6.65 (d, *J* = 7.5 Hz, 1H), 4.23-4.16 (m, 1H), 3.74 (dd, *J* = 11.0, 3.5 Hz, 1H), 3.62 (dd, *J* = 11.0, 6.0 Hz, 1H), 3.48 (dt, J = 7.0, 7.0 Hz, 1H), 3.43 (dt, J = 7.0, 7.0 Hz, 1H), 2.92-2.79 (m, 3H), 2.47 (d, *J* = 14.0 Hz, 1H), 2.38 (d, *J* = 14.5 Hz, 1H), 2.02 (s, 3H), 1.99 (dt, *J* = 13.0, 3.5 Hz, 1H), 1.82 (t, *J* = 12.5 Hz, 2H), 1.63-0.95 (m, 25H), 0.93 (t, *J* = 7.5 Hz, 3H), 0.89 (d, *J* = 6.5 Hz, 3H), 0.87 (d, *J* = 7.0 Hz, 3H), 0.86 (d, *J* = 6.5 Hz, 3H), 0.82 (s, 3H), 0.68-0.62 (m, 1H), 0.67 (s, 3H), 0.55 (qd, *J* = 13.0, 3.0 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 174.4, 174.1, 172.0, 140.9, 139.0, 138.2, 129.3, 128.7, 126.7, 65.5, 57.2, 56.4, 53.3, 49.6, 42.7, 42.4, 42.2, 40.4, 39.8, 39.7, 38.3, 37.3, 36.7, 36.3, 36.0, 32.1, 30.8, 29.9, 28.5, 28.3, 27.8, 24.3, 24.0, 23.4, 23.0, 22.8, 20.3, 18.9, 16.3, 13.9, 12.6, 10.4; HRMS (ESI): *m/z*: calculated for C₄₄H₆₈N₂O₄Na: [M + Na]⁺ 711.5071, found 711.5090.

51e, Pale yellow solid, 40.4 mg, yield 60%. ¹**H** NMR (500 MHz, CDCl₃) δ 7.39-7.28 (m, 5H), 7.04 (d, *J* = 7.5 Hz, 1H), 5.09 (td, *J* = 6.5, 4.0 Hz, 1H), 3.88-3.81 (m, 2H), 3.44 (dt, *J* = 14.0, 7.0 Hz, 1H), 3.36 (dt, *J* = 14.0, 7.0 Hz, 1H), 3.23 (brs, 1H), 2.98 (dd, *J* = 13.5, 1.5 Hz, 1H), 2.48 (d, *J* = 14.0 Hz, 1H), 2.42 (d, *J* = 14.0 Hz, 1H), 2.03 (s, 3H), 2.00 (dt, *J* = 13.0, 3.5 Hz, 1H), 1.90 (dd, *J* = 13.0, 12.0 Hz, 1H), 1.83-1.78 (m, 2H), 1.67-0.81 (m, 39H), 0.78-0.64 (m, 2H), 0.69 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 174.6, 174.1, 172.0, 140.8, 139.5, 138.9, 129.0, 128.0, 127.2, 67.5, 57.1, 56.5, 56.4, 49.3, 42.7, 42.6, 41.9, 40.5, 39.7, 39.5, 38.3, 36.7, 36.3, 36.0, 31.8, 30.8 (2 carbons), 28.5, 28.2, 24.2, 24.0, 23.4, 23.0, 22.8, 20.2, 18.8, 16.5, 13.9, 12.6, 10.3; HRMS (ESI): *m/z*: calculated for C₄₃H₆₆N₂O₄Na: [M + Na]⁺ 697.4915, found 697.4933.

53, yield: (56.2 mg, 90%). ¹**H NMR** (500 MHz, CDCl₃) δ 5.77 (ddt, J = 16.1, 10.7, 5.6 Hz, 1H), 5.20 – 5.04 (m, 2H), 4.59 (dd, J = 9.2, 7.7 Hz, 1H), 4.17 – 3.88 (m, 2H), 3.90 – 3.37 (m, 16H), 2.83 (d, J = 15.8 Hz, 1H), 2.58 – 2.36 (m, 2H), 2.16 (dtd, J = 13.9, 9.4, 6.3 Hz, 1H), 1.99 (s, 3H), 1.79 (dddd, J = 55.8, 29.6, 13.1, 3.2 Hz, 5H), 1.62 (tdt, J = 9.4, 6.7, 3.0 Hz, 1H), 1.58 – 1.48 (m, 2H), 1.43 (qd, J = 13.3, 3.4 Hz, 1H), 1.27 (dqd, J = 24.0, 13.0, 12.0, 3.5 Hz, 3H), 1.14 – 0.97 (m, 2H), 0.97 – 0.85 (m, 4H), 0.81 (s, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 171.9, 171.4, 170.8, 155.5, 139.6, 138.8, 132.0, 117.2, 83.6, 66.9, 66.6, 51.1, 49.5, 42.8, 42.5, 40.2, 39.7, 37.2, 36.2, 34.7, 31.0, 30.1, 29.3, 27.9, 23.4, 22.3, 16.5, 12.5, 10.2. **HRMS** (ESI) m/z: anal. calculated for [C₃₅H₅₁N₃O₇+ Na]⁺: 648.3619, found: 648.3622. LC-MS ($t_R = 3.06 \text{ min}, \lambda = 254 \text{ nm}, \text{purity 99\%}$).

52a, yield: (41.8 mg, 84%). ¹**H NMR** (500 MHz, CDCl₃) δ 6.58 (t, J = 5.7 Hz, 1H), 5.85 (ddt, J = 17.3, 10.7, 5.5 Hz, 1H), 5.19 (dq, J = 17.1, 1.8 Hz, 1H), 5.10 (dq, J = 10.4, 1.6 Hz, 1H), 3.87 (tt, J = 5.6, 1.7 Hz, 2H), 3.61 (t, J = 8.5 Hz, 1H), 3.46 (td, J = 7.0, 1.5 Hz, 2H), 3.03 – 2.84 (m, 1H), 2.51 (d, J = 14.4 Hz, 1H), 2.43 (d, J = 14.2 Hz, 1H), 2.02 (s, 3H), 1.92 – 1.80 (m, 2H), 1.76 (dq, J = 13.9, 3.4 Hz, 1H), 1.70 (dq, J = 13.8, 3.5 Hz, 1H), 1.62 – 1.35 (m, 6H), 1.35 – 1.10 (m, 4H), 1.02 (td, J = 12.7, 3.5 Hz, 1H), 0.91 (t, J = 7.4 Hz, 3H), 0.87 (s, 3H), 0.77 (s, 3H), 0.75 – 0.59 (m, 2H). ¹³**C NMR** (126 MHz, CDCl₃) δ 173.7, 173.2, 171.8, 140.5, 138.6, 134.7, 115.5, 81.7, 51.4, 49.5, 42.8, 42.4, 42.1, 41.7, 39.3, 38.0, 37.0, 36.5, 31.7, 30.6, 30.5, 30.1, 27.5, 23.2, 22.7, 20.0, 16.1, 13.6, 11.5, 10.0. **HRMS** (ESI) m/z: anal. calculated for [C₃₀H₄₆N₂O₄ + Na]⁺: 521.3350, found: 521.3356. LC-MS (t_R= 3.23 min, $\lambda = 254$ nm, purity 97%).

52b, yield: (36.0 mg, 72%). ¹**H NMR** (500 MHz, CDCl₃) δ 6.63 (t, J = 5.7 Hz, 1H), 5.86 (ddt, J = 17.2, 10.6, 5.5 Hz, 1H), 5.24 – 5.05 (m, 2H), 3.87 (ddt, J = 5.6, 3.9, 1.6 Hz, 2H), 3.62 (t, J = 8.5 Hz, 1H), 3.47 (td, J = 7.1, 1.3 Hz, 2H), 2.93 (dd, J = 12.9, 2.4 Hz, 1H), 2.52 (d, J = 14.2 Hz, 1H), 2.44 (d, J = 14.2 Hz, 1H), 2.03 (s, 4H), 1.94 – 1.81 (m, 3H), 1.77 (dq, J = 13.7, 3.2 Hz, 1H), 1.70 (dq, J = 13.8, 3.5 Hz, 1H), 1.64 – 1.38 (m, 7H), 1.36 – 1.11 (m, 5H), 1.10 – 1.00 (m, 1H), 0.92 (t, J = 7.4 Hz, 4H), 0.88 (s, 3H), 0.77 (s, 3H), 0.76 – 0.68 (m, 1H). ¹³C **NMR** (126 MHz, CDCl₃) δ 173.6, 173.1, 171.7, 140.4, 138.5, 134.6, 115.4, 81.5, 51.4, 49.4, 42.8, 42.4, 42.0, 41.6, 39.2, 37.9, 36.9, 36.5, 31.6, 30.5, 30.4, 30.0, 27.4, 23.2, 22.6, 19.9, 16.1, 13.5, 11.4, 10.0. **HRMS** (ESI) m/z: anal. calculated for [C₂₉H₄₄N₂O₅ + Na]⁺: 523.3142, found: 523.3152. LC-MS ($t_R = 2.35$ min, $\lambda = 254$ nm, purity 96%).

54a, yield: (46.4 mg, 77%). ¹**H NMR** (400 MHz, CDCl₃) δ 6.51 (t, J = 5.7 Hz, 1H), 5.86 (ddt, J = 17.2, 10.6, 5.5 Hz, 1H), 5.19 (dq, J = 17.2, 1.7 Hz, 1H), 5.10 (dq, J = 10.3, 1.5 Hz, 1H), 4.65 – 4.45 (m, 1H), 4.01 – 3.80 (m, 2H), 3.77 – 3.58 (m, 6H), 3.58 – 3.37 (m, 6H), 3.31 (s, 3H), 2.95 (dd, J = 13.0, 2.3 Hz, 1H), 2.53 (d, J = 14.4 Hz, 1H), 2.43 (d, J = 14.2 Hz, 1H), 2.27 – 2.07 (m, 1H), 2.02 (s, 3H), 1.96 – 1.67 (m, 4H), 1.67 – 1.38 (m, 5H), 1.38 – 1.11 (m, 4H), 1.11 – 0.98 (m, 1H), 0.88 (s, 3H), 0.81 (s, 3H), 0.81 – 0.58 (m, 2H). ¹³**C NMR** (101 MHz, CDCl₃) δ 173.5, 173.1, 171.5, 155.4, 140.7, 138.7, 134.8, 115.5, 83.5, 69.2, 66.5, 58.6, 51.0, 49.3, 44.1, 42.6, 42.5, 41.9, 41.7, 39.3, 37.4, 37.2, 36.3, 31.7, 30.0, 27.9, 27.6, 23.3, 22.5, 16.1, 12.6, 10.1. **HRMS** (ESI) m/z: anal. calculated for [C₃₅H₅₃N₃O₆ + Na]⁺: 634.3827, found: 634.3827. LC-MS ($t_R = 3.38$ min, $\lambda = 254$ nm, purity 99%).

54b, yield: (43.5 mg, 71%). ¹**H NMR** (500 MHz, CDCl₃) δ 6.50 (t, *J* = 5.7 Hz, 1H), 5.97 – 5.76 (m, 1H), 5.18 (dt, *J* = 17.2, 1.6 Hz, 1H), 5.09 (dt, *J* = 10.4, 1.6 Hz, 1H), 4.02 – 3.77 (m, 2H), 3.77 – 3.55 (m, 3H), 3.56 – 3.44 (m, 2H), 3.29 (s, 3H), 2.91 (dd, *J* = 12.9, 2.3 Hz, 1H), 2.52 (d, *J* = 14.0 Hz, 1H), 2.43 (d, *J* = 14.2 Hz, 1H), 2.02 (s, 3H), 1.89 – 1.80 (m, 2H), 1.76 (dq, *J* = 13.8, 3.6 Hz, 1H), 1.73 – 1.59 (m, 2H), 1.59 – 1.34 (m, 5H), 1.33 – 1.09 (m, 3H), 1.02 (td, *J* = 12.8, 3.7 Hz, 1H), 0.92

(dd, J = 11.2, 7.2 Hz, 1H), 0.87 (s, 3H), 0.76 (s, 3H), 0.74 – 0.58 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 173.5, 173.1, 171.6, 140.6, 138.9, 134.7, 115.5, 81.6, 69.2, 58.5, 51.4, 49.5, 42.8, 42.5, 42.0, 41.7, 39.3, 37.4, 37.0, 36.5, 31.8, 30.5, 30.0, 27.6, 23.2, 22.7, 16.1, 11.5, 10.0. HRMS (ESI) m/z: anal. calculated for [C₃₄H₅₁N₃O₇ + Na]⁺: 636.3619, found: 636.3634. LC-MS (t_R = 3.17 min, λ = 210 nm, purity 97%).

Cheminformatic analysis of medium ring library. Principal component analysis (PCA)

To generate the plots shown in **Fig. 6a–c** of the manuscript and **Supplementary Fig. 4**, a total of 145 compounds were compared by principal component analysis (PCA):

- 25 top steroid drugs by prescriptions and retail sales in 2016 (Supp. Fig. 17)

- 40 top selling small molecule drugs in 2016 without including steroid drugs (Supp. Fig. 18)

- 25 steroid and terpenoid natural products with diverse oxidative stage and skeleton (**Supp. Fig. 19**). Notes: The first seven compounds are starting materials we used for the preparation of our library. The next six compounds are steroids with different oxidative stage. These oxidative steroids were included because the increase of oxidative stage is the key diversity element in the first phase of our library synthesis. The remaining 12 terpenoid natural products represent skeleton diversity of steroid analogues because increase of skeleton diversity is the key element in the second phase of our library synthesis. In summary, the set of 25 steroid and terpenoid natural products was selected to represent "oxidative stage diversity".

