Supplementary Information

Ethylene-mediated nitric oxide depletion pre-adapts plants to hypoxia stress

Sjon Hartman¹, Zeguang Liu¹, Hans van Veen¹, Jorge Vicente², Emilie Reinen¹, Shanice Martopawiro¹, Hongtao Zhang³, Nienke van Dongen¹, Femke Bosman¹, George W. Bassel⁴, Eric J.W. Visser⁵, Julia Bailey-Serres^{1,6}, Frederica L. Theodoulou³, Kim H. Hebelstrup⁷, Daniel J. Gibbs⁴, Michael J. Holdsworth^{2*}, Rashmi Sasidharan^{1*} and Laurentius A.C.J. Voesenek^{1*}

¹ Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands

^{2.} School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, United Kingdom

^{3.} Plant Sciences Department, Rothamsted Research, Harpenden, AL5 2JQ, United Kingdom

^{4.} School of Biosciences, University of Birmingham, Edgbaston B15 2TT, United Kingdom

^{5.} Department of Experimental Plant Ecology, Institute for Water and Wetland Research, Radboud University Nijmegen, 6525 AJ, Nijmegen, the Netherlands

^{6.} Botany and Plant Sciences Department and Center for Plant Cell Biology, University of California, Riverside, California 92521, United States

^{7.} Department of Molecular Biology and Genetics, Aarhus University, Forsøgsvej 1, DK-4200 Slagelse, Denmark

This Supplementary Information file contains:

Supplementary Figures 1-10 Supplementary Table 1 (Genotyping primers) Supplementary Table 2 (RT-qPCR primers)

Supplementary Figure 1. Ethylene signalling mediates early submergence responses towards hypoxia acclimation

(a) Representative confocal images and quantification (b, c) of protein stability and localization of the ethylene master regulator EIN3, using the 35S:EIN3-GFP (ein3eil1 double mutant background) signal in Arabidopsis root tips. Seedling were treated for up to 4 hours with air (white), ~5µll⁻¹ ethylene (blue) or submergence (red), either in combination with or without a pre-treatment of ethylene action inhibitor 1-MCP at the 4 hour time-point. Cell walls were visualized using Calcofluor White stain (scale bar= 50µm). Mean GFP pixel intensity inside the root tips was quantified using ICY imaging software. (b) Asterisks indicate a significant difference from the air mean per time-point (p<0.05, ANOVA with planned comparisons, Tukey's HSD correction for multiple comparisons, n=5-12 roots). (c) Samples without 1-MCP are the same as in (b) at t=4h. Statistically similar groups are indicated using the same letter (p<0.05, 2-way ANOVA, Tukey's HSD, n=5-11 roots). (d, e) Seedling root tip survival of Col-0 after 4 hours of pre-treatment with air (white), ~5µll⁻¹ ethylene (blue) or submergence (red), either in combination with or without a pre-treatment of ethylene action inhibitor 1-MCP (d), or Col-0 and two ethylene signalling pathway loss-of-function mutants (e) followed by 4 hours of hypoxia and 3 days of recovery. Values are relative to control (normoxia) plants. Statistically similar groups are indicated using the same letter in (d). Asterisks indicate significant differences between air and ethylene in (e) (p<0.05, Generalized linear model with negative binomial error structure, (d) n=8 rows of ~23 seedlings; (e) n=4-6 rows of ~46 seedlings). Error bars are SEM, experiments were replicated at least 2 times.

Supplementary Figure 2. Ethylene pre-treatment enhances plant performance of recovering tissues after subsequent hypoxia

(a) Seedling root tip regrowth capacity of surviving roots after 4 hours of pre-treatment with air (white) or -5μ ll⁻¹ ethylene (blue) followed by hypoxia and 3 days of recovery. Values are relative to control (normoxia) plants. Asterisks indicate significant differences between air and ethylene at given time point (*p<0.05, Student's *t* test, n=4-8 rows of 23 seedlings for survival, n= 5-35 surviving roots for regrowth). (b) Rosette dry weight (DW) of adult Col-0 plants after 4 hours of pre-treatment with air (white) or -5μ ll⁻¹ ethylene (blue) followed by hypoxia and 7 days of recovery. DW was measured only from surviving plants. Values are relative to control (normoxia) plants. Asterisks indicate significant differences between air and ethylene at given time point (*p<0.05, Student's *t* test, n=30 plants). Error bars are SEM, experiments were replicated at least 3 times.