- 25 medium-sized ring natural products (**Supp. Fig. 20**). Notes: The 25 diverse natural products with a medium-sized ring represent medium-sized ring natural products with 7-11 membered *N*-heterocyclic, *O*-heterocyclic and carbocyclic rings with skeleton and functional group diversity.

- 30 medium-sized ring library members (Supp. Fig. 3). Notes: The structures presented in Supp. Fig. 3 and Supp. Fig. 17-20 are those used for computing the descriptors.

A set of 20 physicochemical properties (**Supplementary Table 1**) for all 145 compounds, were calculated using the Molecular Operating Environment (v2016.08, Chemical Computing Group, Montreal). The mean average value for each parameter was calculated for each compound series (**Supplementary Table 2**). This hypothetical average structure for each series was also included in the PCA analysis.

The MOE descriptor names are given in the table. (**Supplementary Table 1**) Descriptors that are not explicitly part of the MOE Descriptor Calculation mode are all easily calculated from MOE SVL functions (aInRing, aInHRing, R and S from aRSChirality) or from combinations of other descriptor values (deltaRS, fChiralMW and fArRing).

Supplementary Figure 17. Steroid drug reference set for PCA and PMI analyses (25 structures, top steroid drugs by prescriptions and retail sales in 2016).

Supplementary Figure 18. Top pharmaceutical products reference set for PCA and PMI analyses by retail sales in 2016 (steroid drugs were not included here) structures are shown in

no particular order. (40 structures). (continued on next page)

Supplementary Figure 18 (continued). Top pharmaceutical products reference set for PCA and PMI analyses by retail sales in 2016 (steroid drugs were not included here) structures are shown in no particular order. (40 structures).

Supplementary Figure 19. Steroid and terpenoid natural products reference set with oxidative stage diversity and skeleton diversity for PCA and PMI (25 structures). (continued on next

page)

Supplementary Figure 19 (continued). Steroid and terpenoid natural products reference set with oxidative stage diversity and skeleton diversity for PCA and PMI (25 structures).

Supplementary Figure 20. Medium ring natural products used in PCA and PMI analyses. (25

structures).

Property	Description
a_acc	H-Bond Acceptors
a_don	H-Bond Donors
a_nN	Number of N atoms
a_nO	Number of O atoms
b_rotN	Number of rotatable bonds
b_rotR	Fraction of rotatable bonds
chiral	Number of chiral centers
logS	Solubility
opr_nring	OpreaRingCount
rings	Number of Rings
SlogP	LogP
TPSA	Polar Surface Area
Weight	MW
aRing	Number of Atoms in rings
aArRing	Number of Atoms in Aromatic rings
fArRing	aInHRing/aInRing
fChiralWT	chiral/Weight
R	Number of R centers
S	Number of S centers
deltaRS	R-S

Supplementary Table 1. Parameters employed in PCA.

Supplementary Table 2. Average parameters by compound series.

AVG	Ster Drugs	Drugs	Med NPs	Ster NPs	Med Lib
a_acc	3.64	5.725	5.52	3.64	4.066667
a_don	1.76	2.85	2.12	1.8	1.2
a_nN	0.32	4.175	0.88	0.28	1.433333
a_nO	3.84	4.575	6.76	3.68	4.966667
b_rotN	3.36	8.3	5.32	2.52	5.033333
b_rotR	0.099261	0.23118	0.134602	0.073338	0.115841
chiral	6.92	2.7	5.24	8.76	7.433333
logS	-5.03341	-5.12016	-4.73232	-6.05492	-6.59984
opr_nring	4.28	3.6	3.64	4.8	4.933333
rings	4.28	3.7	4.28	4.8	5.133333
SlogP	3.801621	3.208221	2.96813	4.609051	4.935359
TPSA	70.8444	119.0815	106.9536	63.5132	84.84667
Weight	401.2981	496.0485	456.3872	416.4329	495.5132
aRing	18.12	21.05	20.36	20.16	24.16667
aArRing	1.88	12.45	6.12	0.64	3.366667

fArRing	0.112313	0.620504	0.265271	0.027911	0.128273
fChiralWT	0.017493	0.004341	0.011749	0.020835	0.015097
R	2.24	1.325	2.72	4.4	2.966667
S	4.72	1.475	2.84	4.4	4.466667
deltaRS	-2.48	-0.15	-0.12	0	-1.5

Principal component analysis was then carried out using the procedure outlined by Tan.^[11] This resulted in the construction of 3 plots of PC1/PC2, PC1/PC3 and PC2/PC3 (**Supplementary Fig. 4a-c**). Summary information from R (the open source statistical computing package used for the PCA analysis) is shown below in **Supplementary Table 3**.

Supplementary Table 3. Standard deviation and proportion of variance for each component in PCA plot (R Summary).

	PC1	PC2	PC3	PC4	PC5	PC6	PC7	PC8	PC9	PC10
Standard Deviation	2.4343	2.3637	1.6974	1.35545	1.2431	0.77439	0.74009	0.63951	0.48702	0.3564
Proportion of Variance	0.2963	0.2794	0.1441	0.09186	0.07727	0.02998	0.02739	0.02045	0.01186	0.00635
Cumulative Proportion	0.2963	0.5756	0.7197	0.81157	0.88883	0.91882	0.9462	0.96665	0.97851	0.98486

This data shows that of the 20-dimensional dataset, >90% of the variance is accounted for within the first 6 principal components (PC1 – PC6). In order to simplify the interpretation of this data, the first 3 principal components (accounting for ~72% of the variation) were used to generate the PCA plots shown in **Fig. 6a-c**.

Supplementary Table 4. Component loadings for PCA of each of the 20 structural and physiochemical descriptors for the first 6 principal components (PC1 – PC6).

	PC1	PC2	PC3	PC4	PC5	PC6
a_acc	0.329798	-0.0671072	0.25438635	0.12750934	0.15369497	0.18305368
a_don	0.27912506	0.01921988	0.22174865	0.0467632	0.07960758	-0.6951455
a_nN	0.29685025	0.10371903	-0.1720181	0.11478516	0.01020065	-0.2543469
a_nO	0.24166884	-0.1485845	0.34151278	0.08036167	0.06197324	0.45357125
b_rotN	0.33685851	0.02880172	0.03279327	-0.2374038	-0.3028305	-0.0331336
b_rotR	0.20130238	0.19836261	0.1018756	-0.3089116	-0.3477849	-0.0393965
chiral	-0.0268736	-0.3910315	0.16855769	-0.0947218	-0.0520732	-0.1381713
logS	-0.1541052	0.2253012	0.22977875	0.28438894	0.28198913	-0.0457574
opr_nring	0.06139484	-0.2678652	-0.351451	0.15069489	0.18582394	-0.0670989
rings	0.08563166	-0.2907151	-0.318923	0.17219697	0.20403389	-0.0043174
SlogP	0.02182947	-0.1969173	-0.3718897	-0.2970161	-0.288737	0.07523319
TPSA	0.35559281	-0.0396474	0.2549833	0.11194292	0.04651661	0.02015902
Weight	0.33488006	-0.216455	0.02423513	-0.0466049	-0.098654	0.12459598
aRing	0.23714719	-0.2628607	-0.209957	0.14602618	0.15405494	0.12268112
aArRing	0.29173449	0.15838578	-0.2862231	0.09450528	0.10563285	-0.0904635
fArRing	0.22072837	0.27646334	-0.199584	0.0132127	0.03751628	-0.0747786
fChiralWT	-0.20883	-0.3226519	0.1355699	-0.0394227	0.00354747	-0.3336323
R	0.00753151	-0.2896045	0.13412887	-0.4190554	0.28920759	-0.0931565

S	-0.0471995	-0.3361565	0.12603017	0.24248684	-0.3317587	-0.1159127
deltaRS	0.04689182	0.05822877	-0.0013082	-0.5464534	0.51938778	0.02545369

Top contributing parameters to each principal component are marked in grey. The values were normalized automatically by the MOE software.

Principal Moment of Inertia Analysis

Principal moment of inertia analysis was carried out by calculation of the lowest energy conformation of each representative scaffold and library compound, and each compound from the above reference set. The conformation calculation was performed using the MOE molecular modelling software package7172 in a similar manner to that reported by Tan.^[11]

The parameters used for conformer generation are listed below:

- $\Box \bullet maxConfs: 1000$
- $\Box \bullet RMSD: \leq 0.15$
- □ Failure limit: 100
- □ Energy cutoff: 7 kcal/mol
- \Box Iteration limit: 1000
- $\Box \bullet MM$ iteration limit: 500

Once the lowest energy conformer was calculated, the three principal moments of inertia (Ixx, Iyy, Izz) and normalized principal moments of inertia, npr1 (Ixx/Izz) and npr2 (Iyy/Izz) were determined using MOE. These PMI ratios were calculated for our representative scaffolds and library members, in addition to the reference sets drugs, steroid drugs steroid natural products and medium-sized ring natural products. The ratios were plotted on a triangular graph where the vertices (0,1), (0.5,0.5) and (1,1) represent a perfect rod, disc and sphere, respectively (**Fig. 6d**).

X-Ray report.

Structural report on **4a**

(CCDC 1888660)

MARCH 14, 2018

Crystallographic Experimental Section

Data Collection

A colorless crystal with approximate dimensions 0.365 x 0.254 x 0.219 mm³ was selected under oil under ambient conditions and attached to the tip of a MiTeGen MicroMount[©]. The crystal was mounted in a stream of cold nitrogen at 200(1) K and centered in the X-ray beam by using a video camera.

The crystal evaluation and data collection were performed on a Bruker SMART APEXII diffractometer with Cu K_{α} (λ = 1.54178 Å) radiation and the diffractometer to crystal distance of 4.03 cm [12].

The initial cell constants were obtained from three series of ω scans at different starting angles. Each series consisted of 41 frames collected at intervals of 0.6° in a 25° range about ω with the exposure time of 10 seconds per frame. The reflections were successfully indexed by an automated indexing routine built in the APEXII program. The final cell constants were calculated

from a set of 9982 strong reflections from the actual data collection.

The data were collected by using the full sphere data collection routine to survey the reciprocal space to the extent of a full sphere to a resolution of 0.82 Å. A total of 45302 data were harvested by collecting 14 sets of frames with 0.6° scans in ω and φ with an exposure time 8-16 sec per frame. These highly redundant datasets were corrected for Lorentz and polarization effects. The absorption correction was based on fitting a function to the empirical transmission surface as sampled by multiple equivalent measurements [13].

Structure Solution and Refinement

The systematic absences in the diffraction data were consistent for the space groups $P3_1$, $P3_2$, $P3_121$, and $P3_221$. Space group $P3_221$ was chosen because it had the lowest figure of merit, yielded a chemically reasonable structure with the correct absolute configuration, and produced computationally stable results of refinement [14-19].

A successful solution by the direct methods provided most non-hydrogen atoms from the *E*-map. The remaining non-hydrogen atoms were located in an alternating series of least-squares cycles and difference Fourier maps. All non-hydrogen atoms were refined with anisotropic displacement coefficients. All hydrogen atoms were included in the structure factor calculation at idealized positions and were allowed to ride on the neighboring atoms with relative isotropic displacement coefficients.

The absolute structure was unequivocally established by anomalous scattering. A total of eight stereocenter were found with C6 and C19 in the *R* conformation with C3, C7, C10, C11, C15, and C16 in the *S* conformation.

The final least-squares refinement of 275 parameters against 4633 data resulted in residuals R (based on F^2 for $I \ge 2\sigma$) and wR (based on F^2 for all data) of 0.0401 and 0.1076, respectively. The final difference Fourier map was featureless.

Summary

Crystal Data for C₂₅H₃₉NO₄ (M=417.57 g/mol): trigonal, space group P3₂21 (no. 154), a = 11.3911(9) Å, c = 31.049(6) Å, V = 3489.0(9) Å³, Z = 6, T = 200.0 K, μ (CuK α) = 0.630 mm⁻¹, Dcalc = 1.192 g/cm³, 45302 reflections measured (8.544° ≤ 2 Θ ≤ 146.81°), 4633 unique (R_{int} = 0.0286, R_{sigma} = 0.0125) which were used in all calculations. The final R_1 was 0.0401 (I > 2 σ (I)) and wR_2 was 0.1076 (all data).

Supplementary Figure 21. A molecular drawing of **4a** shown with 30% probability ellipsoids. All H atoms are omitted.

Supplementary Figure 22. A molecular drawing of **4a** shown with 30% probability ellipsoids. All H atoms other than those attached to stereocenter are omitted.

Supplementary Figure 23. Hydrogen bonding interactions in **4a**. The molecules are shown with 30% probability ellipsoids. H atoms not involved in the hydrogen bonding network are omitted. [Symmetry codes: (i) 1+x, 1+y, +z; (ii) -1+x, -1+y, +z.]

Supplementary Table 5. Crystal data and structure refinement for 4a.

Identification code	4a
Empirical formula	C ₂₅ H ₃₉ NO ₄
Formula weight	417.57
Temperature/K	200.0
Crystal system	trigonal
Space group	P3 ₂ 21
a/Å	11.3911(9)
b/Å	11.3911(9)
c/Å	31.049(6)
$\alpha/^{\circ}$	90
β/°	90
γ/°	120
Volume/Å ³	3489.0(9)
Ζ	6
$\rho_{calc}g/cm^3$	1.192
μ/mm^{-1}	0.630
F(000)	1368.0
Crystal size/mm ³	$0.46 \times 0.24 \times 0.21$
Radiation	$CuK\alpha$ ($\lambda = 1.54178$)
2Θ range for data collection/^	8.544 to 146.81
Index ranges	$-14 \le h \le 14, -13 \le k \le 14, -32 \le l \le 36$
Reflections collected	45302
Independent reflections	4633 [$R_{int} = 0.0286, R_{sigma} = 0.0125$]
Data/restraints/parameters	4633/0/275
Goodness-of-fit on F ²	1.030

Final R indexes [I>= 2σ (I)]	$R_1 = 0.0401, wR_2 = 0.1048$
Final R indexes [all data]	$R_1 = 0.0430, wR_2 = 0.1076$
Largest diff. peak/hole / e Å $^{\text{-}3}$	0.16/-0.16
Flack parameter	-0.02(5)

Supplementary Table 6. Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for **4a**. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	У	Ζ	U(eq)
01	11572.8(19)	5756.8(18)	5717.4(7)	78.6(5)
O2	10210(2)	4551.7(19)	6925.0(6)	78.5(5)
O3	8874(2)	2371(2)	7108.1(6)	80.6(6)
O4	967.0(19)	-2362(2)	5345.1(6)	80.1(6)
N1	10663(2)	3864(2)	6112.4(7)	65.6(5)
C1	10615(3)	4922(2)	5938.7(8)	66.1(7)
C2	9375(3)	5032(2)	6010.4(8)	65.0(6)
C3	8084(3)	3892(2)	5799.8(7)	56.9(6)
C4	7186(3)	4451(2)	5647.2(8)	67.1(7)
C5	5961(3)	3410(2)	5400.2(8)	67.2(6)
C6	5138(2)	2084(2)	5654.1(7)	51.7(5)
C7	4007(2)	1014(2)	5383.3(6)	54.0(5)
C8	2941(3)	1306(3)	5189.7(9)	77.9(8)
С9	1778(3)	-98(4)	5060.1(9)	84.2(9)
C10	2143(3)	-1135(3)	5237.9(7)	62.1(6)
C11	3139(2)	-362(2)	5607.0(6)	50.5(5)
C12	2345(3)	-313(3)	5998.0(7)	66.1(6)
C13	4082(2)	-889(2)	5736.4(7)	53.1(5)
C14	5242(2)	144(2)	6020.9(7)	54.0(5)
C15	6073(2)	1548(2)	5807.0(6)	47.5(4)
C16	7296(2)	2604(2)	6082.1(7)	50.7(5)
C17	6786(3)	2912(2)	6502.3(7)	57.5(5)
C18	8205(2)	1986(2)	6177.7(8)	57.5(5)
C19	9629(2)	2791(2)	6384.8(9)	63.4(6)
C20	9614(2)	3369(3)	6831.9(9)	66.6(6)
C21	8791(3)	2760(4)	7552.1(9)	92.4(10)
C22	8727(5)	1667(5)	7838.2(12)	123.2(15)
C23	10217(3)	1834(3)	6435.2(11)	77.0(8)

C24	11750(3)	2786(3)	6428.8(11)	84.7(9)
C25	11910(3)	3789(3)	6086.9(10)	76.7(8)

Supplementary Table 7. Anisotropic Displacement Parameters (Å²×10³) for **4a**. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U11	U ₂₂	U33	U ₂₃	U13	U12
01	68.3(11)	54.1(9)	87.1(12)	-4.0(9)	18.8(9)	10.9(8)
O2	71.0(11)	59.9(10)	77.3(11)	-18.8(8)	-1.3(9)	12.4(9)
O3	69.4(11)	68.4(11)	68.1(11)	-2.7(9)	-9.4(9)	7.6(9)
O4	59.4(10)	92.4(14)	70.8(11)	5.3(10)	-10.4(8)	24.7(10)
N1	58.6(11)	48(1)	78.0(14)	-15.5(9)	4.4(10)	17.4(9)
C1	65.8(14)	43.2(11)	70.4(15)	-17.7(10)	8.8(12)	13(1)
C2	76.4(15)	36.4(10)	71.2(14)	-2.5(9)	18.9(12)	20.0(11)
C3	70.4(14)	40.9(10)	55.5(12)	2.6(9)	19(1)	24.9(10)
C4	87.6(18)	46.1(11)	69.5(14)	17.1(10)	22.4(13)	34.9(12)
C5	90.0(18)	59.6(13)	61.9(13)	18.4(11)	12.0(12)	44.8(13)
C6	69.4(13)	52.9(11)	42.9(10)	8.4(8)	10.4(9)	38.2(10)
C7	68.0(13)	65.2(13)	38.4(10)	9.4(9)	7.1(9)	40.6(11)
C8	91(2)	97(2)	63.2(14)	19.0(14)	-4.7(14)	60.2(18)
С9	85.7(19)	117(2)	61.5(15)	12.1(15)	-14.2(14)	59.3(19)
C10	59.4(13)	80.9(16)	43.9(11)	3.5(10)	-1.8(9)	33.4(12)
C11	58.4(12)	60.8(12)	36.6(10)	3.4(8)	3.0(8)	33.1(10)
C12	72.9(15)	80.0(16)	46.5(12)	5.0(11)	12.1(11)	39.1(13)
C13	55.2(12)	45.3(10)	56.4(12)	2.3(9)	-5.9(9)	23.5(9)
C14	58.1(12)	39.6(10)	59.0(12)	5.9(8)	-9.9(10)	20.4(9)
C15	59.1(11)	42.3(10)	42.7(10)	2.8(8)	4.1(8)	26.5(9)
C16	60.5(12)	37.6(9)	49.4(11)	-0.5(8)	5.1(9)	21.1(9)
C17	68.6(14)	43.9(10)	49.9(11)	-0.6(8)	7.6(10)	20.6(10)
C18	58.8(12)	38.5(10)	65.5(13)	-8.5(9)	-8.6(10)	17.1(9)
C19	57.9(13)	43.5(11)	74.6(15)	-9.5(10)	-7.1(11)	14.7(10)
C20	52.1(12)	56.9(13)	70.7(15)	-9.5(11)	-7.7(11)	12.2(11)
C21	68.1(16)	98(2)	69.8(17)	-6.7(16)	-3.5(13)	10.3(16)
C22	132(4)	142(4)	79(2)	4(2)	-14(2)	55(3)
C23	65.8(15)	57.3(13)	101(2)	-20.2(13)	-24.7(14)	25.4(12)
C24	67.4(16)	70.7(17)	108(2)	-29.6(16)	-23.2(15)	28.3(14)
C25	59.0(14)	68.8(16)	90.2(18)	-31.4(15)	-7.4(13)	22.9(12)

Supplemental y lable 0. Dona Dengins for q a

Atom	Atom	Length/Å	Atom	Atom	Length/Å
01	C1	1.237(3)	C7	C11	1.539(3)
02	C20	1.202(3)	C8	C9	1.535(5)
03	C20	1.334(3)	C9	C10	1.537(4)
03	C21	1.466(4)	C10	C11	1.542(3)
O4	C10	1.409(3)	C11	C12	1.531(3)
N1	C1	1.346(4)	C11	C13	1.524(3)
N1	C19	1.468(3)	C13	C14	1.535(3)
N1	C25	1.468(4)	C14	C15	1.543(3)
C1	C2	1.496(4)	C15	C16	1.563(3)
C2	C3	1.538(4)	C16	C17	1.539(3)
C3	C4	1.526(4)	C16	C18	1.544(3)
C3	C16	1.552(3)	C18	C19	1.548(3)
C4	C5	1.512(4)	C19	C20	1.540(4)
C5	C6	1.538(3)	C19	C23	1.546(4)
C6	C7	1.510(3)	C21	C22	1.501(6)
C6	C15	1.544(3)	C23	C24	1.528(4)
C7	C8	1.532(3)	C24	C25	1.502(5)

Supplementary Table 9. Bond Angles for 4a.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C20	O3	C21	117.1(2)	C13	C11	C10	115.65(19)
C1	N1	C19	127.0(2)	C13	C11	C12	110.53(18)
C1	N1	C25	120.3(2)	C11	C13	C14	110.82(18)
C25	N1	C19	112.3(2)	C13	C14	C15	113.20(17)
01	C1	N1	119.7(3)	C6	C15	C16	112.97(17)
01	C1	C2	121.7(3)	C14	C15	C6	110.77(18)
N1	C1	C2	118.6(2)	C14	C15	C16	114.29(16)
C1	C2	C3	114.22(19)	C3	C16	C15	106.88(17)
C2	C3	C16	114.5(2)	C17	C16	C3	111.65(16)
C4	C3	C2	109.71(19)	C17	C16	C15	110.23(18)
C4	C3	C16	112.25(19)	C17	C16	C18	110.90(19)
C5	C4	C3	112.24(19)	C18	C16	C3	109.70(18)

C4	C5	C6	112.38(19)	C18	C16	C15	107.31(16)
C5	C6	C15	110.07(19)	C16	C18	C19	123.56(18)
C7	C6	C5	111.23(17)	N1	C19	C18	114.8(2)
C7	C6	C15	109.38(17)	N1	C19	C20	109.82(18)
C6	C7	C8	119.5(2)	N1	C19	C23	101.3(2)
C6	C7	C11	115.13(16)	C20	C19	C18	113.3(2)
C8	C7	C11	102.9(2)	C20	C19	C23	108.1(2)
C7	C8	С9	104.0(2)	C23	C19	C18	108.62(18)
C8	С9	C10	106.4(2)	02	C20	03	124.3(2)
04	C10	С9	111.0(2)	02	C20	C19	125.1(2)
04	C10	C11	117.01(19)	03	C20	C19	110.6(2)
С9	C10	C11	103.4(2)	03	C21	C22	106.8(3)
C7	C11	C10	99.26(16)	C24	C23	C19	104.1(2)
C12	C11	C7	114.30(19)	C25	C24	C23	102.1(2)
C12	C11	C10	109.3(2)	N1	C25	C24	104.7(2)
C13	C11	C7	107.47(18)				

Supplementary Table 10. Torsion Angles for 4a.

А	B	С	D	Angle/°	Α	B	С	D	Angle/°
01	C1	C2	C3	112.8(2)	C8	C7	C11	C13	169.05(19)
04	C10	C11	C7	-165.6(2)	C8	C9	C10	04	149.0(2)
04	C10	C11	C12	-45.7(3)	C8	C9	C10	C11	22.7(3)
04	C10	C11	C13	79.8(3)	C9	C10	C11	C7	-43.2(2)
N1	C1	C2	C3	-65.5(3)	C9	C10	C11	C12	76.7(2)
N1	C19	C20	02	10.1(4)	C9	C10	C11	C13	-157.8(2)
N1	C19	C20	O3	-168.2(2)	C10	C11	C13	C14	165.95(19)
N1	C19	C23	C24	32.5(3)	C11	C7	C8	C9	-34.8(3)
C1	N1	C19	C18	57.6(3)	C11	C13	C14	C15	-56.5(3)
C1	N1	C19	C20	-71.4(3)	C12	C11	C13	C14	-69.2(2)
C1	N1	C19	C23	174.4(2)	C13	C14	C15	C6	53.3(2)
C1	N1	C25	C24	161.5(2)	C13	C14	C15	C16	-177.69(18)
C1	C2	C3	C4	-145.6(2)	C14	C15	C16	C3	174.65(18)
C1	C2	C3	C16	87.1(3)	C14	C15	C16	C17	-63.8(2)
C2	C3	C4	C5	174.68(19)	C14	C15	C16	C18	57.0(2)
C2	C3	C16	C15	-177.23(18)	C15	C6	C7	C8	-179.62(19)
C2	C3	C16	C17	62.2(3)	C15	C6	C7	C11	57.1(2)

C2 C3	C16	C18	-61.2(2)	C15	C16	C18	C19	170.7(2)
C3 C4	C5	C6	53.7(3)	C16	C3	C4	C5	-56.8(3)
C3 C16	C18	C19	54.9(3)	C16	C18	C19	N1	-68.2(3)
C4 C3	C16	C15	56.8(2)	C16	C18	C19	C20	59.1(3)
C4 C3	C16	C17	-63.8(3)	C16	C18	C19	C23	179.3(2)
C4 C3	C16	C18	172.87(19)	C17	C16	C18	C19	-68.8(3)
C4 C5	C6	C7	-174.2(2)	C18	C19	C20	02	-119.8(3)
C4 C5	C6	C15	-52.8(3)	C18	C19	C20	03	61.9(3)
C5 C6	C7	C8	-57.8(3)	C18	C19	C23	C24	153.8(2)
C5 C6	C7	C11	178.93(19)	C19	N1	C1	01	179.4(2)
C5 C6	C15	C14	-174.10(18)	C19	N1	C1	C2	-2.2(3)
C5 C6	C15	C16	56.2(2)	C19	N1	C25	C24	-11.2(3)
C6 C7	C8	C9	-163.8(2)	C19	C23	C24	C25	-39.9(3)
C6 C7	C11	C10	-179.98(19)	C20	O3	C21	C22	-145.6(3)
C6 C7	C11	C12	63.8(3)	C20	C19	C23	C24	-82.9(3)
C6 C7	C11	C13	-59.2(2)	C21	O3	C20	02	0.2(4)
C6 C15	C16	C3	-57.5(2)	C21	O3	C20	C19	178.5(2)
C6 C15	C16	C17	64.0(2)	C23	C19	C20	02	119.8(3)
C6 C15	C16	C18	-175.10(17)	C23	C19	C20	03	-58.5(3)
C7 C6	C15	C14	-51.6(2)	C23	C24	C25	N1	31.2(3)
C7 C6	C15	C16	178.71(16)	C25	N1	C1	01	7.8(3)
C7 C8	C9	C10	7.3(3)	C25	N1	C1	C2	-173.9(2)
C7 C11	C13	C14	56.2(2)	C25	N1	C19	C18	-130.2(2)
C8 C7	C11	C10	48.3(2)	C25	N1	C19	C20	100.8(2)
C8 C7	C11	C12	-67.9(2)	C25	N1	C19	C23	-13.4(2)

Supplementary Table 11. Hydrogen Atom Coordinates ($Å \times 10^4$) and Isotropic Displacement Parameters ($Å^2 \times 10^3$) for **4a**.