Supplementary Figure 3. Ethylene pre-treated seedlings show reduced cell damage in root tips during subsequent hypoxia and recovery treatments

(a) Representative light microscopy images of Evans blue staining for impaired cell membrane integrity in seedling root tips after 4 hours of pre-treatment with air or -5μ ll⁻¹ ethylene followed by 2-4h hypoxia and 1-2h of recovery (scale bar = 2mm). (b, c) Quantification of the area (b) and pixel intensity (c) of Evans blue staining in seedling root tips after 4 hours of pre-treatment with air (white) or -5μ ll⁻¹ ethylene (blue) followed by 2-4h hypoxia and 1-2h of recovery. Asterisks indicate significant differences between air and ethylene at given time point (Error bars are SEM, *p<0.05, Student's *t* test, n=10 root tips). Experiments were replicated at least 3 times.

Supplementary Figure 4. Ethylene-induced hypoxia tolerance is conserved within Arabidopsis thaliana accessions and shows variation between other plant species

(a) Relative rosette fresh weight (FW) of adult Arabidopsis accessions C24, Col-0 and Cvi-0 plants after 4 hours of pre-treatment with air (white) or $\sim 5\mu$ II⁻¹ ethylene (blue) followed by 9 hours of hypoxia and 7 days of recovery. FW was measured only from survived plants (Error bars are SEM, *p<0.05, Student's *t* test, n=10 plants). (b) Root tip survival of 4 different plants species after 4 hours of pre-treatment with air (white) or $\sim 5\mu$ II⁻¹ ethylene (blue) followed by 4 hours of hypoxia and 3 days of recovery Asterisks indicate significant differences between air and ethylene (Error bars are SEM, **p<0.01, Generalized linear model with negative binomial error structure, n=4-12 rows of 10-46 seedlings depending on species). (c) Plant survival of 2 different varieties of Barley (*Hordeum vulgare*) seedlings after 4 hours of pre-treatment with air (white) or $\sim 5\mu$ II⁻¹ ethylene (blue) followed by 20 hours of hypoxia and 3 days of recovery. Asterisks indicate significant differences between air and ethylene (Error bars are SEM, **p<0.05, Generalized linear model with negative of 2π III⁻¹ ethylene (blue) followed by 20 hours of hypoxia and 3 days of recovery. Asterisks indicate significant differences between air and ethylene (Error bars are SEM, *p<0.05, Generalized linear model with negative binomial error structure, n=4-6 replicates containing 3 seedlings). Experiments were replicated at least 2 times, except for a, which was only performed once.

Supplementary Figure 5. Ethylene pre-treatment augments hypoxia adaptive gene transcripts upon hypoxia

Relative mRNA transcript abundance of 15 hypoxia adaptive genes in seedling root tips of Col-0 after 4 hours of pre-treatment with air (white) or $\sim 5\mu$ ll⁻¹ ethylene (blue), followed by (4h) hypoxia (dashed stripes). Values are relative to Col-0 air treated samples. Different letters indicate significant differences (Error bars are SEM, p<0.05, 1-way ANOVA, Tukey's HSD, n=3-4 replicates of ~400 root tips). Experiments were replicated at least 2 times.

Supplementary Figure 6. Involvement and regulation of ERFVIIs during ethylene-induced hypoxia tolerance (a, b) Seedling root tip survival of Col-0, Ler-0, ERFVII mutants rap2.2 (Ler-0 background), rap2.12, rap2.3 and hre1hre2 (Col-0 background) in a, and Col-0, Ler-0, 2 Col-0 x Ler-0 WT crosses and ERFVII double mutants rap2.2rap2.12 (2 independent lines in Col-0 x Ler-0 background) in b, after 4 hours of pre-treatment with air (white) or ~5µll⁻¹ ethylene (blue) followed by 4 hours of hypoxia and 3 days of recovery. Values are relative to control (normoxia) plants. Asterisks indicate significant differences between air and ethylene (Error bars are SEM, **p<0,01, Generalized linear model with negative binomial error structure, n=4-21 rows consisting of ~23 seedlings for a, n=8 rows consisting of ~23 seedlings for b). (c, d) Relative mRNA transcript abundance of all 5 ERFVIIs in root tips of Col-0 seedlings (c) and adult rosettes (d) after air (white) or ~5µll⁻¹ ethylene (blue) treatments (4h). Asterisks indicate significant differences between air and ethylene (Error bars are SEM,*p<0.05, **p<0.01, ***p<0.001, Generalized linear model with negative binomial error structure, n=3-4 replicates containing ~400 root tips for c, n=5 replicates of 2 rosettes for d). (e, f) Representative DIC microscopy images (e) and quantification (f) of promRAP2.12::RAP2.12-GUS in seedling shoots, lateral roots and main root tips after treatments with air (white) or ~5µII⁻¹ ethylene (blue) or subsequent (4h) hypoxia (dashed stripes). Scale bars; shoot = 200µm, lateral root = 60µm, main root = 100µm. Values are relative to air treated samples. Statistically similar groups are indicated using the same letter per tissue (Error bars are SEM, p<0.05, 1-way ANOVA, Tukey's HSD, n=5-20 replicates). Experiments were replicated at least 2 times.