Atom	x	У	Ζ	U(eq)
H4	1188.8	-2889.22	5460.84	120
H2A	9541.53	5913.04	5895.46	78
H2B	9218.59	5027.52	6324.17	78
H3	8380.93	3608.36	5535.86	68
H4A	6878.96	4755.74	5899.99	80
H4B	7723.85	5248.68	5460.66	80
H5A	6263.8	3209.3	5124.93	81
H5B	5370.72	3791.77	5331.43	81
------	----------	----------	---------	-----
Н6	4733.48	2271.53	5912.41	62
H7	4453.78	838.85	5134.06	65
H8A	3306.62	1907.22	4935.6	93
H8B	2633.02	1735.64	5404.59	93
H9A	1686.51	-172.64	4742.8	101
H9B	911.35	-255.54	5184.58	101
H10	2643.96	-1325.86	5009.39	75
H12A	2978.11	314.47	6212.8	99
H12B	1827.26	-1221.11	6124.07	99
H12C	1721.53	-2.4	5907.5	99
H13A	4462.71	-1069.3	5474.5	64
H13B	3561.64	-1753.04	5895.32	64
H14A	5854.91	-210.68	6090.45	65
H14B	4858.84	248.67	6294.9	65
H15	6474.02	1399.22	5540.34	57
H17A	6128.3	3200.44	6434.33	86
H17B	7553.25	3636.72	6658.88	86
H17C	6351.41	2094.17	6681.34	86
H18A	8327.67	1630.83	5900.62	69
H18B	7668.56	1189.72	6364.83	69
H21A	7970.06	2839.13	7590.48	111
H21B	9596.73	3643.62	7622.68	111
H22A	7900.9	807.99	7774.83	185
H22B	8716.12	1910.64	8140.28	185
H22C	9521.71	1568.1	7786.19	185
H23A	9923.4	1329.51	6710.4	92
H23B	9926.63	1177.75	6194.43	92
H24A	12085.69	3234.8	6711.04	102
H24B	12233.47	2296.49	6350.25	102
H25A	12716.23	4685.99	6144.07	92
H25B	12005.95	3473.15	5798.85	92

1101 University Ave Madison, WI 53706

E-mail: iguzei@chem.wisc.edu

Structural report on S10

(CCDC 1888661)

March 14, 2018

Crystallographic Experimental Section

Data Collection

A colorless needle crystal with approximate dimensions $0.20 \ge 0.25 \ge 0.58 \text{ mm}^3$ was selected under oil under ambient conditions and attached to the tip of a MiTeGen MicroMount©. The crystal was mounted in a stream of cold nitrogen at 100(1) K and centered in the X-ray beam by using a video camera.

The crystal evaluation and data collection were performed on a Bruker SMART APEXII diffractometer with Cu K_{α} (λ = 1.54178 Å) radiation and the diffractometer to crystal distance of 4.03 cm [12].

The initial cell constants were obtained from three series of ω scans at different starting angles. Each series consisted of 35 frames collected at intervals of 0.7° in a 25° range about ω with the exposure time of 3 seconds per frame. The reflections were successfully indexed by an

automated indexing routine built in the APEXII program. The final cell constants were calculated from a set of 9094 strong reflections from the actual data collection.

The data were collected by using the full sphere data collection routine to survey the reciprocal space to the extent of a full sphere to a resolution of 0.80 Å. A total of 31858 data were harvested by collecting 18 sets of frames with 0.6° scans in ω and φ with an exposure time 4-10 sec per frame. These highly redundant datasets were corrected for Lorentz and polarization effects. The absorption correction was based on fitting a function to the empirical transmission surface as sampled by multiple equivalent measurements [13].

Structure Solution and Refinement

The systematic absences in the diffraction data were uniquely consistent for the space group $P2_12_12_1$ that yielded chemically reasonable and computationally stable results of refinement [14-19].

A successful solution by the direct methods provided most non-hydrogen atoms from the *E*-map. The remaining non-hydrogen atoms were located in an alternating series of least-squares cycles and difference Fourier maps. All non-hydrogen atoms were refined with anisotropic displacement coefficients. All hydrogen atoms were included in the structure factor calculation at idealized positions and were allowed to ride on the neighboring atoms with relative isotropic displacement coefficients.

The absolute structure was unequivocally established by anomalous scattering. A total of six stereocenter were found with C2, C6, C8, and C11 in the R conformation with C13 and C17 in the S conformation.

The final least-squares refinement of 220 parameters against 3497 data resulted in residuals R (based on F^2 for $I \ge 2\sigma$) and wR (based on F^2 for all data) of 0.0299 and 0.0814, respectively. The final difference Fourier map was featureless.

Summary

Crystal Data for C₂₁H₃₂O₃ (M=332.46 g/mol): orthorhombic, space group P2₁2₁2₁ (no. 19), a = 8.2422(3) Å, b = 10.1792(5) Å, c = 20.8464(9) Å, V = 1748.99(13) Å³, Z = 4, T = 99.97 K, μ (CuK α) = 0.645 mm⁻¹, *Dcalc* = 1.263 g/cm³, 31740 reflections measured (8.482° $\leq 2\Theta \leq 2\Theta$

146.748°), 3497 unique ($R_{int} = 0.0198$, $R_{sigma} = 0.0087$) which were used in all calculations. The final R_1 was 0.0299 (I > 2 σ (I)) and wR_2 was 0.0814 (all data).

Supplementary Figure 24. A molecular drawing of S10 shown with 50% probability ellipsoids.

All H atoms are omitted for clarity.

Supplementary Figure 25. A molecular drawing of S10 shown with 50% probability ellipsoids.

All H atoms other than those around stereocenter are omitted for clarity.

Supplementa	ry Table	• 12. Crystal	data and	l structure refine	ment for S	510
-------------	----------	----------------------	----------	--------------------	-------------------	-----

Identification code	tang26
Empirical formula	$C_{21}H_{32}O_3$
Formula weight	332.46
Temperature/K	99.97
Crystal system	orthorhombic
Space group	$P2_{1}2_{1}2_{1}$
a/Å	8.2422(3)
b/Å	10.1792(5)
c/Å	20.8464(9)
α/\circ	90

β/°	90
γ/°	90
Volume/Å ³	1748.99(13)
Z	4
$\rho_{calc}g/cm^3$	1.263
μ/mm^{-1}	0.645
F(000)	728.0
Crystal size/mm ³	$0.585 \times 0.254 \times 0.202$
Radiation	$CuK\alpha$ ($\lambda = 1.54178$)
2Θ range for data collection/°	8.482 to 146.748
Index ranges	-10 \leq h \leq 10, -12 \leq k \leq 12, -25 \leq l \leq 25
Reflections collected	31740
Independent reflections	3497 [$R_{int} = 0.0198$, $R_{sigma} = 0.0087$]
Data/restraints/parameters	3497/0/220
Goodness-of-fit on F ²	1.079
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0299, wR_2 = 0.0813$
Final R indexes [all data]	$R_1 = 0.0300, wR_2 = 0.0814$
Largest diff. peak/hole / e Å $^{-3}$	0.26/-0.18
Flack parameter	0.05(2)

Supplementary Table 13. Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for **S10**. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	У	Z	U(eq)
01	3194.4(16)	11465.4(12)	6650.0(6)	28.1(3)
O2	8159.7(13)	3028.4(10)	5567.2(5)	19.7(2)
03	9941.9(13)	4742.3(10)	5572.6(5)	18.0(2)
C1	1613.8(19)	9353.4(16)	6110.9(8)	20.6(3)
C2	3471.4(18)	9397.3(14)	6107.3(7)	15.6(3)
C3	4075.0(19)	10560.1(15)	6498.0(7)	17.6(3)
C4	5863(2)	10594.2(14)	6667.6(8)	18.7(3)
C5	6614.0(18)	9254.6(14)	6825.7(7)	15.8(3)
C6	6149.8(17)	8162.4(14)	6348.3(6)	12.1(3)
C7	6835.4(18)	8515.3(15)	5682.3(7)	16.8(3)
C8	4261.3(18)	8091.9(14)	6329.4(7)	13.0(3)
С9	3672.9(18)	6910.5(15)	5940.3(7)	16.7(3)
C10	4291.6(18)	5631.0(15)	6230.6(8)	16.5(3)

6142.1(17)	5566.0(14)	6296.9(7)	13.1(3)
6626.7(18)	4381.2(14)	6715.3(7)	14.7(3)
8449.1(17)	4227.8(14)	6590.0(7)	14.2(3)
9168.3(19)	2968.9(15)	6872.2(7)	19.4(3)
9308.4(17)	5431.9(15)	6879.6(7)	15.6(3)
8674.5(17)	6755.9(14)	6633.0(7)	14.3(3)
6811.1(17)	6828.9(14)	6616.5(7)	11.9(3)
7047.1(18)	5233.1(14)	5664.8(7)	15.3(3)
8461.0(18)	4307.5(14)	5842.2(7)	14.9(3)
9584(2)	2619.9(16)	5231.3(8)	21.4(3)
10873(2)	3586.5(16)	5444.1(8)	19.7(3)
	6142.1(17) 6626.7(18) 8449.1(17) 9168.3(19) 9308.4(17) 8674.5(17) 6811.1(17) 7047.1(18) 8461.0(18) 9584(2) 10873(2)	6142.1(17) $5566.0(14)$ $6626.7(18)$ $4381.2(14)$ $8449.1(17)$ $4227.8(14)$ $9168.3(19)$ $2968.9(15)$ $9308.4(17)$ $5431.9(15)$ $8674.5(17)$ $6755.9(14)$ $6811.1(17)$ $6828.9(14)$ $7047.1(18)$ $5233.1(14)$ $8461.0(18)$ $4307.5(14)$ $9584(2)$ $2619.9(16)$ $10873(2)$ $3586.5(16)$	6142.1(17) $5566.0(14)$ $6296.9(7)$ $6626.7(18)$ $4381.2(14)$ $6715.3(7)$ $8449.1(17)$ $4227.8(14)$ $6590.0(7)$ $9168.3(19)$ $2968.9(15)$ $6872.2(7)$ $9308.4(17)$ $5431.9(15)$ $6879.6(7)$ $8674.5(17)$ $6755.9(14)$ $6633.0(7)$ $6811.1(17)$ $6828.9(14)$ $6616.5(7)$ $7047.1(18)$ $5233.1(14)$ $5864.8(7)$ $8461.0(18)$ $4307.5(14)$ $5842.2(7)$ $9584(2)$ $2619.9(16)$ $5231.3(8)$ $10873(2)$ $3586.5(16)$ $5444.1(8)$

Supplementary Table 14. Anisotropic Displacement Parameters (Å²×10³) for **\$10**. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^{*}b^{*}U_{12}+...]$.