Supplementary Figure 7. The effects of ethylene on processes known to mediate ERFVII stability (a, b) Relative mRNA transcript abundance of genes coding for enzymes involved in the PRT6 N-degron pathway or RAP2.12-sequestering Acyl-CoA binding proteins *ACBP1* and *ACBP2* in root tips of Col-0 seedlings (a) and adult rosettes (b) after 4 hours of treatment with air (white) or $\sim 5\mu$ II⁻¹ ethylene (blue). Values are relative to Col-0 air treated samples. No significant differences were found between air and ethylene (Error bars are SEM, Student's t test, n=3-4 replicates containing ~400 root tips for a, n=5 replicates of 2 rosettes for b). (c) Levels of molecular oxygen measured over time at the outflow of the desiccators during the ethylene pre-treatment and subsequent hypoxia treatments in this study. Oxygen levels generally reached <0.00% between 40 and 50 minutes of flushing the desiccators with humidified 99.996% N₂ at a rate of 21 min⁻¹. (d) RAP2.3 protein levels in *35S::MC-RAP2.3-HA* seedlings (Col-0 background) after air and ethylene pre-treatments (4h), combined with or without an additional NO pulse and subsequent hypoxia (4h). Experiments were replicated at least 2 times, except for d, in which the hypoxia treatment after NO manipulation was only performed once.

Supplementary Figure 8. The effects of ethylene on *PHYTOGLOBIN* transcript abundance and *NITRATE REDUCTASE* transcript abundance and activity

(a, b) Relative mRNA abundance of genes coding for enzymes involved in NO metabolism in seedling root tips (a) and adult rosettes (b) of Col-0 plants after 4 hours of treatment with air (white) or ~5µll⁻¹ ethylene (blue). Values are relative to Col-0 air treated samples. Asterisks indicate significant differences between air and ethylene (***p<0.001, **p<0.01, *p<0.05 Student's t test, n=3-4 replicates of ~400 root tips in a, n=5 replicates of 2 rosettes in b). (c) Relative PGB1 mRNA transcript abundance in rosettes of Col-0 plants during 4 hours of treatment with air (white) or ~5µll⁻¹ ethylene (blue). Asterisks indicate significant differences between air and ethylene (***p<0.001, ANOVA with planned comparisons, Tukey's HSD correction for multiple comparisons, n=5 replicates of 2 rosettes). (d) Relative PGB1 mRNA transcript abundance in seedlings of Arabidopsis Col-0 and Ler-0 WT, and 2 double rap2.2rap2.12 mutants (Col-0 x Ler-0 background) after 4 hours of treatment with air (white) or ~5µll⁻¹ ethylene (blue). Values are relative to Col-0 air treated samples. Asterisks indicate significant differences between air and ethylene (**p<0.01, ANOVA with planned comparisons, Tukey's HSD correction for multiple comparisons, n=2 replicates of ~400 root tips). (e) Nitrate reductase activity in whole Col-0 WT seedlings after 4 hours of pre-treatment with air (white) or ~5µll⁻¹ ethylene (blue), followed by (4h) hypoxia (dashed stripes). Statistically similar groups are indicated using the same letter (p<0.05, 1-way ANOVA, Tukey's HSD, n=2 replicates of ~200 seedlings). All error bars are SEM, experiments were replicated at least 2 times, except for e, which was only performed once.

Supplementary Figure 9. Identification of pgb1-1 mutant line SK_058388

(a) Schematic map of genomic *PGB1* gene region including the 4 *PGB1* exons (green) and the location of the t-DNA insertion (red triangle) of *pgb1-1* line *SK_058388*. (b) Partial DNA sequencing reaction of *pgb1-1* aligned with genomic *PGB1* gene region. The aligned native *PGB1* sequence (black) ends and the T-DNA sequence (red) starts exactly 300bp upstream of the *PGB1* start codon.

Supplementary Figure 10. Hypoxia adaptive gene expression in *PGB1* knock-down and overexpression lines

Relative mRNA transcript abundance of 8 hypoxia adaptive genes in seedling root tips of Col-0, *pgb1-1* and *35S:PGB1* after 4 hours of pre-treatment with air (white) or ~5µll⁻¹ ethylene (blue), followed by (4h) hypoxia (dashed stripes). Values are relative to Col-0 air treated samples. Different letters indicate significant differences (Error bars are SEM, p<0.05, 2-way ANOVA, Tukey's HSD, n=3 replicates containing ~200 root tips).

Supplementary Table 1. List of genotyping primers used in this study

T-DNA lines	Primer info	Oligo sequence 5' \rightarrow 3'	Additional info
rap2.2-5	WTFW	ccgcgtcactaacgagtttat	Gasch et al., 2015 20
(AY201781)	WTREV	ctccactgggttttcctcttc	
	T-DNA REV	cgattaccgtatttatcccgt	
rap2.12-2	WTFW	tcttcgattttgacgctgagt	Gasch et al., 2015 ²⁰
(SAIL_1215_H10)	WTREV	agggtttgcaccattgtcctgag	
	T-DNA REV	gaatttcataaccaatctcgatacac	
rap2.3-1	WTFW	atgtgtggcggtgctattatt	Gibbs et al., 2014 14
(SAIL_1031_D10)	WTREV	ttactcatacgacgcaatgac	
	T-DNA REV	gaatttcataaccaatctcgatacac	
hre1	WTFW	ttacagacagtggcgaaatca	Gibbs et al 2014 ¹⁴
(SALK 039484)	WTREV	tcaggaccatagacccatgt	
(T-DNA REV	attttgccgatttcggaac	
hre2	WTFW	tgcaaaaggttatagagcacac	Gibbs et al., 2014 ¹⁴
(SALK_052858)	WT REV	ggcaaccggaatctgataga	
	I-DNA REV	attitigccgatticggaac	01112
		ggcagaaacaicccigaaag	GIDDS et al., 2011
(SAIL_1276_HTT)	WIKEV	gcagcacacaciggagaag	
	T-DNA REV	gaatttcataaccaatctcgatacac	
pab1-1	WTFW	aagtottacgtgagactacgact	This paper
(SALK 058388)	WTREV	cttcgttgttggtgdgddtdgddt	
	T-DNA REV	attttgccgatttcggaac	
eil1-1	WTFW	tttgatcgtaatggtccagc	Alonso et al., 2003 39
	WTREV	attttgctgtgaggacactg	
	Transp.REV	gtcggtccccacacttctata	1
Transgenic lines	Primer info	Oligo sequence 5' \rightarrow 3'	Additional info:
35S:PGB1	35S:FW	ggaagttcatttcatttggagagg	Kanamycin Resistance
	PGB1 REV	tgacactccaagacttcactaca	Hebelstrup et al., 2006 ⁴⁰
35S:RAP2.3-HA	35S:FW	ggaagttcatttcatttggagagg	Basta Resistance
	RAP2.3 REV	taatcogaaataatagcaccocc	Gibbs et al., 2014 14
35S·FIN3-GFP	35S·FW	ggaagttcatttcatttggagagg	Kanamycin resistance
	EIN3 REV	atgettgataaccgcagtca	Xie et al., 2015^7
35S:RAP2.12-GFP	35S:FW	ggaagttcatttcatttggagagg	Kanamycin Resistance
	RAP2.12 REV	agggtttgcaccattgtcctgag	Licausi et al., 2011 ¹³
35S:δ13-RAP2.12-GFP	35S:FW	ggaagttcatttcatttggagagg	Kanamycin Resistance
	RAP2.12 REV	agggtttgcaccattgtcctgag	Licausi et al., 2011 ¹³
promRAP2.12:RAP2.12-GUS	RAP2.12 FW	actgaatgggacgcttcactgg	Hygromycin Resistance
	GUS REV	ccatcagcacgttatcgaat	This paper
Othor	Brimor info		Additional info
oin2-5		contrast contrast \rightarrow 3	Zhn deletion
Giii2-5	WTREV		Alonso et al. 1999^{38}
	1	-35.000.000	
ein3	WTFW	aggaggatgtggagagacaa	G to A substitution at nt1598
	WTREV	atgcttgataaccgcagtca	Alonso et al., 2003 ³⁹