Atom	U11	U ₂₂	U33	U ₂₃	U ₁₃	U12
01	27.8(6)	22.5(6)	34.0(7)	-5.4(5)	-0.2(5)	9.4(5)
02	18.3(5)	15.0(5)	25.7(6)	-7.6(4)	0.7(4)	0.8(4)
03	17.5(5)	16.5(5)	20.1(5)	-0.9(4)	5.5(4)	0.6(4)
C1	14.6(7)	21.5(7)	25.8(8)	4.6(6)	1.1(6)	4.0(6)
C2	14.1(7)	17.1(7)	15.6(6)	3.2(5)	1.3(5)	2.3(6)
C3	21.1(7)	14.6(7)	17.1(7)	4.0(6)	3.5(6)	2.6(6)
C4	20.8(7)	12.1(7)	23.1(7)	-2.3(6)	1.3(6)	-1.4(6)
C5	14.3(7)	14.0(6)	19.3(7)	-1.3(5)	-0.7(5)	-0.8(6)
C6	11.3(6)	12.5(6)	12.5(6)	0.3(5)	0.7(5)	-0.8(5)
C7	15.6(7)	18.4(7)	16.4(7)	3.6(5)	3.0(6)	2.0(6)
C8	11.6(6)	14.4(7)	12.9(6)	1.2(5)	0.5(5)	0.3(5)
C9	12.6(6)	17.6(7)	19.8(7)	-2.1(6)	-4.6(5)	0.2(6)
C10	11.5(6)	13.9(7)	24.2(7)	-0.7(6)	-2.5(6)	-2.7(6)
C11	11.0(6)	13.2(7)	15.1(6)	-0.5(5)	-0.9(5)	-0.8(5)
C12	13.1(7)	13.2(6)	18.0(7)	0.9(5)	0.6(5)	-1.1(5)
C13	12.3(6)	14.7(6)	15.8(7)	1.9(5)	-0.7(5)	-0.6(5)
C14	17.8(7)	18.2(7)	22.2(7)	4.4(6)	0.4(6)	2.0(6)
C15	13.0(6)	18.2(7)	15.6(6)	-0.4(5)	-3.2(5)	0.2(6)
C16	11.8(6)	14.4(6)	16.8(6)	-1.3(5)	-1.7(5)	-1.7(5)
C17	12.3(6)	12.4(6)	11.1(6)	0.0(5)	0.2(5)	-0.6(5)
C18	16.5(7)	15.8(6)	13.6(7)	-3.1(5)	-2.4(5)	1.3(6)

C19	14.2(7)	13.3(7)	17.3(7)	-3.0(5)	-0.3(5)	-0.5(5)
C20	23.2(8)	19.0(7)	22.1(7)	-4.0(6)	1.3(6)	7.2(6)
C21	17.8(7)	20.5(7)	20.7(7)	1.0(6)	3.1(6)	5.3(6)

Supplementary Table 15. Bond Lengths for **S10**.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
01	C3	1.215(2)	C8	C9	1.5294(19)
02	C19	1.4441(17)	C9	C10	1.524(2)
02	C20	1.4288(19)	C10	C11	1.5329(19)
03	C19	1.4147(18)	C11	C12	1.5411(19)
03	C21	1.4302(18)	C11	C17	1.5494(18)
C1	C2	1.532(2)	C11	C18	1.5516(19)
C2	C3	1.521(2)	C12	C13	1.5326(19)
C2	C8	1.5504(19)	C13	C14	1.5296(19)
C3	C4	1.516(2)	C13	C15	1.5388(19)
C4	C5	1.533(2)	C13	C19	1.5610(19)
C5	C6	1.5404(19)	C15	C16	1.534(2)
C6	C7	1.5415(19)	C16	C17	1.5380(18)
C6	C8	1.5587(19)	C18	C19	1.544(2)
C6	C17	1.5660(19)	C20	C21	1.515(2)

Supplementary Table 16. Bond Angles for **S10**.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C20	02	C19	108.39(11)	C12	C11	C17	108.28(11)
C19	03	C21	106.27(11)	C12	C11	C18	100.67(11)
C1	C2	C8	113.16(12)	C17	C11	C18	112.05(11)
C3	C2	C1	110.31(13)	C13	C12	C11	103.73(12)
C3	C2	C8	111.70(12)	C12	C13	C15	107.64(11)
01	C3	C2	122.32(14)	C12	C13	C19	99.85(11)
01	C3	C4	120.17(14)	C14	C13	C12	113.55(12)
C4	C3	C2	117.44(13)	C14	C13	C15	109.76(12)
C3	C4	C5	114.98(13)	C14	C13	C19	115.16(12)
C4	C5	C6	113.74(12)	C15	C13	C19	110.33(12)
C5	C6	C7	108.83(12)	C16	C15	C13	114.30(11)

C5	C6	C8	107.31(11)	C15	C16	C17	112.95(12)
C5	C6	C17	107.97(11)	C11	C17	C6	116.22(11)
C7	C6	C8	110.73(12)	C16	C17	C6	113.42(11)
C7	C6	C17	113.33(11)	C16	C17	C11	108.96(11)
C8	C6	C17	108.46(11)	C19	C18	C11	107.03(11)
C2	C8	C6	112.79(12)	02	C19	C13	110.39(12)
C9	C8	C2	112.48(11)	02	C19	C18	108.99(11)
C9	C8	C6	111.49(12)	03	C19	02	105.83(11)
C10	С9	C8	110.81(12)	03	C19	C13	114.73(12)
C9	C10	C11	113.93(12)	03	C19	C18	111.42(12)
C10	C11	C12	110.04(12)	C18	C19	C13	105.44(11)
C10	C11	C17	110.92(12)	02	C20	C21	104.12(12)
C10	C11	C18	114.28(12)	03	C21	C20	102.28(12)

Supplementary Table 17. Torsion Angles for S10.

A	B	С	D	Angle/°	A	B	С	D	Angle/°
01	C3	C4	C5	145.69(15)	C11	C12	C13	C19	-47.65(13)
02	C20	C21	03	-29.58(15)	C11	C18	C19	02	113.19(13)
C1	C2	C3	01	-16.0(2)	C11	C18	C19	O3	-130.39(12)
C1	C2	C3	C4	167.10(13)	C11	C18	C19	C13	-5.32(15)
C1	C2	C8	C6	-177.88(12)	C12	C11	C17	C6	-167.64(12)
C1	C2	C8	C9	54.98(16)	C12	C11	C17	C16	62.74(14)
C2	C3	C4	C5	-37.34(19)	C12	C11	C18	C19	-23.28(14)
C2	C8	C9	C10	-172.17(12)	C12	C13	C15	C16	-55.58(15)
C3	C2	C8	C6	-52.67(16)	C12	C13	C19	02	-85.73(13)
C3	C2	C8	C9	-179.82(12)	C12	C13	C19	O3	154.82(11)
C3	C4	C5	C6	45.78(18)	C12	C13	C19	C18	31.83(14)
C4	C5	C6	C7	63.78(16)	C13	C15	C16	C17	45.29(17)
C4	C5	C6	C8	-56.09(16)	C14	C13	C15	C16	-179.62(12)
C4	C5	C6	C17	-172.82(12)	C14	C13	C19	02	36.25(17)
C5	C6	C8	C2	60.26(14)	C14	C13	C19	O3	-83.20(15)
C5	C6	C8	C9	-172.07(11)	C14	C13	C19	C18	153.81(12)
C5	C6	C17	C11	166.21(12)	C15	C13	C19	02	161.16(11)
C5	C6	C17	C16	-66.35(14)	C15	C13	C19	O3	41.71(16)
C6	C8	C9	C10	60.00(15)	C15	C13	C19	C18	-81.27(14)
C7	C6	C8	C2	-58.39(15)	C15	C16	C17	C6	-178.45(11)

C7	C6	C8	С9	69.28(15)	C15 C16	C17	C11	-47.31(15)
C7	C6	C17	C11	-73.17(15)	C17 C6	C8	C2	176.67(11)
C7	C6	C17	C16	54.28(15)	C17 C6	C8	C9	-55.66(14)
C8	C2	C3	01	-142.78(14)	C17 C11	C12	C13	-73.27(13)
C8	C2	C3	C4	40.32(17)	C17 C11	C18	C19	91.60(13)
C8	C6	C17	C11	50.22(14)	C18 C11	C12	C13	44.40(13)
C8	C6	C17	C16	177.67(11)	C18 C11	C17	C6	82.23(14)
C8	C9	C10	C11	-56.35(16)	C18 C11	C17	C16	-47.38(15)
C9	C10	C11	C12	168.45(12)	C19 O2	C20	C21	12.17(16)
C9	C10	C11	C17	48.65(16)	C19 O3	C21	C20	36.73(14)
C9	C10	C11	C18	-79.18(16)	C19 C13	C15	C16	52.43(16)
C10	C11	C12	C13	165.34(12)	C20 O2	C19	O3	10.15(15)
C10	C11	C17	C6	-46.80(15)	C20 O2	C19	C13	-114.55(13)
C10	C11	C17	C16	-176.41(12)	C20 O2	C19	C18	130.09(13)
C10	C11	C18	C19	-141.15(12)	C21 O3	C19	02	-29.95(14)
C11	C12	C13	C14	-170.77(12)	C21 O3	C19	C13	92.01(14)
C11	C12	C13	C15	67.52(14)	C21 O3	C19	C18	-148.28(12)

Supplementary Table 18. Hydrogen Atom Coordinates $(Å \times 10^4)$ and Isotropic Displacement Parameters $(Å^2 \times 10^3)$ for **S10**.

Atom	x	У	Ζ	U(eq)
H1A	1233.55	9046.89	6530.42	31
H1B	1234.82	8750.27	5776.53	31
H1C	1184.53	10235.07	6028.08	31
H2	3817.43	9547.84	5653.42	19
H4A	6011.33	11181.4	7041.57	22
H4B	6465.17	10982.69	6303.15	22
H5A	6263.85	8988.71	7261.04	19
H5B	7809.9	9344.69	6831.86	19
H7A	8023.32	8485.72	5695.7	25
H7B	6480.95	9401.34	5563.21	25
H7C	6437.65	7883.18	5364.47	25
H8	3895.34	7943.01	6780.95	16
H9A	2472.04	6901.51	5932.12	20
H9B	4064.08	6988.3	5492.93	20
H10A	3925.81	4890.33	5958.91	20

H10B	3798.64	5517.18	6660.1	20
H12A	6411.96	4558.03	7174.52	18
H12B	6027.34	3581.76	6584.96	18
H14A	8847.53	2889.83	7323.25	29
H14B	10354.13	3001.69	6842.08	29
H14C	8763.87	2208.73	6632.14	29
H15A	9181.69	5406.14	7351.65	19
H15B	10482.25	5370.7	6783.48	19
H16A	9099.88	6907.83	6195.16	17
H16B	9092.55	7465.69	6912.52	17
H17	6452.14	6789.95	7074.36	14
H18A	6303.28	4795.6	5359.17	18
H18B	7467.32	6044.81	5462.8	18
H20A	9417.12	2664.78	4761.51	26
H20B	9887.2	1710.62	5349.67	26
H21A	11440.49	3274.59	5834.01	24
H21B	11679.36	3743.04	5100.41	24

Supplementary Figure 26. ¹H and ¹³ C spectra of 2a.

Supplementary Figure 27. ¹H and ¹³ C spectra of 2b.

Supplementary Figure 28. ¹H and ¹³ C spectra of 2c.

Supplementary Figure 29. 1 H and 13 C spectra of S2a.

Supplementary Figure 30. 1 H and 13 C spectra of S2b.

Supplementary Figure 31. ¹H and ¹³ C spectra of 3a.

Supplementary Figure 32. 1 H and 13 C spectra of 3b.

Supplementary Figure 33. ¹H and ¹³ C spectra of 4a.

Supplementary Figure 34. ¹H and ¹³ C spectra of 5a.

Supplementary Figure 35. 1 H and 13 C spectra of 5b.

Supplementary Figure 36. $^{1}\mathrm{H}$ and 13 C spectra of 5c.

Supplementary Figure 37. ¹H and ¹³ C spectra of 6a.

Supplementary Figure 38. ¹H and ¹³ C spectra of 6c.

Supplementary Figure 39. ¹H and ¹³ C spectra of 7.

Supplementary Figure 40. ¹H and ¹³ C spectra of 8.

Supplementary Figure 41. ¹H and ¹³ C spectra of S4.

Supplementary Figure 42. 1 H and 13 C spectra of 9.

Supplementary Figure 43. ¹H and ¹³ C spectra of 10.

Supplementary Figure 44. ¹H and ¹³ C spectra of 11.

Supplementary Figure 45. ¹H and ¹³ C spectra of 13.

Supplementary Figure 46. ¹H and ¹³ C spectra of S6a.

Supplementary Figure 47. 1 H and 13 C spectra of S6b.

Supplementary Figure 48. ¹H and ¹³ C spectra of 12.

Supplementary Figure 49. ¹H and ¹³ C spectra of 17.

Supplementary Figure 50. 1 H and 13 C spectra of S7.

Supplementary Figure 51. ¹H and ¹³ C spectra of 18.

Supplementary Figure 52. 1 H, 13 C and DEPT 135 spectra of 14.

Supplementary Figure 53. H-H Cosy spectra of 14.

Supplementary Figure 54. HMBC spectra of 14.

Supplementary Figure 55. HSQC spectra of 14.

Supplementary Figure 56. 2D Noesy of 14.

Supplementary Figure 57. 1 H and 13 C spectra of 15.

Supplementary Figure 58. ¹H and ¹³ C spectra of 16.

Supplementary Figure 59. ¹H and ¹³ C spectra of 19g.

Supplementary Figure 60. ¹H and ¹³ C spectra of 20g.

Supplementary Figure 61. ¹H and ¹³ C spectra of 20h.

Supplementary Figure 62. ¹H and ¹³ C spectra of 20i.

Supplementary Figure 63. ¹H and ¹³ C spectra of S8g.

Supplementary Figure 64. ¹H and ¹³ C spectra of S8h.

Supplementary Figure 65. ¹H and ¹³ C spectra of S9g.

Supplementary Figure 66. ¹H and ¹³ C spectra of S9h.

Supplementary Figure 67. ¹H and ¹³ C spectra of S9i.

Supplementary Figure 68. 1 H and 13 C spectra of 21g.

Supplementary Figure 69. ¹H and ¹³ C spectra of 21h.

Supplementary Figure 70. ¹H and ¹³ C spectra of 22.

Supplementary Figure 71. ¹H and ¹³ C spectra of 23.

Supplementary Figure 72. 1 H and 13 C spectra of S10.

Supplementary Figure 73. ¹H and ¹³ C spectra of 24.

Supplementary Figure 74. ¹H and ¹³ C spectra of S12a.

Supplementary Figure 75. ¹H and ¹³ C spectra of 27a.

Supplementary Figure 76. ¹H and ¹³ C spectra of S11.

Supplementary Figure 77. ¹H and ¹³ C spectra of S12b.

Supplementary Figure 78. 1 H and 13 C spectra of 27b.