Supplementary Table 2. List of RT-qPCR primers used in this study

Target			
gene	AT code	Primer name	Oligo sequence 5' \rightarrow 3'
40004	ATECE2470	ACBP1_FW	TGGAGATGCGTTATTGTGA
ACBPT	A15G53470	ACBP1_R	GCGAGAAGGTAAGCGAAG
ACBP2	AT4C07700	ACBP2_FW	GTGAGGCGGATTCGCTTGT
	A14G27780	ACBP2_R	TGCGGCGGCGGTAGTC
ACO1	AT2G19590	ACO1_FW	CCTCAGATGCAGATTGGGAAAGC
		ACO1_R	TCATCCATCGTCTTGCTGAGTTCC
ADH1	474077400	ADH1_FW	GGTCTTGGTGCTGTTGGTTT
	AT1G77120	ADH1_R	CTCAGCGATCACCTGTTGAA
	171007150	APT1_FW	AATGGCGACTGAAGATGTGC
APT1	AT1G27450	APT1 R	TCAGTGTCGAGAAGAAGCGT
ATE1	AT5G05700	ATE1_FW	TCCTCTCCGTTTCCAGTGGG
		ATE1 R	CCACGAGAGTTTCAGAAGCACCAG
	AT3G11240	ATE2 FW	AGCAGTAGCAGAAACCGGAGTG
ATE2		ATE2 R	TTCTTGAACCGCGGTATATCCTTG
<u> </u>		FTR2_FW	TGTTAGATTCTCCGGCGGCTATG
ETR2 HRA	AT3G23150 AT3G10040	ETR2 R	TTCCCATGAATCAACTGCACCAC
HRE1	AT1G72360		
HRE2	AT2G47520		
NR1	AT1G77760		
NR2	AT1G37130		
PC01	AT5G1512 AT5G39890		
		PCO1_FW	
L		PCO1_R	
PCO2		PCO2_FW	
L		PCO2_R	
PDC1	AT4G33070	PDC1_FW	
		PDC1_R	TGTCCTGAACCGTGACTTGG
PDC2	AT5G54960	PDC2_FW	TGAAAGCAATCAACACGGCA
		PDC2_R	CAGCAGAGACTCTAGAGCCC
PRT6 RAP2.2	AT5G02310 AT3G14230	PRT6_FW	CATATGGAGCCCTTGTTGCAGAG
		PRT6_R	TACACCAGTACCAGCACCACAG
		RAP2.2_FW	CCTAGCGTCGTATCCCAGAA
		RAP2.2_R	CTCAGATGTGTTGGCTGCTG
RAP2.3	AT3G16770	RAP2.3_FW	AACTCACGGCTGAGGAACTCTG
		RAP2.3_R	ACGTTAACTTGGTTGGTGGGATGG
RAP2.12	AT1G53910	RAP2.12_FW	ACTGAATGGGACGCTTCACTGG
		RAP2.12_R	AGGGTTTGCACCATTGTCCTGAG
SR05	AT5G62520	SRO5_FW	AAGAGGCGGTGCAGATGAAACAC
		SRO5_R	TTTCGAAACAGAGCACCAACCG
ALAAT1 SUS4	AT1G17290 AT3G43190	ALAAT1_FW	ATTCATGACAGATGGTGCAA
		ALAAT1_R	TATTTCAAGACCCCATCCTG
		SUS4_FW	TTCACCATGGCTAGGCTTGA
		SUS4_R	CCACCAAGTTCACCAGTTCG
PGB1	AT2G16060	HB1_FW	GGCTCTTGTAGTGAAGTCTTGGA
		HB1_R	CTTCGTTGTTGGTGCAATCTCA
PGB2	AT3G10520	HB2_FW	TGAAGTCCCTCACAACAATCCTA
		HB2_R	AACGCCGCTTTTGAGATGAA
PGB3	AT4C22600	HB3_FW	TGGACGATTCGGTTGACATT
	A 14032090	HB3_R	TGGTTTATTGGCTGCGTGTT
Н 1040	ATAG24110	HUP40_FW	GAAACTTGAGTGCGAGTGTG
	A14G24110	HUP40_R	CTCAAACCCAATCTTTTGCT
RBOHD	ATEC 47040	RBOHD _FW	CTTCTGCAAACAAGCTCTCA
	A13047910	RBOHD _R	GTATCCTGCTGTCTCCCATC