Supplementary Figure 79. ¹H and ¹³ C spectra of 27c.

Supplementary Figure 80. ¹H and ¹³ C spectra of 28.

Supplementary Figure 81. ¹H and ¹³ C spectra of 29.

Supplementary Figure 82. ¹H and ¹³ C spectra of 31.

Supplementary Figure 83. ¹H and ¹³ C spectra of 32.

Supplementary Figure 84. ¹H and ¹³ C spectra of S13.

Supplementary Figure 85. ¹H and ¹³ C spectra of 33.

Supplementary Figure 86. ¹H and ¹³ C spectra of 34.

Supplementary Figure 87. ¹H, ¹³ C and DPET135 spectra of 35.

Supplementary Figure 88. ¹H-¹H COSY spectra of 35.

Supplementary Figure 89. HMBC spectra of 35.

Supplementary Figure 90. HSQC of 35.

Supplementary Figure 91. NOESY spectra of 35.

Supplementary Figure 92. ¹H and ¹³ C spectra of 37.

Supplementary Figure 93. ¹H and ¹³ C spectra of 38.

Supplementary Figure 94. 1 H, 13 C and DEPT135 spectra of 39.

Supplementary Figure 95. H-H Cosy spectra of 39.

Supplementary Figure 96. HMBC spectra of 39.

Supplementary Figure 97. HSQC spectra of 39.

Supplementary Figure 98. NOESY spectra of 39.

Supplementary Figure 99. ¹H and ¹³ C spectra of 40a.

Supplementary Figure 100. ¹H and ¹³ C spectra of 40b.

Supplementary Figure 101. ¹H and ¹³ C spectra of 40c.

Supplementary Figure 102. 1 H and 13 C spectra of 40d.

Supplementary Figure 103. $^1\mathrm{H}$ and 13 C spectra of 40e.

Supplementary Figure 104. ¹H and ¹³ C spectra of 40f.

Supplementary Figure 105. ¹H and ¹³ C spectra of 40g.

Supplementary Figure 106. ¹H and ¹³ C spectra of 40h.

Supplementary Figure 107. 1 H and 13 C spectra of 40i.

Supplementary Figure 108. ¹H and ¹³ C spectra of 40j.

Supplementary Figure 109. ¹H and ¹³ C spectra of 40k.

Supplementary Figure 110. ¹H and ¹³ C spectra of 401.

Supplementary Figure 111. ¹H and ¹³ C spectra of 41aa.

Supplementary Figure 112. ¹H and ¹³ C spectra of 41ab.

Supplementary Figure 113. ¹H and ¹³ C spectra of 41ab.

Supplementary Figure 114. ¹H and ¹³ C spectra of 41ac.

Supplementary Figure 115. 1 H and 13 C spectra of 41ad.

Supplementary Figure 116. ¹H and ¹³ C spectra of 41ae.

Supplementary Figure 117. ¹H and ¹³ C spectra of 41af.

Supplementary Figure 118. ¹H and ¹³ C spectra of 41bb.

Supplementary Figure 119. ¹H and ¹³ C spectra of 41bc.

Supplementary Figure 120. ¹H and ¹³ C spectra of 41bd.

Supplementary Figure 121. ¹H and ¹³ C spectra of 41be.

Supplementary Figure 122. ¹H and ¹³ C spectra of 41bf.

Supplementary Figure 123. ¹H and ¹³ C spectra of 41bg.

Supplementary Figure 124. ¹H and ¹³ C spectra of 41bh.

Supplementary Figure 125. ¹H and ¹³ C spectra of 41bi.

Supplementary Figure 126. ¹H and ¹³ C spectra of 41bj.

Supplementary Figure 127. ¹H and ¹³ C spectra of 41bk.

Supplementary Figure 128. ¹H and ¹³ C spectra of 41bl.

Supplementary Figure 129. ¹H and ¹³ C spectra of 41bm.

Supplementary Figure 130. ¹H and ¹³ C spectra of 41bn.

Supplementary Figure 131. ¹H and ¹³ C spectra of 41bo.

Supplementary Figure 132. ¹H and ¹³ C spectra of 41bp.

Supplementary Figure 133. ¹H and ¹³ C spectra of 41bq.

Supplementary Figure 134. ¹H and ¹³ C spectra of 41ca.

Supplementary Figure 135. ¹H and ¹³ C spectra of 41cb.

Supplementary Figure 136. ¹H and ¹³ C spectra of 41cc.

Supplementary Figure 137. ¹H and ¹³ C spectra of 41cd.

Supplementary Figure 138. ¹H and ¹³ C spectra of 41ce.

Supplementary Figure 139. ¹H and ¹³ C spectra of 41cf.

Supplementary Figure 140. ¹H and ¹³ C spectra of 41cg.

Supplementary Figure 141. ¹H and ¹³ C spectra of 41ch.

Supplementary Figure 142. ¹H and ¹³ C spectra of 41ci.

Supplementary Figure 143. ¹H and ¹³ C spectra of 41cj.

Supplementary Figure 144. ¹H and ¹³ C spectra of 41ck.

Supplementary Figure 145. ¹H and ¹³ C spectra of 41cl.

Supplementary Figure 146. ¹H and ¹³ C spectra of 41cm.

Supplementary Figure 147. ¹H and ¹³ C spectra of 41cn.

Supplementary Figure 148. ¹H and ¹³ C spectra of 41co.

Supplementary Figure 149. ¹H and ¹³ C spectra of 41cp.

Supplementary Figure 150. 1 H and 13 C spectra of 41cq.

Supplementary Figure 151. ¹H and ¹³ C spectra of 42a.

Supplementary Figure 152. ¹H and ¹³ C spectra of 42b.

Supplementary Figure 153. ¹H and ¹³ C spectra of 42c.

Supplementary Figure 154. ¹H and ¹³ C spectra of 42d.

Supplementary Figure 155. ¹H and ¹³ C spectra of 42e.

Supplementary Figure 156. 1 H and 13 C spectra of 43a.

Supplementary Figure 157. ¹H and ¹³ C spectra of 43b.

Supplementary Figure 158. ¹H and ¹³ C spectra of 43c.

Supplementary Figure 159. ¹H and ¹³ C spectra of 43d.

Supplementary Figure 160. $^1\mathrm{H}$ and 13 C spectra of S14a.

Supplementary Figure 161. ¹H and ¹³ C spectra of S14b.

Supplementary Figure 162. ¹H and ¹³ C spectra of 45a.

Supplementary Figure 163. ¹H and ¹³ C spectra of 45b.

Supplementary Figure 164. ¹H and ¹³ C spectra of 45c.

Supplementary Figure 165. ¹H and ¹³ C spectra of 45d.

Supplementary Figure 166. ¹H and ¹³ C spectra of 45e.

Supplementary Figure 167. ¹H and spectra of 45f.

Supplementary Figure 168. ¹H and ¹³ C spectra of S46a.

Supplementary Figure 169. ¹H and ¹³ C spectra of S46b.

Supplementary Figure 170. ¹H and ¹³ C spectra of 46a.

Supplementary Figure 171. ¹H and ¹³ C spectra of 46b.

Supplementary Figure 172. ¹H and ¹³ C spectra of 46c.

Supplementary Figure 173. ¹H and ¹³ C spectra of 48a.

Supplementary Figure 174. ¹H and ¹³ C spectra of 48b.

Supplementary Figure 175. ¹H and ¹³ C spectra of 48c.

Supplementary Figure 176. ¹H and ¹³ C spectra of 48d.

Supplementary Figure 177. ¹H and ¹³ C spectra of 47aa.

Supplementary Figure 178. ¹H and ¹³ C spectra of 47ab.

Supplementary Figure 179. ¹H and ¹³ C spectra of 47ac.

Supplementary Figure 180. ¹H and ¹³ C spectra of 47ad.

Supplementary Figure 181. ¹H and ¹³ C spectra of 47ae.

Supplementary Figure 182. ¹H and ¹³ C spectra of 47af.

Supplementary Figure 183. ¹H and ¹³ C spectra of 47ag.

Supplementary Figure 184. ¹H and ¹³ C spectra of 47ah.

Supplementary Figure 185. ¹H and ¹³ C spectra of 47ai.

Supplementary Figure 186. ¹H and ¹³ C spectra of 47aj.

Supplementary Figure 187. ¹H and ¹³ C spectra of 47ak.

Supplementary Figure 188. ¹H and ¹³ C spectra of 47al.

Supplementary Figure 189. ¹H and ¹³ C spectra of 47am.

Supplementary Figure 190. ¹H and ¹³ C spectra of 47an.

Supplementary Figure 191. ¹H and ¹³ C spectra of 47ao.

Supplementary Figure 192. ¹H and ¹³ C spectra of 47ap.

Supplementary Figure 193. ¹H and ¹³ C spectra of 47aq.

Supplementary Figure 194. ¹H and ¹³ C spectra of 47ar.

Supplementary Figure 195. ¹H and ¹³ C spectra of 47as.

Supplementary Figure 196. ¹H and ¹³ C spectra of 47at.

Supplementary Figure 197. ¹H and ¹³ C spectra of 47au.

Supplementary Figure 198. ¹H and ¹³ C spectra of 47av.

Supplementary Figure 199. ¹H and ¹³ C spectra of 47aw.

Supplementary Figure 200. ¹H and ¹³ C spectra of 47ax.

Supplementary Figure 201. ¹H and ¹³ C spectra of 47ay.

Supplementary Figure 202. ¹H and ¹³ C spectra of 47az.

Supplementary Figure 203. ¹H and ¹³ C spectra of 47ba.

Supplementary Figure 204. ¹H and ¹³ C spectra of 47bb.

Supplementary Figure 205. ¹H and ¹³ C spectra of 47bc.

Supplementary Figure 206. ¹H and ¹³ C spectra of 47bd.

Supplementary Figure 207. ¹H and ¹³ C spectra of 47be.

Supplementary Figure 208. ¹H and ¹³ C spectra of 47bf.

Supplementary Figure 209. ¹H and ¹³ C spectra of 47bg.

Supplementary Figure 210. ¹H and ¹³ C spectra of 47bh.

Supplementary Figure 211. ¹H and ¹³ C spectra of 47bi.

Supplementary Figure 212. ¹H and ¹³ C spectra of 47bj.

Supplementary Figure 213. ¹H and ¹³ C spectra of 47bk.

Supplementary Figure 214. ¹H and ¹³ C spectra of 47bl.

Supplementary Figure 215. ¹H and ¹³ C spectra of 49a.

Supplementary Figure 216. ¹H and ¹³ C spectra of 49b.

Supplementary Figure 217. ¹H and ¹³ C spectra of 50a.

Supplementary Figure 218. ¹H and ¹³ C spectra of 50b.

Supplementary Figure 219. ¹H and ¹³ C spectra of 50c.

Supplementary Figure 220. ¹H and ¹³ C spectra of 50d.

Supplementary Figure 221. ¹H and ¹³ C spectra of 50e.

Supplementary Figure 222. ¹H and ¹³ C spectra of 50f.

Supplementary Figure 223. ¹H and ¹³ C spectra of 50g.

Supplementary Figure 224. ¹H and ¹³ C spectra of 50h.

Supplementary Figure 225. ¹H and ¹³ C spectra of 50i.

Supplementary Figure 226. ¹H and ¹³ C spectra of 50j.

Supplementary Figure 227. ¹H and ¹³ C spectra of 51a.

Supplementary Figure 228. ¹H and ¹³ C spectra of 51b.

Supplementary Figure 229. 1 H and 13 C spectra of 51c.

Supplementary Figure 230. 1 H and 13 C spectra of 51d.

Supplementary Figure 231. ¹H and ¹³ C spectra of 51e.

Supplementary Figure 232. ¹H and ¹³ C spectra of 53.

Supplementary Figure 233. ¹H and ¹³ C spectra of 52a.

Supplementary Figure 234. ¹H and ¹³ C spectra of 52b.

Supplementary Figure 235. ¹H and ¹³ C spectra of 54a.

Supplementary Figure 236. ¹H and ¹³ C spectra of 54b.

Signal 1: DAD1 A, Sig=254,4 Ref=600,50

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	3.681	BB	0.0373	1146.51184	467.73169	100.0000
Total	ls :			1146.51184	467.73169	

Supplementary Figure 237. LC-MS spectra of 5a, MS: (M+Na)⁺, found: 569.2.

Signal 1: DAD1 A, Sig=254,4 Ref=600,50

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	1.162	BB	0.0577	165.32951	41.85899	100.0000
Total	s:			165.32951	41.85899	

Supplementary Figure 238. LC-MS spectra of 5c, MS: (M+Na)⁺, found: 641.3.

Signal 1: DAD1 C, Sig=210,4 Ref=600,50

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
	2.475	 BB	0.0314	474.60620	226.86649	100.0000
Total	ls :			474.60620	226.86649	

Supplementary Figure 239. LC-MS spectra of 9, MS: (M+H)⁺, found: 362.2.

Supplementary Figure 240. LC-MS spectra of 12, MS: (M+H)⁺, found: 428.1.

Signal 1: DAD1 C, Sig=210,4 Ref=600,50

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	1.077	BB	0.0760	1057.09326	165.84901	100.0000

1057.09326 165.84901

Supplementary Figure 241. LC-MS spectra of 21g, MS: (M+H)⁺, found: 320.1.

Signal 1: DAD1 A, Sig=254,4 Ref=600,50

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
	1.849	 мм	0.0389	98.50439	42.23854	100.0000
Total	ls :			98.50439	42.23854	

Supplementary Figure 242. LC-MS spectra of 27a, MS: (M+H)⁺, found: 358.1.

Supplementary Figure 243. LC-MS spectra of 27c, MS: (M+H)⁺, found: 318.1.

Signal 1: DAD1 B, Sig=280,4 Ref=600,50

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	2.682	BB	0.0395	16.22314	4.87850	3.0278
2	2.922	BB	0.0332	511.30566	236.34161	95.4272
3	3.432	BB	0.0298	8.27852	3.60452	1.5451
Total	s :			535.80732	244.82463	

Supplementary Figure 245. LC-MS spectra of 29, MS: (M+H)⁺, found: 316.1.

Signal 1: DAD1 C, Sig=210,4 Ref=600,50

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	3.595	BB	0.0273	950.97528	512.08533	100.0000
Total	ls :			950.97528	512.08533	

Supplementary Figure 246. LC-MS spectra of 41bb, MS: (M+H)⁺, found: 460.3.

Signal 1: DAD1 C, Sig=210,4 Ref=600,50

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	2.859	BB	0.0635	238.23796	44.25521	8.8085
2	3.213	BB	0.0352	2466.40503	893.97723	91.1915
Total	s :			2704.64299	938.23244	

Supplementary Figure 247. LC-MS spectra of 41ca, MS: (M+H)⁺, found: 559.2.

Signal 1: DAD1 C, Sig=210,4 Ref=600,50

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	2.801	MM	0.0637	166.35771	43.49775	8.6168
2	3.094	BB	0.0383	1764.27161	617.72681	91.3832
Total	s :			1930.62932	661.22456	

Supplementary Figure 248. LC-MS spectra of 41cb, MS: (M+H)⁺, found: 573.2.

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	3.149	BB	0.0263	1550.32410	892.52545	100.0000
Total	s:			1550.32410	892.52545	

Supplementary Figure 249. LC-MS spectra of 41cc, MS: (M+H)⁺, found: 573.2.

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	2.660	BB	0.0164	21.96706	17.06423	1.6025
2	2.706	BB	0.0364	88.19725	29.34437	6.4338
3	3.417	BB	0.0299	1260.67590	591.05695	91.9637
Total	s :			1370.84022	637.46554	

Supplementary Figure 250. LC-MS spectra of 41ce, MS: (M+H)⁺, found: 557.2.

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	2.729	MM	0.0460	84.48620	33.42954	5.5783
2	3.067	BB	0.0330	1430.05762	602.83209	94.4217
Total	s :			1514.54382	636.26163	

Supplementary Figure 251. LC-MS spectra of 41cf, MS: (M+H)⁺, found: 529.3.

Supplementary Figure 252. LC-MS spectra of 41ch, MS: (M+H)⁺, found: 593.3.

Signal 1: DAD1 C, Sig=210,4 Ref=600,50

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	2.979	BB	0.0408	1235.28418	439.42145	100.0000
Total	s :			1235,28418	439,42145	

Supplementary Figure 253. LC-MS spectra of 41ci, MS: (M+H)⁺, found: 533.2.

Supplementary Figure 254. LC-MS spectra of 41cj, MS: (M+H)⁺, found: 547.2.

Supplementary Figure 255. LC-MS spectra of 41ck, MS: (M+H)⁺, found: 573.2.

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1						
1	2.799	BB	0.0744	280.05371	45.12654	13.3822
2	3.035	BB	0.0349	1812.67896	657.09686	86.6178
Total	s :			2092.73267	702.22341	

Supplementary Figure 256. LC-MS spectra of 41cl, MS: (M+H)⁺, found: 575.3.

Signal 1: DAD1 A, Sig=254,4 Ref=600,50

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
	3.373	BB	0.0387	20.24950	7.96697	100.0000
Total	ls :			20.24950	7.96697	

Supplementary Figure 257. LC-MS spectra of 41cm, MS: (M+H)⁺, found: 609.2.

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	3.169	MM	0.0691	287.59369	69.34865	11.8708
2	3.621	BB	0.0326	2135.10474	796.69647	88.1292
Total	s :			2422.69843	866.04512	

Supplementary Figure 258. LC-MS spectra of 41cn, MS: (M+H)⁺, found: 557.2.

Signal 3: DAD1 C, Sig=210,4 Ref=600,50

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	3.371	BB	0.0305	1999.68420	879.60547	97.2583
2	3.792	BB	0.0242	56.37052	30.53646	2.7417
Total	s :			2056.05472	910.14193	

Supplementary Figure 259. LC-MS spectra of 41co, MS: (M+H)⁺, found: 623.2.

1 3.074 BB 0.0287 121.62946 65.44843 100.0000

Supplementary Figure 260. LC-MS spectra of 41cp, MS: (M+H)⁺, found: 623.2.

Signal 1: DAD1 A, Sig=254,4 Ref=600,50

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	2.938	BB	0.0412	5.94917	1.71070	1.4464
2	3.015	BB	0.0354	405.35452	174.59377	98.5536
Total	s :			411.30370	176.30446	

Supplementary Figure 261. LC-MS spectra of 41cq, MS: (M+H)⁺, found: 653.3.

Supplementary Figure 262. LC-MS spectra of 42a, MS: (M+H)⁺, found: 439.2.

Signal 1: DAD1 A, Sig=254,4 Ref=600,50

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	2.358	BB	0.0315	1525.38269	745.35980	97.9674
2	2.774	BB	0.0345	31.64767	13.91463	2.0326
Total	s:			1557.03036	759.27443	

Supplementary Figure 267. LC-MS spectra of 42b, MS: (M+H)⁺, found: 439.2.

Supplementary Figure 268. LC-MS spectra of **43a**: retention time, 2.786 min; MS (M+H)⁺ found 429.1

Supplementary Figure 269. LC-MS spectra of **43b**: retention time, 3.059 min; MS (M+H)⁺ found 427.2

Signal 1: DAD1 A, Sig=254,4 Ref=600,50

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	2.706	MM	0.0163	1.18180	1.20795	3.2407
2	2.972	MM	0.0226	35.28513	26.02234	96.7593
Total	s :			36.46693	27.23029	

Supplementary Figure 270. LC-MS spectra of **43c**: retention time, 2.972 min; MS (M+H)⁺ found 413.1

Signal 1: DAD1 A, Sig=254,4 Ref=600,50

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	3.057	MM	0.0200	1.94309	1.61833	1.9714
2	3.151	MM	0.0226	96.61982	71.15961	98.0286
Total	s :			98.56291	72.77795	

Supplementary Figure 271. LC-MS spectra of **43d**: retention time, 3.151 min; MS (M+H)⁺ found 475.1

Supplementary Figure 272. LC-MS spectra of **43e**: retention time, 2.074 min; MS (M+H)⁺ found 442.2

Supplementary Figure 273. LC-MS spectra of 46a, MS: (M+H)⁺, found: 619.2.

Supplementary Figure 274. LC-MS spectra of 46b, MS: (M+H)⁺, found: 653.2.

Supplementary Figure 275. LC-MS spectra of 46c, MS: (M+H)⁺, found: 649.2.

Supplementary Figure 276. LC-MS spectra of 47bl, MS: (M+H)⁺, found: 604.2.

Signal 1: DAD1 A, Sig=254,4 Ref=600,50

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	2.032	BB	0.0394	8.10848	2.48651	1.5443
2	2.174	BB	0.0397	6.37945	1.95481	1.2150
3	2.484	BB	0.0409	510.57147	184.58342	97.2407
Total	s :			525.05940	189.02474	

Supplementary Figure 277. LC-MS spectra of 48b, MS: (M+H)⁺, found: 442.1.

Signal 1: DAD1 A, Sig=254,4 Ref=600,50

Peak	RetTime	Туре	Width	Area	Height	Area
1	[min]		[min]	[mau*s]		76
1	2.286	BB	0.0347	468.67633	202.44060	97.9859
2	3.057	BB	0.0344	9.63371	3.50040	2.0141
Total	s :			478.31004	205.94099	

Supplementary Figure 278. LC-MS spectra of 48c, MS: (M+H)⁺, found: 524.1.

Supplementary Figure 279. LC-MS spectra of 48d, MS: (M+H)⁺, found: 474.1.

Signal 1: DAD1 A, Sig=254,4 Ref=600,50

Peak	RetTime Type	Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	%
1	0.563 BB	0.0635	177.16956	43.83995	100.0000
Tota]	ls :		177.16956	43.83995	

Supplementary Figure 280. LC-MS spectra of 47aa, MS: [M+Na]⁺, found: 464.1.

Signal 1: DAD1 A, Sig=254,4 Ref=600,50

Peak R	RetTime Type	Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	%
-			-		
1	0.721 BB	0.0672	106.88324	21.40781	100.0000
Totals	; :		106.88324	21.40781	

Supplementary Figure 281. LC-MS spectra of 47ab, MS: [M+Na]⁺, found: 478.1.

1

0.707 BB

284.24057 59.46888

284.24057

59.46888 100.0000

Supplementary Figure 282. LC-MS spectra of 47ah, MS: [M+H]⁺, found: 500.1.

0.0644

Signal 1: DAD1 A, Sig=254,4 Ref=600,50

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	0.384	BB	0.0265	3.53245	1.63467	0.2643
2	0.458	BB	0.0483	1332.84595	440.24777	99.7357
Total	.s :			1336.37840	441.88244	

Supplementary Figure 283. LC-MS spectra of 47ak, MS: [M+H]⁺, found: 533.2.

Signal 1: DAD1 A, Sig=254,4 Ref=600,50

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	0.443	BB	0.0611	6.85801	1.33867	1.3243
2	0.556	BB	0.0596	510.98947	138.94984	98.6757
Total	s :			517.84748	140.28852	

Supplementary Figure 284. LC-MS spectra of 47al, MS: [M+H]⁺, found: 533.2.

Signal 1: DAD1 A, Sig=254,4 Ref=600,50

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	0.522	BB	0.0400	5.08074	1.53367	0.5408
2	0.640	BB	0.0682	934.33435	219.93929	99.4592
Tota]	ls :			939.41509	221.47296	

Supplementary Figure 285. LC-MS spectra of 47am, MS: [M+H]⁺, found: 533.2.

Signal 1: DAD1 A, Sig=254,4 Ref=600,50

Peak I #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
·						
1	0.476	BB	0.0457	5.45476	1.43561	0.7163
2	0.730	BB	0.0691	756.04346	150.90480	99.2837
Totals	s :			761.49822	152.34041	

Supplementary Figure 286. LC-MS spectra of 47aq, MS: [M+Na]⁺, found: 584.2.

Signal 1: DAD1 A, Sig=254,4 Ref=600,50

Peak Re # [etTime Type [min]	Width [min]	Area [mAU*s]	Height [mAU]	Area %
	0.370 BB	0.0394	1080.13354	419.19431	100.0000
Totals	:		1080.13354	419.19431	

Supplementary Figure 287. LC-MS spectra of 47ar, MS: [M+H]⁺, found: 547.2.

Signal 3: DAD1 C, Sig=210,4 Ref=600,50

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	0.501	BB	0.0469	2365.79199	755.49298	100.0000
Total	.s :			2365.79199	755.49298	

Supplementary Figure 288. LC-MS spectra of 47as, MS: [M+H]⁺, found: 547.2.

Signal 1: DAD1 A, Sig=254,4 Ref=600,50

Peak	RetTime Type	Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	%
1	0.565 BB	0.0593	177.92407	47.92444	100.0000
Tota]	ls :		177.92407	47.92444	

Supplementary Figure 289. LC-MS spectra of 47av, MS: [M+Na]⁺, found: 522.2.

Supplementary Figure 290. LC-MS spectra of 47aw, MS: [M+H]⁺, found: 562.2.

Signal 1: DAD1 A, Sig=254,4 Ref=600,50

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	0.505	BB	0.0544	593.88306	175.90561	97.2173
2	0.674	BB	0.0523	16.99913	3.89387	2.7827
Total	s :			610.88219	179.79948	

Supplementary Figure 291. LC-MS spectra of 47ax, MS: [M+H]⁺, found: 486.1.

Signal 1: DAD1 A, Sig=254,4 Ref=600,50

Supplementary Figure 292. LC-MS spectra of 47ay, MS: [M+H]⁺, found: 576.1.

геак к	e c i Tille	туре	MIUCH	Area	nergiic	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
		-				
1	0.895	MM	0.0914	304.30957	55.49830	100.0000
Totals	:			304.30957	55.49830	
Supplem	entary Fig	gure 293	. LC-MS sj	pectra of 47az , N	MS: [M+Na] ⁺ , fo	ound: 550.2.

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	0.629	BB	0.0667	18.19019	3.34867	2.5439
2	0.855	BB	0.0767	696.84882	125.70684	97.4561
Total	s :			715.03901	129.05551	

Supplementary Figure 294. LC-MS spectra of 47ba, MS: [M+H]⁺, found: 528.2.

Signal 1: DAD1 A, Sig=254,4 Ref=600,50

Peak l	RetTime Type	Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	%
1	0.879 MM	0.1056	1469.46326	231.90567	100.0000
Totals	s :		1469.46326	231.90567	

Supplementary Figure 295. LC-MS spectra of 47bb, MS: [M+H]⁺, found: 562.2.

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	0.498	BB	0.0471	8.58646	2.23702	0.5360
2	0.723	BB	0.0683	11.20103	1.94232	0.6992
3	0.938	MM	0.1037	1582.23193	254.23346	98.7648
Total	s :			1602.01943	258.41279	

Supplementary Figure 296. LC-MS spectra of 47bc, MS: [M+H]⁺, found: 576.2.

Signal 1: DAD1 A, Sig=254,4 Ref=600,50

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	2.366	BB	0.0492	954.99274	272.83850	99.5868
2	3.130	BB	0.0377	3.96280	1.28371	0.4132

Totals :

958.95553 274.12221

Supplementary Figure 297. LC-MS spectra of 47be, MS: [M+H]⁺, found: 530.1.

Signal 1: DAD1 A, Sig=254,4 Ref=600,50

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
						I
1	2.889	MM	0.0720	14.42300	3.33998	1.0143
2	3.040	BB	0.0410	1399.37488	479.99518	98.4145
3	3.311	BB	0.0308	4.36962	1.69264	0.3073
4	3.367	BB	0.0393	3.75224	1.15378	0.2639

Totals :

1421.91974 486.18158

Supplementary Figure 298. LC-MS spectra of 47bf, MS: [M+H]⁺, found: 590.2.

Signal 1: DAD1 A, Sig=254,4 Ref=600,50

Peak	RetTime Type	Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	%
1	3.123 BB	0.0390	588.54791	212.54967	100.0000
Tota]	ls :		588.54791	212.54967	

Supplementary Figure 299. LC-MS spectra of 47bg, MS: [M+H]⁺, found: 556.2.

Signal 1: DAD1 A, Sig=254,4 Ref=600,50

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	2.178	BB	0.0490	4.91972	1.21348	0.4273
2	2.360	BB	0.0518	1141.61902	311.04358	99.1498
3	3.119	BB	0.0447	4.86955	1.32989	0.4229
Total	s :			1151,40829	313,58694	

Supplementary Figure 300. LC-MS spectra of 47bh, MS: [M+H]⁺, found: 530.1.

Signal 1: DAD1 A, Sig=254,4 Ref=600,50

Peak #	RetTime	Туре	Width [min]	Area	Height	Area %
	[]		[]	[IIIAO·S]		/0
	0 714				 C [2767	2 2045
T	0.714	вв	0.0008	32.51508	0.52/6/	3.3045
2	0.893	BB	0.0824	951.43506	158.31516	96.6955
Total	s :			983.95014	164.84282	

Supplementary Figure 301. LC-MS spectra of 47bi, MS: [M+H]⁺, found: 590.2.

Signal 1: DAD1 A, Sig=254,4 Ref=600,50

Peak #	RetTime Type [min]	e Width [min]	Area [mAU*s]	Height [mAU]	Area %
 1	0.475 BB	0.0537	1040.33667	305.77939	100.0000
Total	s :		1040.33667	305.77939	

Supplementary Figure 302. LC-MS spectra of 47bj, MS: [M+Na]⁺, found: 522.1.

Signal 3: DAD1 C, Sig=210,4 Ref=600,50

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	2.419	BB	0.0413	5472.94043	1624.40723	95.7735
2	2.591	BB	0.0326	241.51938	92.14283	4.2265
Total	s :			5714.45981	1716.55006	

Supplementary Figure 303. LC-MS spectra of 47bk, MS: [M+H]⁺, found: 606.2.

mAU 200- 175- 150- 125- 160- 75-	
200 - 21 175 - 150 - 125 - 100 - 75 -	
175 150 125 100 75	
175 - 150 - 125 - 100 - 75 -	
150- 125- 100- 75-	
150 125 100 75	
125- 100- 75-	
125 100 75	
125 100 75	
100-	
75 -	
75-	
75	
50-	
25-	
223	
	<u></u>
0.5 1 1.5 2 2.5 3 3.5	enie

Signal 1: DAD1 A, Sig=254,4 Ref=600,50

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	2.271	BB	0.0336	441.59647	203.92654	98.5705
2	2.622	BB	0.0290	6.40434	2.63952	1.4295
Total	s:			448.00081	206.56606	

Supplementary Figure 304. LC-MS spectra of 50a, MS: (M+H)⁺, found: 460.1.

Supplementary Figure 305. LC-MS spectra of 50b, MS: (M+H)⁺, found: 462.1.

Peak RetTime Type Width Height Area Area # [min] [min] [mAU*s] [mAU] % 1 3.725 BB 0.0375 9.93899 3.26708 1.0507 2 3.857 BB 0.0370 936.03607 348.18356 98.9493 Totals : 945.97506 351.45064

Supplementary Figure 306. LC-MS spectra of 50c, MS: [M+Na]⁺, found: 536.2.

Signal 1: DAD1 A, Sig=254,4 Ref=600,50

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	3.738	BB	0.0591	6.15278	1.24347	0.4557
2	3.888	BB	0.0366	1344.00378	512.34650	99.5443
Total	s :			1350.15657	513.58996	

Supplementary Figure 307. LC-MS spectra of 50d, MS: [M+Na]⁺, found: 562.2.

Signal 1: DAD1 A, Sig=254,4 Ref=600,50

RetTime	Туре	Width	Area	Height	Area
[min]		[min]	[mAU*s]	[mAU]	%
2.209	BB	0.0155	1.48769	1.22734	0.1568
3.830	BB	0.0361	947.54669	363.68616	99.8432
s :			949.03438	364.91350	
	RetTime [min] 2.209 3.830 s :	RetTime Type [min] 2.209 BB 3.830 BB s :	RetTime Type Width [min] [min] 2.209 BB 0.0155 3.830 BB 0.0361 s :	RetTime Type Width Area [min] [min] [mAU*s] 2.209 BB 0.0155 1.48769 3.830 BB 0.0361 947.54669 s : 949.03438	RetTime Type Width Area Height [min] [min] [mAU*s] [mAU] 2.209 BB 0.0155 1.48769 1.22734 3.830 BB 0.0361 947.54669 363.68616 s : 949.03438 364.91350

Supplementary Figure 308. LC-MS spectra of 50f, MS: [M+Na]⁺, found: 580.2.

Signal 1: DAD1 A, Sig=254,4 Ref=600,50

Peak	RetTime Type	Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	%
1	0.572 BB	0.0565	6.65231	1.41561	0.6645
2	2.913 BB	0.0311	3.32227	1.30031	0.3319
3	3.732 BB	0.0350	991.12994	394.71170	99.0036
Total	s :		1001.10452	397.42762	

Supplementary Figure 309. LC-MS spectra of 50g, MS: [M+Na]⁺, found: 566.2.

Signal 1: DAD1 A, Sig=254,4 Ref=600,50

Peak F	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
-						
1	1.832	BB	0.0451	4.38731	1.17824	0.7550
2	2.269	BB	0.0282	2.87784	1.21984	0.4952
3	2.988	BB	0.1000	563.86255	72.57236	97.0273
4	3.724	BB	0.0635	10.01015	1.92013	1.7225
Totals	5:			581.13785	76.89056	

Supplementary Figure 310. LC-MS spectra of 50h, MS: [M+H]⁺, found: 571.3.

Signal 1: DAD1 A, Sig=254,4 Ref=600,50

Peak #	RetTime	Туре	Width [min]	Area	Height	Area %
	[""""] 					∕₀
1	3.843	BB	0.0367	524.32275	197.11107	100.0000
Tota]	ls :			524.32275	197.11107	

Supplementary Figure 311. LC-MS spectra of 50i, MS: [M+Na]⁺, found: 656.2.

Signal 3: DAD1 C, Sig=210,4 Ref=600,50

Peak RetTime Type Width Area Height Area [mAU*s] # [min] [min] [mAU] % 0.012 BB 6.30e-3 6.68205 0.1767 1 15.68771 3.792 BB 2 0.0334 3774.82446 1371.34241 99.8233 Totals : 3781.50652 1387.03012

Supplementary Figure 312. LC-MS spectra of 50j, MS: [M+Na]⁺, found: 656.3.

Signal 3: DAD1 C, Sig=210,4 Ref=600,50

Peak	RetTime Type	Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	%
1	3.854 BB	0.0334	1682.32092	646.49286	100.0000
Total	s :		1682.32092	646.49286	

Supplementary Figure 313. LC-MS spectra of 51c, MS: [M+H]⁺, found: 599.3.

Signal 1: DAD1 A, Sig=254,4 Ref=600,50

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	3.256	BB	0.0481	65.47691	19.22167	2.4661
2	3.425	BB	0.0469	2589.55884	850.38123	97.5339
Total	s :			2655,03575	869,60290	

Supplementary Figure 314. LC-MS spectra of 52a, MS: (M+H)⁺, found: 499.2.

Supplementary Figure 315. LC-MS spectra of 52b, MS: (M+H)⁺, found: 501.2.

Signal 1: DAD1 A, Sig=254,4 Ref=600,50

Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] % [mAU] ---- ---- ---- ----- --------------1 2.992 BB 0.0240 3.47980 1.84466 0.5159 3.056 BB 0.0392 670.96979 267.96042 99.4841 2 Totals : 674.44959 269.80508

Supplementary Figure 316. LC-MS spectra of 53, MS: $(M+H)^+$, found: 626.2.

Signal 1: DAD1 A, Sig=254,4 Ref=600,50

Peak RetTime Type Width Area Height Area [min] [min] [mAU*s] [mAU] % # ---------|-----|----|-----|------| -----3.116 BB 0.0384 5.09895 1.60649 0.9693 1 2 3.377 BB 0.0407 520.94727 199.82138 99.0307

Totals : 526.04622 201.42787

Supplementary Figure 317. LC-MS spectra of 54a, MS: (M+H)⁺, found: 612.3.

Signal 3: DAD1 C, Sig=210,4 Ref=600,50

Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] % 2.910 MM 0.0264 21.16409 13.37608 2.6102 2 3.173 BB 0.0338 789.66327 335.02640 97.3898 Totals : 810.82736 348,40248

Supplementary Figure 318. LC-MS spectra of 54b, MS: (M+H)⁺, found: 614.2.

III. Supplementary References

 Purushottamachar, P., Njar, V. C. O. A New Simple and High-Yield Synthesis of 5α-Dihydrotestosterone (DHT), a Potent Androgen Receptor Agonist. *Steroids*, 77, 1530–1534 (2012).
Sun, J., Dong, Y., Cao, L., Wang, X., Wang, S., Hu, Y. Highly Efficient Chemoselective Deprotection of O,O-Acetals and O,O-Ketals Catalyzed by Molecular Iodine in Acetone. *J. Org. Chem.*, 69, 8932–8934 (2004).

[3] Mo, F., N. Lim, H., Dong, G. Bifunctional Ligand-Assisted Catalytic Ketone α-Alkenylation with Internal Alkynes: Controlled Synthesis of Enones and Mechanistic Studies. *J. Am. Chem. Soc.*, **137**, 15518–15527 (2015).

[4] Pérez-Estrada, S., Rodríguez-Molina, B., Xiao, L., Santillan, R., Jiménez-Osés, G., Houk, K. N. Garcia-Garibay, M. A. Thermodynamic Evaluation of Aromatic CH/π Interactions and Rotational Entropy in a Molecular Rotor. J. Am. Chem. Soc., 137, 2175–2178 (2015).

[5] Felzmanna, W., Gmeinerb G., Gärtnera, P. First synthesis of a pentadeuterated 3'hydroxystanozolol--an internal standard in doping analysis. *Steroids* **70**, 103–110 (2005).

[6] Goliaszewski, A. et al. Specific allylic-allylic coupling procedures effected by ligand-induced elimination from di(allylic)palladium species. *Tetrahedron* **41**, 5779–5789 (1985).

[7] Furrow, M. E., Myers, A. G. Practical Procedures for the Preparation of N-tert-Butyldimethylsilylhydrazones and Their Use in Modified Wolff–Kishner Reductions and in the Synthesis of Vinyl Halides and gem-Dihalides, *J. Am. Chem. Soc.*, **126**, 5436–5445 (2004).

[8] Horn, E. J. et al. Scalable and sustainable electrochemical allylic C-H oxidation. *Nature* **533**, 77–81 (2016).

[9] See, Y. Y., Herrmann, A. T., Aihara, Y. Baran, P. S. Scalable C–H Oxidation with Copper: Synthesis of Polyoxypregnanes. *J. Am. Chem. Soc.* **137**, 13776–13779 (2015).

[10] Künzer, H., Thiel, M. A novel route to 3-alkylated estra-1,3,5(10)-trienes. Tetrahedron Letters

29, 1135-1136 (1988).

[11] Bauer, R. A., Wenderski, T. A. & Tan D. S. Biomimetic diversity-oriented synthesis of benzannulated medium rings via ring expansion. *Nat. Chem. Biol.*, **9**, 21–29, (2013).

[12] Bruker-AXS. APEX3. Version 2016.5-0. Madison, Wisconsin, USA, (2016).

[13] Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. J. Appl. Cryst. 48, 3-10 (2015).

[14] Sheldrick, G. M. *XPREP*. Version 2013/1. Georg-August-Universität Göttingen, Göttingen, Germany (2013b).

[15] Sheldrick, G. M. (2013a). The SHELX homepage, http://shelx.uni-ac.gwdg.de/SHELX/.

[16] Sheldrick, G. M. Acta Cryst. A, 71, 3-8 (2015a).

[17] Sheldrick, G. M. Acta Cryst. C, 71, 3-8 (2015b).

[18] Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. *J. Appl. Crystallogr.* **42**, 339-341 (2009).

[19] Guzei, I. A. (2007-2013). Programs Gn. University of Wisconsin-Madison, Madison, Wisconsin, USA.